A

SAS TUTORIAL: TABLE LOOKUP TECHNIQUES

Don Henderscn, ORI, Inc.

1. Problem Statement

This tutorial topic illustrates procedures
for table lookup. Twc major applications for
table lookup are: 1) replacing a coded value
with another value such as an alpha label; and
2} recoding, e.g., replacing some value or a
range of values by a code, for example coding
age in years into age groups {0-9, 10-19, etc.).

Various methods of performing table lookup
in SAS are illustrated in the following sections.
The first five examples operate on the data set
used for the multiple cutput frequencies examples
in the Transposing Data tutorial; for this topic,
the variable REGION has been added to the data
set. Methods for replacing REGION codes with
names are presented. In the last section, sev-
eral of the table lookup methods are combined to
perform complex recoding.

2. Dutput Formats

In this example, the REGION code only needs
to be replaced by its name on output (print).
Therefore, it is not necessary to add a new
variable to the data set. All that is required
is the creation of a format library (1ines 5-13,
figure 1). A FORMAT statement (1ine 21, figure
1) is used to cause the REGION name to be printed
instead of the REGION code itself.

3. IF Statements

IF statements can be used to add a new vari-
able to the data set whose value is the REGION
name. The IF statements used to create the vari-
able REG NAME (1ines 4-13, figure 2} i1lustrate
this technigue.

There are two drawbacks associated with the
use of IF statements for table lookup, especially
for data sets with many distinct codes. First,
the IF statements are tedious to code and tend
to "clutter up" the program. Second, their use
can be inefficient.

4. Merging Data with a Translation Table

The MERGE capability is frequently used for
table lookup. It requires less coding than IF
statements; however, it is also less efficient
(in terms of machine time) and less flexible than
most of the other methods presented here. Merg-
ing requires a separate sort and data step for
each lookup, whereas the other methods allow for
multiple tabie lookups in a single data step.

An example of table lookup using a MERGE is
given in figures 3 and 4. A "translation”" data
set which contains one observation for each
REGION code, with its name stored in the variable
REG NAME, is created (lines 6-9, figure 3}. The
data file is then sorted (Tines 21-22, figure 3)
and the data set is MERGEd with the translation
data set {1ines 23-24, figure 3} using REGION as

792

a key. If the original sort of the data must be
retained, another sort is required (lines 25-27,
figure 3}.

5. The PUT Function

The PUT function pravides an efficient
method of table Tookup (figure 5). First, a
format must be created {1ines 5-13). In the sub-
sequent data step {lines 15-20), the REGION name
is added to the data set using the PUT function
{1ine 19) which "writes" the formated value of
the variable R into REGION. Note that REGION
was renamed on the SET statement (1ine 17). This
causes REGION to become a new variable in REDE-
FINE. [t can then be defined as a character
variable of length 12 {line 18) whose value is
the region name obtained from the PUT function.
Without the rename, it would not be possible to
"change" REGION from a numeric variable to a
character variable in a single data step.

If the translation table exists as a SAS
data set rather than a format, the PUT function
can still be used by first creating a format from
that data set. An example is given in section 5
of the Selecting Subsets of Data tutorial.

6. Using ARRAY Structures

Another method of table lookup involves
storing the labels/names in an array with the
coded value used as the subscript into the array
{figures 6 and 7). This method is particularly
applicable if the codes are sequential numbers.

The translation data set is read in {1ines
6-9, figure 6). In the next data step {lines 22-
34, figure 6), the lockup is done. The ARRAY is
defined (17ne 23) and the names are read into
the ARRAY using a loop which is executed on the
first observation {lines 25-31) with the values
of the ARRAY elemerts retained {line 24) across
all observations {note that the names could be
read from an external file here; a prior data
step to read them in is unnecessary). The obser-
vations are read from the data set and the Tookup
is done (lines 32-33). The value of REGICN on
each observation is used as the subscript into
the ARRAY to get the corresponding value for
REG_NAME.

The position of the code to read the names
into the ARRAY is important. If this code had
appeared after the main SET statement {line 32},
the value of REGION on the first observation
would be overwritten before the lookup. The
Tookup on the first observation would use the
value of REGION from the last observation in
TRNSLATE, resulting in an error.

7. Recoding Using the PUT Function and Arrays

This example {figures 8-10} illustrates a
more complex table lookup application using
ARRAYS and the PUT function. JOB_CODE and INDUS-

i
i
i
g
W

Lt o

TRY must be recoded {1ines 5-17, figure 8). This
recoding can be done by storing the recoded val-
ues in a two-dimensional ARRAY with JO3 CODE and
INDUSTRY used as subscripts into this ARRAY.

This would require a large table, however. In-
stead, the job and industry codes can first be
recoded, using the PUT function, to the row and
column indices of the smaller 4x3 table. First,
the formats to convert JOB_CODE and INDUSTRY to
the row and column indices are created {lines 22-
30, figure 8). The two-dimensional table lookup
is done in one data step (lines 52-75, figure 9).
The ARRAYs are defined (lines 54-58, figure 9)
and the table values are read into the two-dimen-
sional array once (lines 60-67, figure 9), re-
taining (line 59) the values of the ARRAY elem-
ents across all observations. The data to be
recoded is read in (1ine 70); the lookups for the
J0B_CODE and INDUSTRY indices are done (lines 72-
73) using the PUT function; and finally, the two-
dimensional recode/table Tookup is done (1ine 74)
using the ARRAYs.

793

1474

VO~ nDWN -

NOTE:

14
15
16
17
18

NOTE:
19
20
21
22

NOTE:

THE
AND

THE
AND

#THIS EXAMPLE ILLUSTRATES THE USE OF FORMATS FOR TABLE
LOOKUP. THE FORMATTED VALUE I5 NOT ADDED TO THE DATA
SET, IT ONLY APPEARS AT PRINT TIME.;

PROC FORMAT;

¥CREATE THE FORMATS;

VALUE REGFMT 1=NORTHEAST
2="MID-ATLANTIC'
3=S0UTH
4=MIDHEST
S5=NORTHWEST
6=WEST
7=SOUTHWEST;

PROUCEDURE FORMAT USED C¢.05 SECUONDS AND 189K.

PEGC FREQ DATA=SAVE.CNFRENGCE;

TABLES REGION;

TITLE TABLE LODKUP USING FORMATS;

TITLEZ2 FORMATTED VALUE ONLY APPEARS AT PRINT TIME;
TITLE3 WITHOUT THE FORMAT STATEMENT:

PROCEDURE FREQ USED 0.17 SECONDS AND 172K
PRINTED PAGE 1.

PROC FREQ DATA=SAVE.CNFRENCE;
TABLES REGION;

FORMAT REGION REGFMT.;

TITLE3 WITH THE FORMAT STATEMENT;

PROCEDURE FRE® USED 0.18 SECONDS AND 172X
PRINTED PAGE 2.

TABLE LOOKUP USING FORMATS
FORMATTED VALUE ONLY APPEARS AT PRINT TIME
WITHOUT THE FORMAT STATEMENT

REGION FREQUENCY CUM FREQ PERCENT GUM PERCENT

1 1587 157 15.907 15,907
2 131 288 13.273 29.179
3 1al 429 14.2E86 43.465
% 145 574 14,691 £B8.156
5 133 707 13.475 71.631
& 142 849 14.387 86.018
7 138 987 13,982 100.000

TABLE LOOKUP USING FORMATS
FORMATTED VALUE ONLY APPEARS AT PRINT TIME
MITH THE FORMAT STATEMENT

REGION FREQUENCY CUM FREQ PERCENT CUM PERCENT
NORTHEAST 157 157 15.907 15.907
MID=ATLANTIC 131 288 13.273 29.179
SO0UTH 141 429 14,286 43.465
MIDWEST 145 574 1%.691 58.156
NCORTHWEST 133 707 13.475 71.631
WEST 142 849 14.387 36,018
SOUTHKEST i3a 987 13.%82 100.000
FIGURE 1

" I B AN E S U

¥THIS EXAMPLE ILLUSTRATES THE USE OF IF STATEMNTS FOR TABLE
LOOKUP, A MEW VARIAEBLE IS ACTUALLY ADDED To DATA SET.;

DATA WITHNAME]
SET SAVE._CNFRENCE;
LENGTH REG_NAME $12;
IF REGION EQ 1 THEN REG_NAME = "NORTHEAST';
ELSE IF REGION EQ 2 THEN REG_NAME = "MID-ATLANTIC';
ELSE IF REGION EQ 3 THEN REG_NAKE YSOUTH';
ELSE IF RECION EQ &4 THEN REG_NAME TMIDPWEST';
ELSE IF REGION EQ 5 THEN REGS_NAHME "MORTHWEST";
ELSE IF REGICH EG 6 THEN REG_NAHME "WEST';
ELSE If REGION E@ 7 THEN REG_NAME = 'SOUTHWEST!;

Honowo

NOTE: DATA SET WORK.WITHNAME HAS 987 OBSERVATIONS AND 6 VARIABLES. 340

NOTE: THE DATA STATEMENT USED 0.16 SECONDS AND 180K.

L0

11

1z

13

14

BS/TRK

15

16

17

18

NOTE: THE
AND

HOTE: SAS

NOTE: 5AS
SAS
BOX

PROC FRINT DATASWITHNAME(OBS=20);

TITLE TABLE LOOKUP USING IF STATEMENTS;

TITLEZ VARTABELE REG_NAME IS ADDED TO THE DATA SET;
TITLE3 PRINT OF 20 OBSERVATIONS FROM DATA SET WITHHAME:

PROQEDURE PRINT USED 0.10 SECONDS AND 172K
PRINTED PAGE 1.

USED 180K MEMORY.
INSYTITUTE INC.
CIRCLE

80060

CARY, N.Q. 27511

0BS

LRI LR P S

TABLE LOOKUP USING IF STATEMENTS
VARIABLE REG_NAME IS AODED TO THE DATA SET
PRINT OF 20 OBSERVATIONS FROM DATA SET WITHNAME

ib PAPER INVITED ENJOY REGION REG_NAME

1 0 1] o & MIDWEST

2 i} 0 0 3 SQUTH

3 1 0 1 4 MIDHEST

4 0 Q 1 2 MID-ATLANRTIC
5 0 Q i 3 WEST

6 1 i 0 i NORTHEAST

7 0 Q 1 1 NORTHEAST

a8 1 G 0 3 SOUTH

? 4] i 1 5 NORTHKEST

10 0 0 1 2 MID-ATLANTIC
11 0 e 1 7 SOUTHWEST

12 0 Q i 2 HID-ATLANTIC
13 1] o 2 7 SQUTHMWEST

14 '] 1 0 2 MID-ATLANTIC
15 1 Q 0 3 SO0UTH

16 0 g 1 T SOUTHMWEST

17 1 1 1 L MIDREST

18 0 Q 1 1 NORTHEAST

19 0 1 1 3 S0UTH

20 0 g i 1 HORTHEAST

FIGURE 2

56/

#THIS EXAMPLE USES THE MERGE CAPARILITY TO DO TABLE LOOKUP.

A "TRANSLATION DATASET IS READ IN AND MERGED WITH THE SORTED
MASTER FILE TO ADD THE VARIABLE REG_MNAME. UMLIKE THE OTHER
METHODS: ONLY ONE TAELE LOOKUP CAN BE DONE PER MERGE.;

DATA TRNSLATE;

LENGTH REG_HAME S12;
INPUT REGICN REG_NAME §;
CARDS;

VRN LPWNNH

NOTE: DATA SET WCRK.TRNSLATE HAS 7 OBSERVATIONS AND 2 VARIABLES. 794 OBS

NOTE: THE DATA STATEMENT USED 0.04 SECONDS AND 172K.

17 PROC PRINT;

18 TITLE TABLE LOOKUP USING THE MERGE CAPABILITY TO ADD;
19 TITLE2 THE VARIABLE REG_NAME TO THE DATA SET.:

20 TITLE3 DATA SET TRNSLATE;

NOTE: THE PROCEDURE PRINT USED 0.08 SECONDS AND 172K
AND PRINTED PAGE 1. . .

21 PROC SORT DATA=SAVE.CNFRENCE OUT=Aj
22 BY REGION;

NOTE! &% CYLINDERS DYNAMICALLY ALLOCATED PER SORT WORK DATA SET.
NOTE: DATA SET MORX.A HAS GB7 OBSERVATIONS AND 5 VARIABLES. 433 O0BS/TRK.
HOTE: THE PROCEDURE SORT USED 0.50 SECONDS AND 236K.

23 DATA AFTMERGE;
26 MERGE A TRNSLATE; BY REGION;

NOTE: DATA SET WORK.AFTMERGE HAS 987 OBSERVATIONS AND 6 VARIABLES. 340 ¢
BS/TRK
NOTE: THE DATA STATEMENT USED 0.20 SECONDS AND 180K.

25 PROC SORT;
26 #¥S0RT BACK TO ORIGINAL ORDER:
27 BY ID; '

NOTE: DATA SET WORK.AFTMERGE HAS 987 OBSERVATIONS AND 6 VARIABLES. 340 O
B3/ TRK
HOTE: THE PROCEDURE SORT USED 0.29 SECONDS AND 236K.

28 PROC PRINT DATA=AFTMERCE!OBS=15);
29 TITLE3 FINAL DATASET - WITH REG_NAME ADDED.:

NOTE: THE PROCEDURE PRINT USED 0.10 SECONDS AND 172K
AND PRINTED PAGE 2.

NOTE: S5AS INSTITUTE INC.
SAS CIRCLE
20X 8000
CARY, N.C. 27511

FIGURE 3

0BS

-
COM~NIWDWN

-
N

o
WP

]
(=]

Lol BT L R U

TABLE LOOKUP USING THE MERGE CAPABILITY TO ADD
THE VARIABLE REG_MAME TO THE DATA SET.
DATA SET TRNSLATE

0BS REG_NAME REGION

NORTHEAST
MID=-ATLANTIO
SO0UTH
MIDWEST
NORTHHWEST
WEST
SOUTHKEST

QW N
~NerUnpPUNNE

TABELE LOOKUP USING THE MERGE CAPABILITY TO ADD
THE VARIABLE REG_NAME YO THE DATA SET,.
FINAL DATASET = WITH REG_NAME ADDED.

PAPER INVITED ENJOY REGION REG_NAME

G MIDWEST
SOUTH
MIDWEST
MID-ATLANTIC
WEST
NORTHEAST
NORTHEAST
SQUTH
NORTHWEST
MID=ATLANTIC
SOUTHWEST
MID-ATLANTIC
SOUTHWEST
MID=-ATLANTIC
SOUTH

HOOOOOOHOHGOKHGS
CO0OQOOHDOODOODOC
COOHNHHMFDHFQHRNMOO
WNNNNPpURWREERAND W

FIGURE 4

SRR A

Sy ORI AR Y

1 ®THIS EXAMPLE YLLUSTRATES THE USE OF FORMATS FOR TABLE 1 ¥THIS EXAMPLE DOES TABLE LOOKUP BY READING IN A TRANSLATION
2 LOOKUP. THE FORMATTED VALUE IS ADDED 7O THE DATA SET AS THE 2 DATA SET AND THEN STORING THE INFORMATION IN AN ARRAY WHICH
3 VALUE OF THE VARJIABLE REGION WHICH IS REDEFINED AS CHARACTER.; 3 IS RETAINED ACROSS ALL OBSERVATIONS IN THE DATA SET. THE
4 4 VALUE OF REGION IS USED AS A SUBSCRIPT INTO THE ARRAY.;
5 PROC FORMAT; 5
& MCREATE THE FORMATS;] DATA TRNSLATE;
7 VALUE REGFMT 1=NORTHEAST 7 LENGTH REG_NAME §12;
8 ='"MID=ATLANTIC' 8 INPUT REGION REG_NAME §;
9 3=S0UTH 9 CARDS;
10 G=MIDHEST
11 S=NORTHUWEST MOTE: DATA SET WORK.TRNSLATE HAS 7 OBSERVATIONS AND 2 VARIAEBLES. 794 0BS
1z 6=WEST /TRK
13 T=SOUTHWEST; NOTE: THE DATA STATEMENT USED 0.04 SECONDS AND 172K.
NQTE: THE PROCEDURE FORMAT USED 0.05 SECONDS AND 184K. 17 PROC PRINT;
18 TITLE TABLE LOOKUP BY STORING THE VALUES IN AN ARRAY.;
15 DATA REDEFINE; 19 TITLE2 REGION IS USED AS A SUBSCRIPT INTO THE ARRAY.;
1 XRENAME USED SO "REGION"™ CAN BECOME A "NEW' VARIABLE.: 20 TITLE3 PRINT THE THE TRANSLATION DATA SET WHICH WILL;
17 SET SAVE.CNFRENCE(RENAME=(REGION=R)}); 21 TITLE4 BE READ INTO THE ARRAY.:
18 LENGTH REGION 8 12.;
19 REGION=PUT(R,REGFMT.); HOTE: THE PROCEDURE PRINT USED 0.09 SEOONDS AND 172K
20 DROP R; AND PRINTED PAGE 1.
NOTE: DATA SET WORK.REDEFINE HAS 987 OBSERVATIONS AND 5 VARIABLES. 397 0O 22 DATA USEARRAY;
BS/TRK 23 ARRAY REGS (REGION) % 12 R1-R7;
NOTE: THE DATA STATEMENT USED 0.16 SECONDS AND 180K. 24 RETAIN RLl~R7;
25 IF _N_ = 1 THEN
22 PRCC PRINT DATA=REDEFINE(GBS=153; 26 DO s%READ LABELS INTO THE ARRAYH/;]
23 TITLE TABLE LOOKUP USING FORMATS AND THE PUT FUNOTION TO ADD; 27 po I=1 TO 7;
24 TITLEZ2 THE FORMATTED VALUE OF REGION TO THE DATA SET.j 28 SET TRNSLATE POINT=I;
25 TITLE3 THE RENAME PARAMETER IS USED S0 REGION DAN BE ; 29 REG3=REG_MNAME; :
~ 26 TITLE% DEFINED AS CHARACTER.; 30 END;
WO 27 TITLES PRINT OF FIRST 15 OBSERVATIONS IN DATA SET REDEFIMNE.; 31 END /XREAD LARELS INTO THE ARRAY/}
@ 32 SET SAVE.CNFRENCE;
NOTE: THE PROCEDURE PRINT USED 0.10 SECONDS AND 172K 33 REG_NAME=REGS;
AND PRINTED PAGE 1. I DROP R1-R7:
: NOTE: DATA SET WORK.USEARRAY HAS 9837 OBSERVATIONS AND 6 VARIABLES. 340 O
TABLE LOOXUP USING FORMATS TAND THE PUT FUNCTION YO ADD L BS/TRK
THE FORMATTED VALUE OF REGION TO THE DATA SET. NOTE: THE DATA STATEMENT USED 0.17 SEOONDS AND 1ABOK.
THE RENAME PARAMETER IS USED S0 RESION CAN BE
DEFINED AS CHARACTER. 35 FROC PRINT DATA=ZUSEARRAY(OBS=15);
PRINT OF FIRST 15 OBSERVATIONS IN DATA SET REDEFINE. 34 TITLEZ DATA SET USEARRAY WITH REG_MNAME ADDED.;
[+}: 37 ID PAPER INVITED ENJOY REGION NOTE; THE PROCEDURE PRINT USED 0.13 SECONDS AND 172K
H 1 0 0 0 MIDWEST AND PRINTED PAGE 2.
2 2 [} 0 ¢ SOUTH
3 3 1 2 1 MIDWEST NOTE: SAS USED 180X MEMORY.
) G 0 o 1 MID-ATLANTIC NOTE: SAS INSTITUTE INC.
5 5] 0 1 WEST SAS CIRCLE
& 3 1 Q 0 NORTHEAST BOX 8000
7 T 0 0 1 NORTHEAST CARY, N.C. 27511
8 8 1 0 9 SOUTH
1 @ 0 1 1 NORTHHEST -
10 10 0 0 1 MID-ATLANTIC
11 11l 1] 1] 1 SOUTHWEST
12 12 1} 0 b3 MID-ATLANTIC
13 13 0 0 a SOUTHWEST
14 14 [} 1] 0 MID-ATLANTIC
15 15 1 [1}] SOUTH

FIGURE 5 : FIGURE 6

L6L

ST B

GBS

VOB EWNH

AT Ay e AT

TARLE LOOKUP BY STORING THE VALUES IN AN ARRAY. 1 1
REGION IS USED AS A SUBSCRIPT INTO THE ARRAY. 2
PRINT THE THE TRANSLATION DATA SET WHICH WILL 3

BE READ INTD THE ARRAY. ;
0BS REG_NAME REGION 3
1 NORTHEAST 1 8
2 MID-ATLANTIC 2 ?
3 SOUTH 3 10
% MIDWEST 4 11
5 NORTHWEST 5 12
6 HEST & 13
7 SOUTHWEST 7 14
15
16
17
18
19
20
21
22
23

TABLE LOOKUP BY STORING THE VALUES IN AN ARRAY. 2 24

REGION IS5 USED AS A SURSCRIPT INTO THE ARRAY. 25
DATA SET USEARRAY WITH REG_NAME ADDED. gg
REGION REG_NAME D FAPER INVITED ENJOY gg

4 MIDWEST 1 0 0 0 30
3 $OUTH 2 0 0 0 31
G MIDWEST 3 1 1] 1
2 MID-ATLANTIC a4 0 0 1 HOTE:
6 WEST 5 0 0 1
1 NORTHEAST- 6 1 0 0 32
1 NORTHEAST 7 0 0 1 33
3 $OUTH 8 1 0 0 34
5 NORTHWEST 9 0 1 1 33
2 MID-ATLANTIC 10 0 0 1
7 SOUTHMWEST 1l 0 0 1 NOTE:
3 MID-ATLANTIC 12 0 0 1 K
7 SOUTHMEST 13 0 0 0 NOTE:
2 MID-ATLANTIC 14 0 0 0
3 SOUTH 15 1 0 0 46

41
48
49
50
51
NOTE:

FIGURE 7

MTHIS EXAMPLE ILLUSTRATES THE USE OF FORMATS, THE PUT
FUNCTION AND ARRAYS TO DO MORE COMPLEX TABLE LOOKUP., THE
OBJECTIVE IS TO RECODE JOE CODE AND INDUSTRY AS FOLLOWS:

INDUSTRY
1064-~108,110 109 OTHER
|
201-20%; |
207 | 1 2 8
|
JoB 205 | 3 []
CODE |
206 | 5 [} 8
|
OTHER | 7 7 9
I

THE PUT PUNCTION WITH FORMATS IS U3SED TO GET ROW AND COLUMN
INDICES INTO AN ARRAY WHICH CONTAINS THE TABLE ENTRIES.;

PROO FORMAT:
¥DEFINE THE ROW AND COLUMN INDIOES FORMATSS
VALUE ROW 201-20%4,207=1
205=2
206=3
OTHER=4;
VALUE COL 104-108,110=1
109=2
OTHER=3;

THE PROCEDURE FORMAT USEDR 0.08 SECONDS AND 184K.

DATA JOBS;
¥READ IN THE DATA TO BE RECODED;
INPUT JOB_CCDE INDUSTRY;
CARDS:

DATA SET WORK.JOBS HAS 10 OBSERVATIONS AND 2 VARIABLES. 953 OBS/TR
THE DATA STATEMENT USED 0.06 SECONDS AND 172K.
PROC PRINT;
TITLE THE USE OF FORMATS, THE PUT FUNCTION AND ARRAYS TO;
TITLEZ DO MORE COMPLICATED TABLE LOOKUP, THE TABLE IS}

TITLE3 READ INTO A TWO DIMENSIONAL ARRAY.;
TITLEG LISTING OF THE INPUT DATA.;

THE PROGEDURE PRINT USED 0.08 SECONDS AND 172K
AND PRINTED PAGE 1. :

FIGURE 8

TR

B

o ARLE YR ELNS CaS NARrE e ety it LT

52 DATA RECODE; THE USE OF FORMATS, THE FUT FUNCTION AND A

53 ®SET UP THE ARRAYS FOR THE TABLE; DO MORE COMPLICATED TABLE LOQKUP, THE TA:EQY:STO

g; ::g:; :g:; :g; ;;i-;;;f READ INTO A TI0 DIMENSIQNAL ARRAY.
< 3 - 2

55 ARRAY R0WZ (C) Xa1-X2%S LISTING OF THE INPUT DATA.

57 ARRAY ROW4 (C) X41=-X&43; oB

58 ARRAY TABLE (R) ROWL-ROW4; ® J0B-copE TNDUSTRY

59 RETAIN X11==X43; 1 261 104

60 IF _N_=1 THEN 2 2¢5 108

61 DO s% READ IN THE TABLE %/; 3 204 105

62 DO R = 1 TO 4;%READ EACH ROW; 4 210 109

83 PO C=1 TO 3;%READ EACH COLUMN; 5 5a7 106

84 INPUT TABLE 3; 6 300 99

65 END; 7 205 109

66 END; 8 206 200

67 END /% READ IN THE TABLE %/;] 100 109

68 10 206 109

69

70 SET JOBS;

71 ¥READ IN THE DATA TO BE RECODED;

72 R=PUTCJOB_CODE,ROMW.);

73 C=PUT(INDUSTRY,COL.);

14 NEW_CODE=TABLE;

15 CARDS;

NOTE: CHARACTER VALUES HAVE BEEN CONVERTED TO NUMERIC
YALUES AT THE PLACES GIVEM BY: (LINEX!{(COLUMN).
72:4 73:4
NOTE: SAS WENT TO A MNEW LINE WHEN IMPUT STATEMENT
REACHED PAST THE END OF A LINE.
NOTE: DATA SET WORK.RECODE HAS 10 OBSERVATIONS AND 17 VARIABLES. 136 OBS

THE . USE OF FORMATS, THE PUT FUNCTION AND ARRAYS TO
DG MORE COMPLICATED TABLE LOOKUP. THE TABLE IS
READ INTO A TWO DIMENSIONAL ARRAY.

THE TAELE

o pds 0BS X11 X12 x13 X21 X22 X2
b NOTE: THE DATA STATEMENT USED 0.10 SECONDS AMD 180K. 3 X31 X32 X33 X4l X42 X43
1 1 2 8 3 4 a8 5 .3 B
30 PROC PRINT DATA=RECODE(QBS=1); T 7 8
81 VAR X11--X43;
82 TITLE4 THE TABLE]

MOTE: THE PROCEDURE PRINT USED (.09 SECONDS AND 172K
AND PRINTED PAGE 2.

83 PROC PRINT;
84 DROP X11--XA3; .
85 TITLE4 DATA RECODE ~ WITH THE VARIABLE NEWCODE; THE USE OF FORMATS, THE PUT FUNCTION AND ARRAYS TO

DO MORE GCOMPLICATED TABLE LOOKUP. THE TABLE IS
READ INTO A TWO DIMENSIONAL ARRAY.
DATA RECODE - WITH THE VARIABLE NEWCODE

NGTE: THE PROCEDURE PRINT USED 0.09 SECONDS AND 172K
AND PRINTED PAGE 3.

NOTE: SAS INSTITUTE INC. DBS c R

s INSTIT JOB_CODE INDUSTRY NEW_CODE
ROX KOO0 1 1 1 20
CARY, N.C. 27511 2 1 2 20; ;g; ;
3 1 3 206 105 5
4 2 4 2lo 109 7
5 2 1 207 109 2
6 3 q 300 99 9
7 2 2 208 109 4
| 3 3 206 200]
a 2 g 100 109 7
1o 2 3 206 109 -3

FIGURE 9 FIGURE 10

