
f
f
r

t
i-

t

SAS TUTORIAL: TABLE LOOKUP TECHNIQUES

Don Henderson, ORI, Inc.

1. Problem Statement

This tutorial topic illustrates procedures
for table lookup. Two major applications for
table lookup are: 1) replacing a coded value
with another value such as an alpha label; and
2) recoding, e.g., replacing some value or a
range of values by a code, for example coding
age in years into age groups (0-9, 10-19, etc.).

Various methods of performing table lookup
in SAS are illustrated in the following sections.
The first five examples operate on the data set
used for the multiple output frequencies examples
in the Transposing Data tutorial; for this topic,
the variable REGION has been added to the data
set. Methods for replacing REGION codes with
names are presented. In the last section, sev­
eral of the table lookup methods are combined to
perform complex recoding.

2. Output Formats

In this example, the REGION code only needs
to be replaced by its name on output (print).
Therefore, it is not necessary to add a new
variable to the data set. All that is required
is the creation of a format library (lines 5-13,
figure 1). A FORMAT statement (line 21, figure
1) is used to cause the REGION name to be printed
instead of the REGION code itself.

3. IF Statements

IF statements can be used to add a new vari­
able to the data set whose value is the REGION
name. The IF statements used to create the vari­
able REG NAME (lines 4-13, figure 2) illustrate
this technique.

There are two drawbacks associated with the
use of IF statements for table lookup, especially
for data sets with many distinct codes. First.
the IF statements are tedious to code and tend
to "clutter upl1 the program. Second. their use
can be inefficient.

4. Merging Data with a Translation Table

The MERGE capability is frequently used for
table lookup. It requires less coding than IF
statements; however, it is also less efficient
(in terms of machine time) and less flexible than
most of the other methods presented here. Merg­
ing requires a separate sort and data step for
each lookup, whereas the other methods allow for
multiple table lookups in a single data step.

An example of table lookup using a MERGE is
given in figures 3 and 4. A I1translation" data
set which contains one observation for each
REGION code, with its name stored in the variable
REG NAME, is created (lines 6-9, figure 3). The
data file is then sorted (lines 21-22, figure 3)
and the data set is MERGEd with the translation
data set (lines 23-24, figure 3) using REGION as

792

a key. If the original sort of the data must be
retained, another sort is required (lines 25-27,
figure 3).

5. The PUT Function

The PUT function provides an efficient
method of table lookup (figure 5). First, a
format must be created (lines 5-13). In the sub­
sequent data step (lines 15-20), the REGION name
is added to the data set using the PUT function
(line 19) which IIwrites" the forma ted value of
the variable R into REGION. Note that REGION
was renamed on the SET statement (line 17). This
causes REGION to become a new variable in REDE­
FINE. It can then be defined as a character
variable of length 12 (line 18) whose value is
the region name obtained from the PUT function.
Without the rename, it would not be possible to
"change" REGION from a numeric variable to a
character variable in a single data step.

If the translation table exists as a SAS
data set rather than a format, the PUT function
can still be used by first creating a format from
that data set. An example is given in section 5
of the Selecting Subsets of Data tutorial.

6. Using ARRAY Structures

Another method of table lookup involves
storing the labels/names in an array with the
coded value used as the subscript into the array
(figures 6 and 7). This method is particularly
applicable if the codes are sequential numbers.

The translation data set is read in (lines
6-9, figure 6). In the next data step (lines 22-
34, figure 6), the lookup is done. The ARRAY is
defined (line 23) and the names are read into
the ARRAY using a loop which is executed on the
first observation (lines 25-31) with the values
of the ARRAY elements retained (line 24) across
all observations (note that the names could be
read from an external file here; a prior data
step to read them in is unnecessary). The obser­
vations are read from the data set and the lookup
is done (lines 32-33). The value of REGION on
each observation is used as the subscript into
the ARRAY to get the corresponding value for
REG NAME.

The position of the code to read the names
into the ARRAY is important. If this code had
appeared after the main SET statement (line 32),
the value of REGION on the first observation
would be overwritten before the lookup. The
lookup on the first observation would use the
value of REGION from the last observation in
TRNSLATE, resulting in an error.

7. Recoding Using the PUT Function and Arrays

This example (figures 8-10) illustrates a
more complex table lookup application using
ARRAYS and the PUT function. JOB CODE and INDUS-

TRY must be recoded (lines 5-17. figure 8). This
recoding can be done by storing the recoded val­
ues in a two-dimensional ARRAY with JOB CODE and
INDUSTRY used as subscripts into this ARRAY.
This would require a large table, however. In­
stead~ the job and industry codes can first be
recoded. using the PUT function, to the row and
column indices of the smaller 4x3 table. First,
the formats to convert JOB CODE and INDUSTRY to
the row and column indices-are created (lines 22-
30, figure 8). The two-dimensional table lookup
is done in one data step (lines 52-75. figure 9).
The ARRAYs are defined (lines 54~58, figure 9)
and the table values are read into the two-dimen­
sional array once (lines 60-67, figure 9). re­
taining (line 59) the values of the ARRAY elem­
ents across all observations. The data to be
recoded is read in (line 70); the lookups for the
JOB CODE and INDUSTRY indices are done (lines 72-
73)-using the PUT function; and finally, the two­
dimensional recode/table lookup is done (line 74)
using the ARRAYs.

793

'·.-,. .• ,",..~"~<=~~~"'.,~.....,...,~.~._..,-._u-• ..,..._"'.-'·_~,;""';c.,, .. · co-

" 'g

1
2
3
4
5
6
7
B

• 10
11
12
13

*THIS EXA~PLE ILLUSTRATES THE USE OF FORMATS FOR TABLE
LOOKUP. THE FORr~ATTED VALUE IS NOT ADDED TO THE DATA
SET, IT ONLY APPEARS AT PRINT TII'lE.;

PROC FORMAT;
~CREATE THE FORMATS;
VALUE REGFMT l=NORTHEAST

2= 'IUC-AT L.ANTIC'
3=SOUTH
4=MIC~-'/EST

5=NOIHHWEST
6=WEST
7=SOUTHWEST;

NOTE: THE PROCEDURE FORMAT USED 0.05 SECONDS AND 184K.

14
15
16
17
1B

P~OC FREQ CATA=SAVE.CNFRENCEj
TABLES REGION;
TITLE TABLE LOOKUP USING FORMATSj
TITLE2 FORI'lATTED VALUE ONLY APPEARS AT PRINT
TITLE3 WITHOUT THE FORMAT STATEMENT;

TIMEj

NOTE; THE PROCEDURE FREQ USED 0.17 SECONDS AND 172K
AND PRINTED PAGE 1.

,.
20
21
22

PROC FREQ DATA=SAVE.CNFRENCEi
TABLES REGIONj
FORMAT REGION REGFMT.j
TITLE3 WITH THE FORMAT STATEMENT;

NOTE: THE PROCEDURE FREQ USED O.IB SECONDS AND 172K
AND PRINTED PAGE 2.

TABLE LOOKUP USING FORMATS
FORMATTED VALUE ONLY APPEARS AT PRINT TIME

WITHOUT THE FORMAT STATEMENT

REGION FREQUENCY CUM FREQ PERCENT CUM PERCENT

REGION
NORTHEAST

1 157 157 15.907 15,907
2 131 2BB 13.273 29.179
3 141 42. 14.286 43.465
4 145 574 14.691 58.156
5 133 707 13. 't75 71.6;51
6 142 B49 14.387 86.018
7 138 987 13.9B2 100.000

TABL.E lOOKUP USING FORMATS
FORMATTED VALUE ONLY APPEA~S AT P~INT TIME

WITH THE FORMAT STATEMENT

FREQUENCY CUM FREQ PERCENT CUM PERCENT
157 157 15.907 15.907

MID-ATLANTIC 131 2BB 13.273 29.179
SOUTH 141 42. 14.286 43.465
f-lIDWEST 145 574 1ct.691 58,156
NORTHWEST 133 707 13.475 71.631
WEST 142 84. 14.387 86.018
SOUTHWEST 138 '87 13.9fl2 100.000

FIGURE 1

1

2

1 ,
3
4
5
6
7

• 9

" 11
12
13
14

., -- ~::'

~THIS EXAMPLE ILLUSTRATES THE USE OF IF STATEMNTS FOR TABLE
LOOKUP. A tlEW VA~IASLE IS ACTUALLY ADDEO TO DATA SET.;

DATA WITHNAMEi
SET SAVE.CNFRENCEj
LENGTH REG_NAME $12;
IF REGION EQ 1 ntEN REG_NAME'" 'NORTHEAST'i
ELSE IF REGION EQ 2 TH~N REG_NAME = 'MID-ATLANTIC';
ELSE IF REGION EQ 3 THE~ REG_NAME = 'SOUTH';
ELSE IF RECION EQ 4 THE~ REC_NAI~E 'l>lIDt~EST';

ELSE IF REGION EQ 5 THEN REG NAME = 'NORTHWEST';
ELSE IF REGION EQ 6 THEN REG_NAME = 'WEST';
ELSE IF REGION EQ 7 THEN REG_NM1E 'SOUTHWEST' j

NOTE: DATA SET WORK.WITHNAME HAS 987 OBSERVATIONS AND 6 VARIABLES. 340 0
as/TRK
NOTE! THE DATA STATEMENT USED 0.16 SECONDS AND laOK.

PROC PRINT DATA="JITHNAME(OBS=20) i
TITLE TASLE LOOKUP USING IF STATEMENTS;

15
16
17
lB

TITLE2 VARIABLE REG_NAME IS ADDED TO THE DATA SET;
TITLE3 PRINT OF 20 OBSERVATIONS FROM DATA SET WITHNAME;

NOTE: THE PROOEDURE PRINT USED 0.10 SECONDS AND 172K
AND PRINTED PAGE 1.

NOTE: SAS USED ISOK MEMORY.
NOTE: SAS INSTITUTE INC.

SAS CIRCLE
BOX 8000
CARY, N.O. 27511

TABLE LOOKUP USING IF STATEMENTS
VARIABLE REG_NAME IS ADDED TO THE DATA SET

PRINT OF 20 OBSERVATIONS FROM DATA SET WITH NAME

OB' IC PAPER INVITED ENJOY RECION REG_NAME

1 1 0 0 4 I'UDklEST
2 2 0 0 3 SOUTH
3 3 1 1 4 MIDUEST
4 4 0 0 1 2 MID-ATLANTIC
5 5 0 0 1 6 WEST
6 6 1 0 0 1 NORTHEAST
7 7 0 0 1 1 NORTHEAST
B B 1 0 0 3 SOUTH

• • 0 1 1 5 NORTHweST
10 10 0 0 1 2 MID-ATLANTIC
11 11 0 0 1 7 SOUTHWEST
12 12 0 0 1 2 MID-ATLANTIC
13 13 0 0 0 7 SOUTHI.,JEST
14 14 0 0 0 2 MID-ATLANTIC
15 15 1 0 0 3 SOUTH
16 16 0 0 1 7 SOUTHWEST
17 17 1 1 • MIDWEST
lB 1B 0 1 1 NORTHEAST ,. ,. 0 1 3 SOUTH
20 20 0 0 , NORTHEAST

FIGURE 2

1

'~V'~""'""~~_~_·_.'· __ "'~~.·-<"_' __ "-<~'''C'-';:'7:_'··_·_."

" '" '"

1
2
3

•
5
6
7
8
9

*THIS EXAMPLE USES THE MERGE CAPABILITY TO DO TASLE LOOKUP.
A "TRANSLATION DATASET IS READ IN AND MERGED WITH THE SORTED
JllASTER FILE TO ADD THE VARIABLE REG NANE. UNLIKE THE OTHER
METHODS, ONLY ONE TABLE LOOKUP CAN B~ DON~ PER M~RG~.;

DATA TRNSLATE;
LE~IGTH REG_NAME $12,
INPUT REGION REG_NAME $;
CARDS;

NOTE: DATA SET IoIORK.TRNSLATE HAS 7 OBSERVATIONS AND 2 VARIABLES. 794 OBS
/TRK
NOTE: THE DATA STATEMENT USED 0.04 SECONDS AND 172K.

17
18
19
20

NOTE:

Zl
22

NOTE:
NOTE:
NOTE:

23
2.

NOTE:
BS/TRK
NOTE:

25
2.
27

NOTE:
8S/TRK
NOTE:

2. 2.

PRoe PRINT,
TITLE TABLE LOOKUP USING THE MEAGE CAPABILITY TO ADD;
TITLE2 THE VARIABLE REG_NAME TO THE DATA SET.;
TITLE3 DATA seT TRNSLATe;

THE PROCEDURE PRINT USED 0.08 SECONDS AND 17ZK
AND PRINTED PAGE 1.

PRoe SORT DATA=SAV~.CNFR~Nce OUT.Aj
BY REGION;

4 CYLINDERS DYNAMZCALLY ALLOCATED PcR SORT WORK DATA SET.
DATA SET WCRK.A HAS 987 OBS!:RVATIONS AND 5 VARIABLES. 433 OBS/TRK.
THE PROCEDURE SORT USED 0.50 SECONDS AND 236K.

DATA AFTMERGE;
MERGE A TRNSLATEi BY REGIONi

DATA SET WORK.AFTMERGE HAS 987 OBSERVATIONS AND 6 VARIABLES. 340 0

THE DATA STATEMENT USED 0.20 SECONDS AND 180K.

PROC SORT;
*SORT BACK TO ORIGINAL ORDERi
BY IJ;Jj

DATA SET WORK.AFTMERGE HAS 987 OBSERVATIONS AND 6 VARIABLES. 340 0

THE PROCEDURE SORT USED 0.29 SECONDS AND 236K.

PROC PR~NT DATA=AFTMERGE'QBS=lS);
TITLE3 FINAL DATASET - WITH REG_NAME ADDED.;

NOTE: THE PROCEDURE PRINT USED 0.10 SECONDS AND 172K
AND PRINTED PAGE 2.

NOTE: SAS INSTITUTE INC.
SAS CIRCLE
BOX 8000
CARY, N.C. 27511

FIGURE 3

OBS 10

1 1
2 2
3 3

• • , 5
6 6
7 7
8 8
9 9

10 10
li 11
12 12
13 13 ,. ,.
15 15

TABLE LOOKUP USING THE MERGE CAPABILITY TO ADD
THE VARIABLE REG_NAME TO THE DATA SET.

DATA SET TRNSLATE

OBS REG_NAME REGION

1 NORTHEAST 1
2 MID-ATLANTIO 2
3 SOUTH 3

• MIDWEST • 5 NORTHWEST 5
6 WEST 6
7 SOUTHWEST 7

TABLE LOOKUP USING THE MERGE CAPABILITY TO ADD
THE VARIABLE REG_NAME TO THE DATA seT.

FINAL DATASET - WITH REG_NAME ADDED.

PAP!:R INVITED ENJOY REGION REG_NAME

0 0 0 • MIDWEST
0 0 0 3 SOUTH
1 0 1 • MIDWEST
0 0 1 2 MID-ATLANTIC
0 0 1 • WEST
1 0 0 1 NORTHEAST
0 0 1 1 NORTHEAST
1 0 0 3 SOUTH
0 1 1 5 NORTHWEST
0 0 1 2 MID-ATLANTIC
0 0 1 7 SOUTHWEST
0 0 1 2 MID-ATLANTIC
0 0 0 7 SOUTHWEST
0 0 0 2 MID-ATL.ANTIC
1 0 0 3 SOUTH

FIGURE 4

1

2

""~"'~'.','''''''m-''''''~~'''~~-'~'' ---~",~<,~;--, ... --.--_ ... ;:::<-:-'

:<i
'"

1
2
3
4
5
6
7
B

• 10
11
12
13

MTHIS EXAMPLE ILLUSTRATES THE USE OF FORMATS FOR TAlllE 1
LOOKUP. THE FORr·1ATTED VALUE IS ADDED TO THE DATA SET AS THE 2:
VALUE OF THE VARIABLE REGION WHICH IS REDEFINED AS CHA~ACTER.; 3

4
PROC FORMAT; 5

MCREATE THE FORMATS; ,
7
8

•

~THIS ~XAMPLe DOES TABLE LOOKUP BY READING IN A TRANSLATION
DATA SET AND THEN STORING THE INFORMATION IN AN AR~AV WHICH
IS P.ETAINED ACROSS ALL OBSERVATIONS IN THE DATA SET. THE
VALUE OF R~GION IS USED AS A SUBSCRIPT INTO THE ARRAY.;

DATA TRNSLATE;
~ENGTH REG_NAME $12;
INPUT REGION REG_NAME $;
CARDS;

VALUE REGFMT l=NORTHEAST
2='~LD-ATlANTIC'

3=SOUTH
4=MID~·JEST
5=NORTHWEST
6=WEST
7"S0UTHWEST;

NOTE: DATA seT WORK.TRNSLATE HAS 7 OBSERVATIONS AND 2 VARIABLES. 794 OBS
/TRK
NOTE: THE DATA STATEMENT USED 0.04 SECONDS AND 17Z~.

NOTE: THE PROCEDURE FORMAT USED 0.05 SECONDS AND 184K. 17
18 ,.
20
21

PROC PRINT;

15
10
17
1B ,.
20

DATA REDEFINE;
*RENA~lE USED SO "REGION" CAN BECOME A "NEW" VAIUABLE.J
SET SAVE.CNFRENCECRENAME=(~EGION=R}}i
LENGTH REGION $ 12.;
REGION=PUT(R.REGFMT,};
DROP Ri

NOTE: DATA SET WORK. REDEFINE HAS 987 OBSERVATIONS AND 5 VARIABLES. 397 0
BS/TRK
NOTE: THE DATA STATEMENT useD 0.16 SECONDS AND 180K.

22
23
24
25
26
27

PROC PRINT DATA=REDEFINECOBS=lS)l
TITLE TABLE LOOKUP USING FORMATS AND THE PUT FUNOTION TO ADDj
TITLE2 THE FOR:~lATTED VALUE OF REG"ION TO THE DATA SET.;
TITLE3 THE RENAME PARAMETER IS USED SO REGION DAN BE ;
TITLE4 DEFINED AS CHARACTER.;
TITLES PRINT OF FIRST 15 OBSERVATIONS IN DATA SET REDEFINE.;

NOTE: THE PROCEDURE PRINT USED 0.10 SECONDS AND 17Z~

AND PRINTED PAGE 1.

TITLE TABLE LOOKUP BY STORING THE VALUES IN AN ARRAY.;
TITLE2 REGION IS USED AS A SUBSCRIPT INTO THE ARRAY.;
TITLE3 PRINT THE THE TRANSLATION DATA SET WHICH WILLi
TITLE4 BE READ INTO THE ARRAY.;

NOTE: THE PROCEDURE PRINT USED 0.09 SEOONDS AND 172K
AND PRINTED PAGE 1.

22
23
24
25
26
27
2B
2.
30
11
32
33 ,.

DATA USEAUAV;
ARRAY AEGS (REGION) $ 12 Ri-A7;
RETAIN Rl-R7;
IF _N_ = 1 THEN
DO /~READ LABELS INTO THE ARRAYM/;;

DO 1=1 TO 7;
SET TRNSLATE POINT=I;
REGS=REG_NAME;

END;
END /MREAD LABELS INTO THE AARAYW/;
SET SAVE.CNFRENCE;
REG NAME=REGS;
DROP Rl-R7;

TABLE LOO~UP USING FORMATS lAND THE PUT FUNCTION TO ADD
THE FORMATTED VALUE OF REGION TO THE DATA SET.

NOTE: DATA SET WORK.U5EARRAY HAS 987 OBSERVATIONS AND 6 VARIABLES. 340 0
1 BS/TRK

THE RENAME PARAf'iETER IS USEe SO REGION CAN BE
DEFINED AS CHARACTER.

PRINT OF FIRST 15 OBSERVATIONS IN DATA SET REDEFINE.

OBS ID PAPER INVITED ENJOY REGION
1 1 0 0 0 MIDWEST
2 2 0 0 0 SOUTH
3 3 1 0 1 MIDWEST

• • 0 0 1 MID-ATLANTIC
5 5 0 1 WEST
6 6 , 0 0 NORT.HEAST
7 7 0 0 1 NORTHEAST
B B 1 0 0 SOUTH

• • 0 1 1 NORTH~'JEST

10 10 0 0 MID-ATLANTIC
11 11 0 0 SOUTHWEST
12 12 0 0 1 MID-ATLANTIC
13 13 0 0 0 SOUTHWEST ,. 14 0 0 0 MID-ATLANTIC
15 15 1 0 SOUTH

FIGURE 5

NOTE: THE DATA STATEMENT USED 0.17 SEOONDS AND laOK.

35
36

PRoe PRINT DATA=USEARRAYCOBS=lS)j
TITlE3 DATA SET USEARRAY WITH REG_NAME ADDED ••

NOTE; THE PROCEDURE PRINT USED 0.10 SECONDS AND 17ZK
AND PRINTED PAGE 2.

NOTE: SAS USED 1BOK MEMORY.
NOTE: SAS INSTITUTE INC.

SAS CIRCLE
BOX BOOO
CARY, N.C. 27511

FIGURE 6

·:h~·,~""'''''''':'n~'''''·'·''''''~('>·~'''''''''·''<-''''''- ., ..,-.-.!",~ -,-< ~"",.:, "

OBS

1
2

" 3

'" • " 5

• 7
8
9

10
11
12
13 ,.
i.

TABLE LOOKUP BY STORING THE VALUES IN AN ARRAY.
REGION IS USED AS A SUBSCRIPT INTO THE ARRAY,
PRINT THE THE TRANSLATION DATA SET WHICH WILL

BE READ INTO THE ARRAY.

OBS REG_NAME REGION

1 NORTHEAST 1
2 MJD-ATLA.NTIC 2
3 SOUTH ,
• MJDWEST •
S NORTHWEST 5

• t.-JEST • 7 SOUTHWEST 7

TABLE LOOKUP BY STORING THE VALUES IN AN ARRAY.
REGION IS USED AS A SUBSCRIPT INTO THE ARRAY.

DATA SET USEARRAY WITH REG_NAME ADDED.

REGION REG_NAME ID PAPER INVITED

• MIDWEST 1 0 0
3 SOUTH 2 0 0

• MIDWEST 3 1 0
2 MID-ATLANTIC 4 • 0

• WEST 5 • 0
1 NORTHEAST • 1 0
1 NORTHEAST 7 • 0
3 SOUTH 8 1 0
5 NORTHWEST 9 • 1
2 MID-A TLANTIC 10 • 0
7 SOUTHWEST 11 • 0
2 MID-ATLANTIC 12 • 0
7 SOUTHWEST 13 0 0
2 MID-ATLANTIC 14 • 0
3 SOUTH ·15 1 0

FIGURE 7

1

2

EN.JOY

• • 1
1
1
0
1
0
1
1
1
1
0
0
0

1
2
3

• 5
6
7
8
9
10
11
12
13

" 15 ,.
17
18
19
2.
21
22
23
24
25
2.
27
28

" 30
31

,~.--~-.' -

M7HIS EXAMPLE ILLUSTRATES THE USE OF FORMATS.
FUNCTION AND ARRAYS TO DO MORE COMPLEX TABLE
OBJECTIVE IS TO RECODE JOB CODE AND INDUSTRY

I
201-20rt.1

2.7 I
I

JOB '.5 I
CODE I

20. I
I

OTHER I
I

INDUSTRY
104-108.110 109

1 2

3 4

5 •
7 7

OTHER

8

8

8

,

THE PUT
LOOKUP. THE
AS FOLLOWS:

THE PUT PUNCTION WITH FORMATS IS USED TO GET ROW AND COLUMN
INDICES INTO AN ARRAY WHICH CONTAINS THE TABLE ENTRIES.;

PROO FORMAT;
*DEFINE THE ROW AND COLUMN INDIOES FORMATS;
VALue ROW 201-204,207=1

205=2
206=3

OTHER=4;
VALUE COL 104-108,110=1

109=2
OTHER=3;

NOTE: THE PROCEDURE FORMAT ~SED O.OS SECONDS AND IS4K •

32
33
34
35

DATA JOBS;
~READ IN THE DATA TO BE RECODEDj
INPUT JOB_CODE INDUSTRY;
CARDS;

NOTE: DATA SET WORK.JOBS HAS 10 OBSERVATIONS AND 2 VARIABLES. 953 OBS/TR
K
NOTE: THE DATA STATEMENT USED 0.04 SECONDS AND 172K.

4.
47
4.
49
SO
51

PROC PRINTi
TITLE THE USE OF FORMATS. THE PUT FUNCTION AND ARRAYS TO;
TITLE2 DO MORE COMPLICATED TABLE LOOKUP. THE TABLE IS;
TITLE3 RE~D INTO A TWO DIMENSIONAL ARRAY.;
TITLE4 LISTING OF THE INPUT DATA.;

NOTE; THE PROCEDURE PRINT USED o.oa SECONDS AND 17ZK
AND PRINTED PAGE 1.

FIGURE 8

''''''Y~_~';~~·'~·~-¥''~--·'''·-'-''~-'':··i~·~·'' ,. - ,- --I"" . _,., .r

" '"' '"

5>
53
5.
55
56
57
58
59
60
61
62
63
64
'5
'6
67
68
69
70
71
72
73
7.
7S

NOTE:

NOTE:

NOTE:
/TRK
NOTE:

80
n
82

DATA RF.CODE.l
~SET UP THE ARRAYS FOR THE TABLE;
ARRAY ROwl (CJ Xll-X13j
ARRAY RO~l2 ec) X21-X2]j
ARRAY ROW3 eCl X31-X3]j
ARRAY Row4 (C) X41-X43j
ARRAY TABLE (RJ Rowl-ROW4;
RETAIN Xll--X43j
IF _N_=l THEN
DO /* READ IN THE TABLE */j

DO R = 1 TO 4;~READ EACH ROW;
DO C=l TO 3j*READ EACH COLUMN;

INPUT TABLE Q);
END;

END;
END /* READ IN THE TABLE */j

SET JOBS;
*READ IN THE DATA TO BE RECODED;
R=PUT(JOB_CODE.ROW.)j
C=PUT(INDUSTRY.COL.)i
NEW_COOE=TABLE;

CARDS;

CHARACTER VALUES HAVE BEEN CONVERTED TO NUMERIC
VALUES AT THE PLACES GIYEN BY: (LINE):(CO~UMN).

72:4 73:4
SAS WENT TO A NEW LINE WHEN INPUT STATEMENT
REACNED PAST TNE END OF A LINE.
DATA SET WORK.RECODE HAS 10 OBSERVATIONS AND 17 VARIABLES. 136 OBS

THE DATA STATEMENT USED 0.10 SECONDS AND laOK.

PRoe PRINT DATA=RECODECOBS=l);
YAR X11--X43;
TITLE4 THE TABLE;

NOTE: THE PROCEDURE PRINT USED 0.09 SECONDS AND 172K
AND PRINTED PAGE 2.

" 8.
PROC PRINT;

DROP xll--X43;
85 TITLE4 DATA REceDE - WITH THE YARIABLE NEWCODE;

NOTE: THE PROCEDURE PRINT USED 0.09 SECONDS AND 172K
AND PRINTED PAGE 3.

NOTE: SAS INSTITUTE INC.
SAS CIRCLE
HQX 8000
CARY) N.C. 27511

FIGURE 9

OBS

1

THE
DO

'-Y'.~ -

USE OF FORMATS. THE FUT FUNCTION AND ARRAYS TO
MORE cor·iPLICATED TABLE LOOKUP. THE TABLE IS

READ INTO A TLJO DIMENSIONAL ARRAY.
LISTING OF THE INPUT DATA.

oas

1
2
3
4
5
6
7
8
9

10

JOB CODE

201
205
20.
210
207
300
205
20.
100
20.

INDUSTRY

104
108
105
109
10.
'9

109
200
10.
109

TH! use OF FORMATS. THE PUT FUNCTION AND ARRAYS TO
DO MORE COMPLICATED TABLE LOOKUP. THE TABLE IS

READ INTO A TWO DIMENSIONAL ARRAY.
THE TABLE

X11 X12 X13 X21 X22 X23 X31 X32 X33 x., X42

1 2 8 3 4 8 5 6 8 7 7

THE USE OF FORMATS, THE PUT FUNCTION AND ARRAYS TO
DO MORE COMPLICATED TABLE LOOKUP. THE TABLE IS

READ INTO A Two DIMENSIONAL ARRAY.
DATA RECODe - WITH THE VARIABLE NEweODE

OBS c , JOB_CODE INDUSTRY NEW_CODE

1 1 1 201 104 1
2 1 2 205 108 3
3 1 3 206 105 5
4 2 4 210 10' 7
5 2 1 207 109 2
6 3 4 300 99 9
7 2 2 205 109 4
8 3 3 206 200 8 , 2 4 100 109 7

10 2 3 20. 109 •
FIGURE 10

1

2

X43

9

3

