Integrity Constraints and Audit Trails Working Together
Gary Franklin, SAS Institute Inc., Austin, TX
Art Jensen, SAS Institute Inc., Englewood, CO

ABSTRACT

New features in Version 7 and Version 8 of the SAS ® System
support centralized control of updating. The integrity constraints
feature defines rules to be enforced during updates, and the audit
trail feature logs every update activity, with enough information to
determine which updates failed, if any.

When updates fail, data from the audit trail can be used to
reconstruct the original updates so they can be successfully
reapplied. Using these new features together can substantially
reduce the amount of coding required to perform the repair
operations.

INTRODUCTION

The purpose of this paper is to introduce the integrity constraints
and the audit trail features, and to illustrate how they can be used
together to better control and track updates to SAS data files.

INTEGRITY CONSTRAINTS

Integrity constraints are a set of data validation rules that you can
specify to restrict the data values accepted into a SAS data file.
The integrity constraint rules are enforced whenever values
associated with an integrity constraint variable are added,
updated, or deleted. Using integrity constraints helps preserve
the correctness and consistency of the stored data.

There are two categories of constraints — general and referential.

GENERAL INTEGRITY CONSTRAINTS

General integrity constraints allow you to restrict the data values
of variables within a single data file. There are four types of
general integrity constraints:

Primary requires that the specified variable(s) contain unique
Key values. Null (or missing) data values are not allowed.
Only one primary key can exist in a data file.

NOTE: A primary key is a general integrity constraint
as long as it does not have any foreign keys
referencing it.

Unique requires that the specified variable(s) contain unique
data values. A null data value is allowed but is
limited to a single instance, given the unique nature
of the constraint.

Not Null requires that a variable contain a data value. Null data
values are not allowed. Not null constraints are limited
to a single variable, requiring a separate integrity
constraint be defined for each variable you do not want
to allow null values.

Check limits the data values of variables to a specific set,
range, or list of values. Check constraints can also be
used to ensure that data values in one variable within
an observation are contingent on the data values in
another variable within the same observation.

To illustrate how easy it is to define a constraint, suppose you are
responsible for maintaining a SAS data file with the names of all
the drivers who have ever driven in the Indianapolis 500. The

data file contains three columns: the driver's name (Name), how
many times they have driven in the race (Starts), and how many
times they have won the race (Wins). The first four observations
of the DRIVERS data file are shown below:

Name Starts Wins
A.J. Foyt Jr. 35 4
Mario Andretti 29 1
Al Unser 27 4
Gordon Johncock 24 2

The driver's name must be unique and cannot be null, thus
making it a good candidate for a primary key. The number of
starts must be one or greater, which can be enforced with a
check constraint. To create the primary key and the check
constraints, you can submit the following PROC DATASETS
code:

proc datasets |ibrary=Indy;
nmodi fy Drivers;

ic create Driver

ic create Starts

(Starts >= 1));

primary key(Name);
check(where=

run;
quit;

Prior to creating the primary key constraint, the software verifies
that each value for column ‘Name’ is unique, and is not null. If for
some reason these conditions are not met, an error message is
displayed indicating the constraint was not created. The software
also verifies that each value for column ‘Starts’ is greater than or
equal to one.

Once the constraints are created, PROC CONTENTS can be
used to display descriptive information about the constraints and
the indexes they utilize. The constraint and index information for
the INDY.DRIVERS data file appears below:

---Al phabetic List of Integrity Constraints----

Integrity \Wer e
Constraint Type Vari abl es C ause

1 Driver Primary Key Nane
2 Starts Check Starts>=1

---Al phabetic List of Indexes and Attri butes---

of
Uni que Bui | t Onned Uni que
I ndex Option by IC by IC Val ues
1 Narre YES YES YES 654

Notice in this example that the name assigned to the primary key
constraint differs from the column name. Integrity constraint
names are not required to match their column name.

Beginning with Version 8, you can use the PROC CONTENTS
OUT2= option to store a data file’s integrity constraint and index
information in a separate SAS data file. The corresponding
PROC DATASETS commands that can be used to re-create the
integrity constraints and indexes are also stored as part of the
OUT2= data file.

If an attempt is made to add an observation to data file
INDY.DRIVERS and the data violates one of the defined integrity
constraints, an error message is displayed. For example, the
following SQL code tries to add an existing name to the
DRIVERS data file:

proc sql;
insert into Indy.Drivers
values(‘ Al Unser’, 1, 0);
quit;

ERROR: Add/ Update failed for data set
| NDY. DRI VERS because data val ue(s) do
not conply with integrity constraint
Driver.

The error message indicates the input data did not comply with
integrity constraint ‘Driver’.

If you would like to define your own integrity constraint error
message, you may do so by using the MESSAGE= option of the
IC CREATE statement. The previous example, where the ‘Driver’
constraint was defined, can be replaced with the following code:

proc datasets |ibrary=Indy;
nmodi fy Drivers;
ic create Driver = primary key(Nane)
message="Driver nanme already exists.”;
ic create Starts = check(where=
(Starts >= 1));
run;
quit;

The text supplied with the MESSAGE= option will be added to the
beginning of the SAS error message. Submitting the same SQL
INSERT statement as before will now generate the following error
message:

ERROR: Driver nane already exists.
Add/ Update failed for data set
| NDY. DRI VERS because data val ue(s) do
not conply with integrity constraint
Driver.

The user-defined portion of the error message and the SAS
portion are separated with a blank character. If you like, you can
suppress the SAS portion of the error message by including the
MSGTYPE-= option, like so,

proc datasets |ibrary=lndy;
modi fy Drivers;
ic create Driver = primary key(Nane)
message="Driver nane al ready exists.”
negt ype=user;
ic create Starts = check(where=
(Starts >= 1));
run;
quit;

Submitting the same SQL INSERT statement once more will
generate this error message:

ERROR: Driver nanme al ready exists.

NOTE: The MSGTYPE= option was implemented in Release
8.1 of the SAS system.

Suppose that in addition to maintaining the INDY.DRIVERS data
file, you are also responsible for maintaining a SAS data file
containing the names of drivers who have won the Indianapolis
500. The first four observations of the INDY.CHAMPIONS data
set are listed below:

Name Year
Ray Harroun 1911
Joe Dawson 1912
Jules Goux 1913
Rene Thomas 1914

In order to have won the Indianapolis 500 you must have driven
in it. Therefore, the DRIVERS and CHAMPIONS data files can
be related to each other through the creation of a referential
integrity constraint.

REFERENTIAL INTEGRITY CONSTRAINTS

Referential integrity constraints are created when a primary key
constraint in one data file is referenced by a foreign key
constraint in another data file. The foreign key constraint links
the data values of one or more variables in the foreign key data
file to corresponding variables and values in the primary key data
file. Data values in the foreign key data file must have a
matching value in the primary key data file, or they must be null.
Multiple occurrences of the same foreign key values share a
common parent record in the primary key data file. When data is
updated or deleted in the primary key data file, the modifications
are controlled by a referential action, defined as part of the
foreign key constraint. Separate referential actions can be
defined for the update and delete operations. There are three
types of referential actions:

Restrict prevents the data values of the primary key variables
from being updated or deleted if there is a matching
data value in one of the foreign key data files’
corresponding foreign key variables. The restrict
referential action is the default action if one is not
specified.

Set Null allows the data values of the primary key variables to
be updated or deleted, but matching data values in
foreign key data files are set to null (missing) values.

Cascade allows the data values in the primary key to be
updated, and additionally updates matching data
values in foreign key data files to the same values as
those of the primary key.

NOTE: The cascade referential action was
implemented in Release 8.1 of the SAS
system, and applies only to update
operations, NOT deletes.

The foreign key and its referenced primary key are the two halves
that make up a referential integrity constraint. The foreign key
data file and its referenced primary key data file can reside in the
same SAS library or in different libraries. For referential integrity
constraints to be created the primary key and foreign key must:

. contain the same number of variables
. the variables must be of the same type and length
. the variables must be referenced in the same order, and

. if the foreign key is being added to a data file that already
contains data, the data values in the foreign key must match
existing values in the primary key or be null.

To create a foreign key for column ‘Name’ in the
INDY.CHAMPIONS data file that is linked to column ‘Name’ in
the INDY.DRIVERS data file, submit the following code:

proc datasets |ibrary=Indy;
nmodi fy Chanpi ons;
ic create Chanpion = foreign key(Nane)
references Indy.Drivers
on update cascade on delete restrict;
run;
quit;

The “on update” and “on delete” portions of the IC CREATE
statement are optional. However, if no referential actions are
specified then the default update and delete actions are set to
restrict.

NOTE: There is no limit to the number of foreign keys that can
reference a primary key. However, additional foreign
keys adversely impact the performance of update and
delete operations.

A third and final data file that you are responsible for maintaining
contains information about the teams that entered the 1999
Indianapolis 500. The data file contains five columns, which
include the team’s name (Entrant), the team’s driver (Driver), the
team’s car number (Car), and the type of engine (Engine) and
tires (Tires) used. The first four observations of the
INDY.ENTRANTS data file are:

Entrant Driver Car Engine Tires
Team .
Menard, Greg Ray 2 Oldsmobile Firestone

Aurora

Inc.
Brant Raul 3 Oldsmobile Goodvear
Motorsports | Boesel Aurora Y
Panther .

b Scott Oldsmobile
Racing, Goodyear 4 Aurora Goodyear
LLC
Treadway | e Oldsmobile | _.
Racing, 5 Firestone
LLC Luyendyk Aurora

There are several columns in the ENTRANTS data file that would
benefit from integrity constraints. An entrant’s name cannot be
null, which can be enforced with a not null constraint. A unique
constraint can be defined for column ‘Car’, since each car must
have a unique number for quick identification during the race.
There are also a limited number of qualified suppliers of the
engines and tires used in the race. Defining check constraints for
the ‘Engine’ and ‘Tires’ columns will ensure that only the names
of the qualified suppliers can be entered into the data file. The
qualified suppliers of the engine are the Oldsmobile Aurora and
the Nissan Infiniti. The qualified tire suppliers are Firestone and
Goodyear. To define these constraints, submit the following
code:

proc datasets |ibrary=Indy;
nodi fy Entrants;

ic create Entrant = not null (Entrant);

ic create Nunmber = unique(Car);

ic create Engi ne = check(where=
((Engine = ‘A dsnobile Aurora’) or
(Engine = ‘Nissan Infiniti)));

ic create Tires = check(where=
(Tires in (‘Firestone’ ‘Goodyear’)));

run;
quit;

We have now created three data files that pertain to the
Indianapolis 500 (DRIVERS, CHAMPIONS, and ENTRANTS),
and one of each type of integrity constraint. The integrity
constraints could also have been created using the SQL
procedure or SCL functions. In addition to controlling updates to
these data files through the use of integrity constraints, the
updates can be monitored and analyzed with the audit trail
feature.

AUDIT TRAIL

The audit trail is an optional SAS file that logs modifications to a
SAS data file. Each time an observation is added, deleted, or
updated, information is written to the audit trail about who made
the modification, what was modified, and when the modification
took place. The audit trail maintains historical information about
the data, which gives you the opportunity to develop usage
statistics and patterns. The historical information allows you to
track individual pieces of data from the moment they enter the
data file to the time they leave. The audit trail is also the only
facility in the SAS System that stores observations from failed
append operations, or that were rejected by integrity constraints.

To illustrate how easy the audit trail is to use, the following
statements initiate an audit trail for data file INDY.CHAMPIONS:

proc datasets |ibrary=Indy;
audi t Chanpi ons;
initiate;
| og before_i mage=yes data_i mage=yes
error_i mage=yes;
run;
quit;
Once initiated, PROC CONTENTS can be used to display
whether the audit trail is active, and what events are being
logged. For example:

proc contents data=Il ndy. Chanpi ons;
run;

generates the following output, which contains information about
the audit trail:

The CONTENTS Procedure

Data Set Nane: | NDY. CHAMPI ONS Cbservations: 90

Menber Type: DATA Vari abl es: 2
Engi ne: SASE7 I ndexes: 1
Cr eat ed: DDMVMYY Constraints: 1
Last Modified: DDMMWY Obs Lengt h: 40
Protecti on: Del eted Qbs: 0
Data Set Type: Conpr essed: NO
Label : Sor t ed: NO
Audi t: Active

Audit Before |mage: YES
Audit Error Inage: YES
Audit Data | mage: YES

The last four lines of the output indicate the audit trail is active,
and the BEFORE_IMAGE, ERROR_IMAGE and DATA_IMAGE
events are currently being logged. The default behavior is to log
all three types of events. You can turn off logging of any image
with the LOG statement.

SUSPEND, RESUME, and TERMINATE statements are available
for temporarily suspending and for deleting the audit trail.

The audit trail is created by the base engine and has the same
libref and member name as the data file, but has a data type of
AUDIT. It replicates the columns in the data file, and additionally
stores two types of special columns:

. _AT *_ columns, which automatically store modification
information

. user columns, which are optional columns you can define
when you initiate the audit trail.

A description of the _AT *_ columns are included in the following
table:

AT * COLUMNS DESCRIPTION

ATDATETIME Date and time of the modification
ATUSERID Logqr) us_end associated with the
modification
Observation number affected by the
ATOBSNO modification, except when

REUSE=YES (because the
observation number is always 0)

ATRETURNCODE Event return code

SAS log message at the time of

ATMESSAGE 2
modification

ATOPCODE._ Ope(gtlor) code describing the type of
modification

The _ATOPCODE_ values are listed in the following table:

OPERATION CODE TYPE OF MODIFICATION
DA Added data record image

DD Deleted data record image
DR Before-update record image
DW After-update record image
EA Observation add failed

ED Observation delete failed

EW Observation update failed

The types of entries stored into the audit trail file, along with their
corresponding _ATOPCODE_ values, are determined by the
options specified on the LOG statement when the audit trail is
initiated. The “E” operation codes are controlled by the
ERROR_IMAGE option. The “DR” operation code is controlled
by the BEFORE_IMAGE option, and all other “D” operation codes
are controlled by the DATA_IMAGE option. If the LOG statement
is omitted when the audit trail is initiated, the default setting for all
three images is YES.

The user variable is a variable that associates data values with
the data file without making them part of the data file. That is, the
data values are stored in the audit file, but you update the
variable in the data file like any other data file variable. You may
want to define a user variable to enable end users to enter a
reason for each update.

User variables are defined at audit trail initiation with the
USER_VAR statement. The following code initiates an audit trail
and creates a user variable for data files INDY.CHAMPIONS and
INDY.DRIVERS. The CHAMPIONS data file's existing audit trail,
which was created in the previous example, is terminated prior to
initiating the new audit trail:

proc datasets |ibrary=lndy;
audit Chanpi ons;
term nate;
initiate;
user _var Reason_user_var $ 25;
run;

audit Drivers;

initiate;
user _var Reason $ 25
| abel = “Reason for Update”;
run;
quit;

Once initiated, the base engine retrieves the user variables from
the audit trail and displays them when the data file is opened for
update. You can enter data values for user variables just as you
would for any data file variable. The data values are saved to the
audit trail as each observation is saved. The user variables are
not available when the data file is opened for browsing or printing.
However, to rename a user variable or modify its attributes, you
must modify the data file, not the audit file. The following
example uses PROC DATASETS to rename the user variable:

proc datasets |ibrary=lndy;
nmodi fy Chanpi ons;
renane Reason_user _var = Reason;
run;
quit;

The audit trail is read-only. It can be read by any component of
the SAS System that reads a data set. For example, to view the
contents of the INDY.CHAMPIONS data file’s corresponding
audit trail, use the TYPE= option with a value equal to AUDIT as
follows:

proc contents data=Il ndy. Chanpi ons
(type=audit);
run;

The output is shown below. Notice that the audit trail contains all
the variables from its corresponding data file, the _AT*_
variables, and the user variable.

The CONTENTS Procedure

Data Set Nanme: | NDY. CHAMPI ONS (Obs: 0
Member Type: AUDI T Vari abl es: 9
Engi ne: SASE7 | ndexes: 0
Cr eat ed: DDMVMYY Obs Lengt h: 129
Last Mbdified: DDMMWY Del eted Cbs: O
Prot ection: Conpr essed: NO
Data Set Type: AUDI T Sort ed: NO

Label :

-- Al phabetic List of Variables and Attributes--

Variable Type Len Pos For mat

1 Nane Char 30 8

3 Reason Char 25 38

2 Year Num 8 0

4 _ATDATETIME_ Num 8 63 DATETI ME19.
9 _ATMESSAGE Char 8 121

5 _ATOBSNO_ Num 8 71

8 _ATOPCODE_ Char 2 119

6 _ATRETURNCODE_ Num 8 79

7 _ATUSERI D_ Char 32 87

NOTE: Updates to the data file are also written to the audit
file, which can adversely impact system performance.

CONSTRAINTS AND AUDIT TRAIL TOGETHER

To illustrate how integrity constraints and the audit trail can work
together, we will add the list of drivers who drove in the 1999
Indianapolis 500 (INDY.ENTRANTS) to the list of all drivers who
have ever driven in the race (INDY.DRIVERS). This will add a
new record to the DRIVERS data file for each rookie that drove in
the 1999 race. All other observations will be rejected by primary
key ‘Driver’. Both the observations that are successfully added
and those that are rejected by an integrity constraint will be
logged on the audit trail. To append the names of the 1999
drivers to the DRIVERS data file, we will create an interim data
file named WORK.TEMPORARY. To help analyze the contents
of the audit trail, we will supply a value for the ‘Reason’ user
variable previously defined in the DRIVERS audit file. Notice that
the reason code to be logged into the audit trail is created as part
of the temporary data file:

data work.tenporary;
set Indy. Entrants;
drop Entrant Car Engine Tires;

| ength Reason $ 25;

renane Driver = Nane;

Starts 1;

Wns =

Reason
run;

ol

' Add 1999 Rooki es';

Once the temporary file has been created, it can be appended to
the INDY.DRIVERS data file. Doing so results in the following
output:

proc append dat a=wor k. tenporary
base=l ndy. Dri vers;
run;
NOTE: Appendi ng WORK. TEMPORARY t o | NDY. DRI VERS.

WARNI NG Driver nane already exists. (Cccurred
29 tinmes.)
NOTE: 4 observations added.
NOTE: The data set | NDY. DRI VERS has 658
observations and 4 vari abl es.

The names of four rookies have been added to the
INDY.DRIVERS data file. Twenty-nine observations were
rejected by primary key ‘Driver’ because the names of those
drivers already existed in the INDY.DRIVERS data set. To print
the audit trail observations that have the ‘Added data record
image’ value (DA) in the *_ATOPCODE_ variable, submit the
following code:

proc print data=Indy.Drivers (type=audit
keep=Nanme Reason _atopcode_ _atnessage_);
where _atopcode_ = ‘DA’ ;

run;

The names of the rookie drivers that were added are:

To view the rejected observations, submit the following
statements:

proc print data=Indy.Drivers (type=audit
keep=Nanme Reason _atopcode_ _at nessage_);
where _atopcode_ = ‘EA';

run;

The first five rejected observations in the INDY.DRIVERS audit
trail are:

Name Reason _ATMESSAGE_

ERROR: Driver name already

Greg Ray Add 1999 Rookies)
exists.

Raul Add 1999 Rookies ERROR: Driver name already
Boesel exists.

Scott Add 1999 Rookies ERROR: Driver name already
Goodyear exists.
Arie Add 1999 Rookies ERROR: Driver name already
Luyendyk exists.
Eliseo Add 1999 Rookies ERROR: Driver name already
Salazar exists.

Name Reason _ATMESSAGE_
John
Hollansworth | Add 1999 Rookies
Jr.
Wim Add 1999 Rookies
Eyckmans
Robby .
McGehee Add 1999 Rookies
Jeret .
Schroeder Add 1999 Rookies

The *_ATMESSAGE_’ variable for each observation contains the
user-defined integrity constraint message that we defined in the
earlier example.

Now that the rookie drivers have been added to the
INDY.DRIVERS data file, we must increment the ‘Starts’ variable
for each of the veteran drivers to indicate they drove in the 1999
Indianapolis 500. We can use the rejected observations from the
audit trail to accomplish this task. First, we will create a
temporary data file containing the name of each driver who was
not added to the INDY.DRIVERS data file by reading the records
in the audit trail that have the ‘Observation add failed’ value (EA)
in the ‘'_ATOPCODE_’ variable. Then, we will use the SQL
procedure to increment the ‘Starts’ value for names in
INDY.DRIVERS that have a match in the temporary data file.
The code to perform these tasks is shown below:

data work.tenporary;
set Indy.Drivers (type=audit
wher e=(_atopcode_ = 'EA"));
keep Nane;
run;

proc sql;
update | ndy.Drivers
set Starts = Starts + 1,
Reason = “Add 1999 Start”
where Nanme in (select Name from
wor k. t enpor ary) ;
quit;

The 29 observations containing the drivers’ names that have
already driven in the race had their ‘Starts’ variable incremented
by one.

In addition to updating the ‘Starts’ column for each of the veteran
drivers, we must increment the ‘Wins’ column of the driver who
won the 1999 race. The following code performs this task:

proc sql;
update | ndy.Drivers
set Wns = Wns + 1,
Reason = “Add 1999 Chanpi on”
where Name = ‘ Kenny Brack’;
quit;

In the last two examples, update operations to the data file result

in the addition of two observations to the audit trail, a before
image and an after image. We can verify the last three updates
by printing a more complete version of the audit trail. To view the
contents of the audit trail, submit the following code:

proc print data=Indy.Drivers (type=audit
keep=Nanme Reason Starts Wns _atopcode_);
run;

The last six observations in the audit trail now contain the
following data:

Name Starts Wins Reason _ATOPCODE_
Steve 1 0 DR
Knapp

Steve |, 0 Add 1999 Start | DW
Knapp

Tyce 1 0 DR
Carlson

Tyce 2 0 Add 1999 Start | DW
Carlson

Kenny

Brack 3 0 DR
Kenny Add 1999

Brack 3 ! Champion DwW

The ‘Starts’ column was updated for drivers Steve Knapp and
Tyce Carlson, and the ‘Wins’ column was updated for driver
Kenny Brack. The observations with the ‘DR’ value for variable

‘ ATOPCODE_’ contain the before images, and the records with
the ‘DW’ value contain the after images.

We can now add the 1999 champion to the INDY.CHAMPIONS
data file. To add the new data along with a reason code, submit
the following code:

proc sql;
insert into |ndy.Chanpions
val ues(‘ Kenny Brack’, 1999,
‘Add 1999 Chanpion’);
quit;

Adding the new record to the INDY.CHAMPIONS data file also
results in an observation being added to its audit trail. To view
the contents of the audit trail, submit the following code:

proc print data=Indy. Chanpi ons (type=audit
keep=Nane Reason Year _atopcode_;
run;

A single observation now exists in the INDY.CHAMPIONS audit
trail.

Name Year Reason _ATOPCODE_

Kenny Brack | 1999 | Add 1999 Champion | DA

The INDY.DRIVERS and INDY.CHAMPIONS data files now
accurately contain the names of all drivers who have driven in the
race and those who have won the race, from its beginning in
1911 through 1999. The same steps used to process the 1999
data can be used again in 2000.

CONCLUSION

The integrity constraints and audit trail features are new to
Version 7 and Version 8 of the SAS System. The integrity
constraints feature can be used to define and enforce data
validation rules as part of the SAS data file, thus reducing the

amount of data validation code that needs to be written into your
applications. The audit trail feature can be used to closely
monitor the update activities being performed on your data files,
and gives you the ability to alter or reconstruct these updates
after the fact. Together, these features can be used to better
control and monitor updates to your SAS data files, while at the
same time making you more productive.

REFERENCES

SAS Institute Inc. (1999), SAS Language Reference: Concepts,
Version 8, Cary, NC: SAS Institute Inc.

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or
trademarks of their respective companies.

ACKNOWLEDGMENTS

Example data for this paper were obtained from the official
website of the Indy Racing League
http://www.indyracingleague.com and the official website of the
Indianapolis 500 http://www.indy500.com.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Gary S. Franklin

SAS Institute Inc.

11920 Wilson Parke Avenue
Austin, TX 78726

Phone: (512) 258-5171

Fax: (512) 258-3906

Email: Gary.Franklin@sas.com

Art Jensen

SAS Institute Inc.

Suite 1950

6400 S. Fiddler's Green Circle
Englewood, CO 80111
Phone: (303) 290-9112

Fax: (303) 290-9195

Email: Art.Jensen@sas.com

