
CC015

ARRAY: construction and usage of arrays of macro variables
Ronald Fehd

Centers for Disease Control, and Prevention, Atlanta GA USA

ABSTRACT

The SAS
r©

software data step statement array V 3 $ V1-V3
(’A’ ’B’ ’C’); produces three character variables named V1,
V2, and V3 with corresponding initial values, ’A’, ’B’, and
’C’ and a function, dim(V), which returns a value of 3. Pro-
grammers can write simple macro tools for use in larger macro
procedures. These tools can duplicate SAS software data step
constructions that the programmer is comfortable using and
make reading and comprehension easier. The macro state-
ment %ARRAY(V,A B C) produces three macro variables,
V1, V2, and V3, with corresponding values: A, B, and C and
macro variable DIM V with the value 3. These variables can
then be used in the macro iterative loop statement %DO I
= 1 %TO &DIM V.; . This paper examines the SAS data
step array statement and discusses the issues in constructing
and using arrays of macro-variables. The macro ARRAY takes
parameters of either a list of elements or a data set.

Macro ARRAY is a basic utility used in two other macros that
address analysis of multiple-response data. See [3], [4].

INTRODUCTION

A common task for an experienced programmer is to recognize
a recurring pattern of code and encapsulate that pattern in a
routine which simplifies the processing presentation, while still
enabling later readers of the program to grasp the complex
concepts that have been coded.

The SAS software macro language is a simple yet powerful
programming language. This article examines the SAS soft-
ware array and associated do loop statements with the idea of
translating those concepts into SAS software macro language
usage.

SAS array statement and dimension (dim) function

The explicit array statement in SAS software has seven
phrases; we will examine the four that are most commonly
used:

1. ARRAY is the SAS statement key-word

2. array-name: required

3. subscript: required, either of 3: number supplied for cre-
ation of a series of variables *: asterisk indicating subscript is
determined by SAS software by counting the supplied array-
elements

4. array-elements: an optional list of variable names

The dimension function has two commonly used phrases:

1. DIM is the SAS function name

2. parameter is an array-name defined in same data step

A typical usage of the array statement would consist of ac-
cessing one set of variables in order to repeat some process-
ing on each variable. The example in program 1 below reads
in three Fahrenheit temperatures and converts them to Cel-
sius. Note that the proc CONTENTS listing shows that SAS
has created a series of variables based on the absence of the
array-elements in the array Celsius statement. Their names
– Celsius1, Celsius2, and Celsius3 - - correspond to the way
the variables are accessed in the iterative loop by the array
convention of Celsius1, Celsius2, and Celsius3.

Program 1

data TEMPRATR;

input Low Med Hi;

array Celsius {3};*note no array-elements,

see CONTENTS;

array Farnheit {*} Low Med Hi;

do I = 1 to dim(Farnheit); Celsius{I} =

(Farnheit{I}-32)

* 5/9; end;

cards;*<deleted for brevity>;

proc CONTENTS;

- - - SAS output: - - -

Variable Type Len Pos

- -------- ---- --- ---

4 CELSIUS1 Num 8 24

5 CELSIUS2 Num 8 32

6 CELSIUS3 Num 8 40

3 HI Num 8 16

1 LOW Num 8 0

2 MED Num 8 8

SAS software macro language iterative loop

To replicate the SAS software iterative loop in the macro lan-
guage we use a sequentially numbered series of macro vari-
ables and a macro variable containing the dimension:

%LET VAR1 = Q04A;

%LET VAR2 = Q04B;

%LET VAR3 = Q04C;

%LET DIM_VAR = 3;

The macro iterative loop and usage of the macro variables
can then be written in a form that is visually similar to the
SAS software iterative loop.

%DO I = 1 %TO &DIM_VAR.;

%PUT VAR&I. :: &&VAR&I.; %END;

This loop writes the following note to the SAS log:

1

Coders' CornerNESUG 16

VAR1 :: Q04A

VAR2 :: Q04B

VAR3 :: Q04C

This is a construction used regularly in certain types of
macros. The purpose of this paper is to construct a macro
that supports this iterative loop. Such a macro would be
named ARRAY, and would have two of the SAS array state-
ment phases as parameters: array-name, and array- element
values. This macro would return a sequentially- numbered
series of macro variables and the dimension of the array. The
array-element values could be either a provided list or the
values of a variable in a data set. This second option of pro-
viding the array-element values in a data set would enable
macro procedures to be completely data- driven. See [3], [4]
for examples.

Parameters and Constraints

The simplicity of the macro language both allows and requires
construction of a routine that has the appearance of the SAS
software array statement. Since this is a routine and not a
SAS software implementation, there are relations among the
parameters that are constraints.

The first and most obvious is that the array-name parameter
must follow SAS naming conventions. SAS names may be up
to eight characters in length. For this routine, some number
of characters must be reserved for the sequential numbering of
the suffix. As the magnitude of the number of array-elements
increases, the length of the array-name must decrease in order
for the combined length to be less than or equal to eight.

A second constraint on the array-name parameter is that
the macro variable used for the dimension has the form:
DIM <array-name>. This construction was chosen to ap-
pear visually similar to the usage of the dimension function:
dim(<array-name>). This convention reduces the length of
the array-name as prefix to four characters.

The array-name parameter is both prefix and suffix. As suffix
to the name of the returned value of dimension, it can be no
more than four characters in length. As prefix to the series
of macro variables four characters in the array-name allows a
maximum of 9,999 sequentially numbered macro variables to
be created without suffering a ’SAS name too long’ error. For
larger arrays, the length of the array-name can be as small as
one character.

Array-elements in the SAS software data step array statement
are assumed to be delimited by spaces. When array-element
values are provided to this routine as a list, the macro scan
function is used to pick out each value. The delimiters of the
macro function alpha-numeric characters. For special cases
where, for instance, an array-element value may contain two
or more words, the delimiter parameter may be supplied.

A data set and variable name may be supplied as parame-
ters, instead of a list. This routine was written to handle
various series of variable names, which were subsets of a proc
CONTENTS output data set. Review the test data with the
macro.

Case 1: Scanning macro values from a list

The macro function scan operates the same as the SAS soft-
ware function. In order to construct a loop which has a data-
dependent termination, it is necessary to use and test a tem-
porary variable for the exit condition. Here is pseudo- code
for a loop that converts a list to array-elements:

initialize: I := 1

pick I-th ITEM from ITEMLIST

loop: assign ITEM to macro-variable

increment I

pick I-th ITEM from ITEMLIST

until ITEM is blank

Whereas the pseudo-code shows that the test is done at the
bottom of the loop, SAS attaches the until function to the
iterative section below, the macro variables are global. The
index is incremented using the index is off by one; the dimen-
sion is therefore index - 1.

Case 2: Symput: macro values from a data set
variable

SAS software provides the symput function to transfer values
from a data set variable to the macro environment. The sym-
put function takes two arguments, macro-variable name, and
macro-variable value.

symput(mac-var name, mac-var value)

The macro-variable name is a character expression consisting
of the array-name prefix plus a suffix which is the series of
integers from one to the number of observations of the data
set. The macro-variable value is the value of the data set
variable.

symput(prefix + suffix, variable name)

The prefix is a macro variable and is to be evaluated as a
quoted string. Double exclamation marks – !! – are used as
character-value concatenation operator. The suffix is an in-
teger – here, the SAS observation counter – converted to a
character expression.

symput("&ARRAY-NAME." !! left(_N_), var-name)

SQL Late in the last century after I had written and pub-
lished this macro one of my ’other duties, as assigned’ was to
learn proc SQL. Imagine my surprise that the SQL select into
statement can allocate as many macro variables as there are
rows in the data set. Here is an example of the basic syntax:

proc SQL noprint;

select <variable name>

into :NAME1 - :NAME9999

from <<libref.>><data set name>

;quit;

%LET DIM_NAME = &SQLOBS.;

You will notice in the program listing that these six lines re-
place twenty lines of data step with call symput.

2

Coders' CornerNESUG 16

Usage of %ARRAY in other macros

The code for creating a macro array from a list was first writ-
ten as part of the %CHECKALL macro. This macro analyzes
multiple-response data, a series of variables which contain an-
swers to survey questions with the instructions ’check all that
apply’. After typing in hundreds of variables as lists for the
various series, I wrote the second section which uses a previ-
ously prepared subset of a proc CONTENTS data set. This
addition allows both research and production usage of the
%CHECKALL macro. See Fehd [3], [4] and test data with
the macro.

DiIorio [1] discusses macro arrays of data set names.

CONCLUSION

The SAS software array and do statements are a simple pro-
gramming tool which allow a programmer to access a list of
variables. The macro language allows a programmer to ac-
cess a list of items with a %DO; statement but lacks a specific
%ARRAY statement. This paper has presented a macro AR-
RAY which converts either a list or values of a variable into
a sequentially-numbered series of macro-variables with com-
mon prefix and sequential numeric suffix and also returns a
macro-variable with the dimension. This routine hides com-
plexity and simplifies readability of programs which contain
macro loops.

The SAS software macro language is a simple language. It’s
simplicity leaves many advanced programming concepts ap-
parently unavailable. It’s simplicity is an asset in that, with
some forethought and planning, generic tools can be relatively
easily written. This macro was initially developed to take a
list of variable names as a parameter. After some usage it
became apparent that adding the option to accept a data set
as parameter would eliminate tedious typing of the variable
lists, and, in addition, since the routine was then data-driven,
guarantee the accuracy of the data thus processed.

REFERENCES

[1] DiIorio, Frank (1996), MACARRAY: a Tool to Store
Dataset Names in a Macro ’Array’, Proceedings of the
Fourth Annual Conference of the SouthEast SAS Users
Group, 229-231.

Each of the following papers is at: http://

www2.sas.com/proceedings/sugi22/PROCEED.PDF

[2] Fehd, Ronald (1997), %ARRAY: construction and usage
of arrays of macro variables, Proceedings of the Twenty-
Second Annual SAS Users Group International Confer-
ence. url suffix: CODERS/PAPER80.PDF

[3] Fehd, Ronald (1997), %CHECKALL, a macro to pro-
duce a frequency of response data set from multiple-
response data Proceedings of the Twenty-Second An-
nual SAS Users Group International Conference. url suf-
fix: POSTERS/PAPER236.PDF

[4] Fehd, Ronald (1997), %SHOWCOMB: a macro to pro-
duce a data set with frequency of combinations of re-
sponses from multiple-response data Proceedings of the
Twenty-Second Annual SAS Users Group International
Conference. url suffix: POSTERS/PAPER204.PDF

SAS
r©

is a registered trademark of SAS Institute, Inc. In the
USA and other countries, r© indicates USA registration.

Author: Ronald Fehd bus: 770/488-8102
Centers for Disease Control MS-G23
4770 Buford Hwy NE
Atlanta GA 30341-3724 e-mail: RJF2@cdc.gov

This paper was typeset in LATEX. For further information
about using LATEXto write your SUG paper, consult the SAS-L
archives:

http://www.listserv.uga.edu/cgi-bin/wa?S1=sas-l

Search for :

The subject is or contains: LaTeX

The author’s address : RJF2

Since : 01 June 2003

3

Coders' CornerNESUG 16

