
1

The Six Ampersand Solution

John R. Gerlach, IMS America; Plymouth Meeting, PA

Abstract

Assume you want to reinstate macro variables
denoting criteria for an analysis that you performed
months ago. Using Dictionary tables, made available
through the SQL procedure, it is possible to collect macro
variables defined for that analysis and to store them in a
permanent SAS data set containing the name of each
macro variable along with its respective value. This paper
explains how to preserve and, at a later time, reinstate the
macro variables. As an added feature, the SAS solution
lists the macro variables that have been reinstated, which
requires a six ampersand solution.

The Problem

Consider an application used for the health
industry that performs various analyses based on a priori
criteria. For example, an analysis might represent
patients diagnosed with Essential Hypertension from 1995
through 1996 and you are interested in specific kinds of
drug therapy each patient received during a six month
study period from the onset of the diagnosis. Also, other
criteria are used to help ensure a proper cohort for the
analysis, such as compliance issues.

Typically, a front-end to the application allows
the end-user to specify the criteria needed to perform the
analysis, which are stored in macro variables. However,
like most front-ends, the criteria changes according to the
intended analysis. Consequently, the criteria for the
previous analysis must be preserved in a convenient
manner in case it must be replicated or, perhaps, modified
slightly.

The Idea

We need to preserve the macro variables that
represent the criteria used for the analysis, along with
their respective values, and to store them in a SAS data
set. Then, at a later time, we will reinstate those macro
variables in order to replicate the analysis.

Dictionary Tables

The SAS System affords a way of obtaining
information, called metadata, about the SAS job that
performed the analysis. Using SQL objects called
Dictionary tables, you can obtain information about data
libraries, data sets, catalogs, options, external files, and
macro variables. Dictionary tables are available only
through the SQL procedure; however, you can use native
SAS views located in the SASHELP library.

Preserving the Macro Variables

The Data step below utilizes a view that
accesses a Dictionary table and obtains the names and
values of existing macro variables. By using a Data step,
you can create the desired data set that contains the
information needed to reinstate the macro variables at a
later time. The native view VMACRO contains two
variables, scope and name, which are useful in selecting
the macro variables of interest. The variable scope allows
you to exclude automatic macro variables, which are
extraneous; whereas, the variable name allows you to
exclude unwanted macro variables. Also, keep in mind
that the data values in the WHERE clause are case-
sensitive.

data project.params;
 set sashelp.vmacro(where=(scope eq ‘GLOBAL’
 and name not like ‘SQL%’ and name
 not like‘%EXIST’));
 keep name value;
run;

The permanent data set params contains two
variables that are used to reinstate the criteria from a
previous analysis.

name the name of the macro variable of interest.

value the value of the macro variable.

Reinstating the Macro Variables

The Data _NULL_ step below processes the
permanent SAS data set params and reinstates the macro
variables using the CALL SYMPUT routine. The
SYMPUT routine has two arguments, both of which are
character expressions. The first argument identifies the
macro variable and the second argument contains the
value to be assigned. So, obviously, the params data set
contains precisely the information needed to reinstate the
macro variables.

data _null_;
 set project.params;
 call symput(name,value);
run;

The %params Macro

The %params macro, shown below, reinstates
macro variables using the CALL SYMPUT routine shown
above. Also, the macro contains the added feature of
listing the macro variables that have been reinstated,
which requires the so-called six ampersand solution. Of

2

course, it would have been easier to print the contents of
the params data set or, simply, to use the PUT statement
in the Data step. However, this paper offers an exercise
in the Macro Language, namely, indirect referencing of
macro variables.

%macro params;
 data _null_;
 set project.params end=eof;
 call symput(name,value);
 call symput(‘var’ ||
 trim(left(put(_n_,8.))),name);
 if eof then call symput
 (‘nmvars’,trim(left(put(_n_,8.))));
 run;
 %put Parameters:;
 %do i = 1 %to &nmvars.;
 %put &&var&i.. : &&&&&&var&i..;
 %end;
 %put;
%mend params;

The %params macro consists of two parts: a
Data _NULL_ step and some Macro Language. The Data
step reinstates the macro variables of interest using the
SYMPUT routine discussed already. Also, it defines other
macro variables needed to list the reinstated macro
variables using two other SYMPUT routines, one which
creates the macro variables var1 , .., varn that denotes
the macro variables being reinstated and the other which
executes conditionally, when reading the last observation,
thereby creating the macro variable nmvars that denotes
the number of macro variables to be listed. The other part
of the %params macro writes the reinstated macro
variables to the SAS log by using the %DO loop and the
%PUT statement along with the six ampersand solution.

How Indirect Referencing Works

In order to appreciate the six ampersand
solution, it is important to understand how the macro
processor resolves macro variables having two or more
ampersands.

Macro variables having more than one
ampersand, called indirect references, require multiple
scans by the macro processor. The processor scans and
resolves references for the length of the variable (usually
delimited by a special character or semicolon) until all
references have been resolved.

Given the following %PUT statement used in the
%params macro, assume that one of the macro variables
is DXCODE having the value of 4019 (i.e., the ICD-9 code
for Essential Hypertension).

%put &&var&i.. : &&&&&&var&i..;

For the token &&var&i.. , the processor reads &&
and generates &; then, it reads and generates the
constant text var ; then, it reads and generates the current
value of &i. , which denotes the ith iteration of the %DO
loop statement.

For the first iteration of the %DO loop, the macro
variable &&var&i. resolves to whatever the macro

variable &var1 . contains, which depends on the contents
of the params data set obtained via the Dictionary table
and the CALL SYMPUT statement that created the macro
variables &var1., …, &var n. in the prior Data step. Thus,

&&var&i..
&var1.
DXCODE

The six ampersand variable (actually seven)
resolves in a similar manner, however, it takes several
scans to completely resolve the macro variable. That is,
the macro processor reads && and generates & (three
times), reads and generates the constant text var , reads
and generates the current value of &i. , as explained
previously. Now, when the processor reaches the end of
the token (variable), it makes a new scan, proceeding to
resolve the variable &&&var1. anew. That is, the
processor reads && and generates &; then it reads
&var1. and generates the contents of that macro variable,
which is the name of one of the reinstated macro
variables. Finally, the processor resolves the macro
variable itself, thus generating its respective value. Again,

&&&&&&var&i..
&&&var1.
&DXCODE.
4019

Consequently, the %PUT statement writes the
name of each macro variable and its value to the SAS log.

Conclusion

Given an application that requires a collection of
criteria used for processing and reporting, it is important to
preserve those criteria in order to replicate or modify an
analysis. Using Dictionary tables, you can store the
names and values of macro variables denoting the
criteria, then recreate them at a later time.

The added feature of listing the reinstated macro
variables to the SAS log offers a rigorous exercise in how
the Macro Processor resolves multiple ampersands,
called indirect referencing of macro variables.

Author Information

John R. Gerlach
IMS America
600 West Germantown Pike
Plymouth Meeting, PA 19462-1048
610.832.5493

SAS is a registered trademark of SAS Institute.

	Return to TOC

