
1

Paper 252-29

How SAS Thinks or Why the DATA Step Does What It Does
Neil Howard, i3 Data Services, Basking Ridge, NJ

ABSTRACT

The DATA step is the most powerful tool in the SAS system. Understanding the internals of DATA step
processing, what is happening and why, is crucial in mastering code and output. Concepts covered:

• Logical Program Data Vector (LPDV or PDV),
• automatic SAS variables and how are they used,
• the importance of understanding the internals of DATA step processing,
• what happens at program compile time,
• what's happening at execution time,
• how variable attributes are captured and stored, and
• handling data defaults, conversions, and missing values.

This paper focuses on techniques that capitalize on the power of the DATA step and working with (and
around) the default actions. By understanding DATA step processing, you can debug your programs
and interpret your results with confidence.

INTRODUCTION

SAS procedures are powerful and easy to use, but the DATA step offers the programmer a tool with almost unlimited
potential. In the real world, we’re lucky if systems are integrated, data is clean and system interfaces are seamless.
The DATA step can help you, your programmers, your program, and your users perform better in the real world –
especially when you take advantage of the available advanced features. This paper focuses on techniques that
capitalize on the power of the DATA step and working with (and around) the default actions. Any of the
topics/examples covered in this presentation have more than enough details, idiosyncrasies, and caveats to warrant
its own tutorial, so selected essential processing tips and a range of illustrative “real world” situations are addressed:

 compile versus execution time activities;
 organizing your data to maximize execution;
 data defaults, data conversions;
 missing values, formatting values;
 ordering variables;
 functions for:

 editing data,
 assigning values,
 shortening expressions
 performing table lookup;

 data management;
 effectively creating SAS data sets;
 the logic of the MERGE;
 efficiency techniques.

DATA Step Compile vs. Execute

There is a distinct compile action and execution for each DATA and PROC step in a SAS program. Each step is
compiled, then executed, independently and sequentially. Understanding the defaults of each activity in DATA step
processing is critical to achieving accurate results. During the compilation of a DATA step, the following actions
(among others) occur:

 syntax scan
 SAS source code translation to machine language
 definition of input and output files

 SUGI 29 Tutorials

2

 creates:
◊ input buffer (if reading any non-SAS data),
◊ Program Data Vector (PDV),
◊ and data set descriptor information

 set variable attributes for output SAS data set
 capture variables to be initialized to missing

Variables are added to the PDV in the order seen by the compiler during parsing and interpretation of source
statements. Their attributes are determined at compile time by the first reference to the compiler. For numeric
variables, the length is 8 during DATA step processing; length is an output property. Note that the last LENGTH or
ATTRIB statement compiled determines the attributes.

The variables output to the SAS data set are determined at compile time; the automatic variables are never written,
unless they have been assigned to SAS data set variables set up in the PDV (_N_, _ERROR_, end=, in=, point=,
first., last., and implicit array indices); the variables written are specified by user written DROP and/or KEEP
statements or data set options; the default being all non-automatic variables in the PDV. The output routines are also
determined at compile time.

The following statements are compile-time only statements. They provide information to the PDV, and cannot by
default (except in the macro language) be conditionally executed. Placement of the last six statements (shown below)
is critical because the attributes of variables are determined by the first reference to the compiler:

 drop, keep, rename
 label
 retain

⇒ length
⇒ format, informat
⇒ attrib
⇒ array
⇒ by
⇒ where

Once compilation has completed, the DATA step is executed: the I/O engine supervisor optimizes the executable
image by controlling looping, handling the initialize-to-missing instruction, and identifying the observations to be read.
Variables in the PDV are initialized, the DATA step program is called, the user-controlled DATA step machine code
statements are executed, and the default output of observations is handled.

Coding Efficiencies and Maximizing Execution

The SAS system affords the programmer a multitude of choices in coding the DATA step. The key to optimizing your
code lies in recognizing the options and understanding the implications. This may not feel like advanced information,
but the application of these practices has far-reaching effects.

Permanently store data in SAS data sets. The SET statement is dramatically more efficient for reading data in the
DATA step than any form of the INPUT statement (list, column, formatted). SAS data sets offer additional
advantages, most notably the self-documenting aspects and the ability to maintain them with procedures such as
DATASETS. And they can be passed directly to other program steps.

A “shell” DATA step can be useful. Code declarative, compile-only statements (LENGTH, RETAIN, ARRAY) grouped,
preceding the executable statements. Block-code other non-executables like DROP, KEEP, RENAME, ATTRIB,
LABEL statements following the executable statements. Use of this structure will serve as a checklist for the
housekeeping chores and consistent location of important information. Use consistent case, spaces, indentation, and
blank lines liberally for readability and to isolate units of code or to delineate DO-END constructions.

Use meaningful names for data sets and variables, and use labels to enhance the output. Comment as you code;
titles and footnotes enhance an audit trail. Based on your understanding of the data, code IF-THEN-ELSE or
SELECT statements in order of probability of execution. Execute only the statements you need, in the order that you
need them. Read and write data (variables and observations) selectively, reading selection fields first, using
DROP/KEEP, creating indexes. Prevent unnecessary processing. Avoid GOTOs. Simplify logical expressions and
complex calculations, using parentheses to highlight precedence and for clarification. Use DATA step functions for
their simplicity and arrays for their ability to compact code and data references.

Data Conversions

 SUGI 29 Tutorials

3

Character to numeric, and numeric to character, conversions occur when:

 incorrect argument types passed to function
 comparisons of unlike type variables occur
 performing type-specific operations (arithmetic) or concatenation (character)

SAS will perform default conversions where necessary and possible, but the programmer should handle all
conversions to insure accuracy. The following code illustrates:

 default conversion,
 numeric-to-character conversion using PUT function,
 character-to-numeric conversion with INPUT function:

data convert1;
 length x $ 2 y $ 1;
 set insas; *contains numeric variables flag and code;
 x = flag;
 y = code;
run;

data convert2;
 length x $ 2 y 8
 set insas; *contains numeric variables flag and code;
 x = put(flag, 2.);
 y = input(put(code, 1.), 8.);
run;

data convert3;
 length z 2;
 set insas; *contains character variable status;
 z = input(status, 2.);
run;

Missing Data

The DATA step provides many opportunities for serious editing of data and handling unknown, unexpected, or
missing values. When a programmer is anticipating these conditions, it is straightforward to detect and avoid missing
data; treat missing data as acceptable within the scope of an application; and even capitalize on the presence of
missing data. When a value is stored as “missing” in a SAS data set, its value is the equivalent of negative infinity,
less than any other value that could be present. Numeric missings are represented by a “.” (a period); character by “ “
(blank). Remember this in range checking and recoding. Explicitly handle missing data in IF-THEN-ELSE
constructions; in PROC FORMATs used for recoding; and in calculations. The first statement in the following
example:

 if age < 8 then agegroup = “child”;
 if agegroup = “ “ then delete;

will include any observations where age is missing in the agegroup “child”. This may or may not be appropriate for
your application. A better statement might be:

 if (. < age < 8) then agegroup = “child”;

Depending on the user’s application, it may be appropriate to distinguish between different types of missing values
encountered in the data. Take advantage of the twenty-eight special missing values:

 . ._ .A .B .C .D .E .F .G .H .I .J .K .L .M .N .O .P .Q .R .S .T .U .V .W .X .Y .Z

 if comment = “unknown” then age = .;
 else if comment = “refused to answer” then age = .A;
 else if comment = “don’t remember” then age = .B;

 SUGI 29 Tutorials

4

All these missing values test the same. Once a missing value has resulted or been assigned, it stays with the data,
unless otherwise changed during some stage of processing. It is possible to test for the presence of missing data with
the N and NMISS functions:

 y = nmiss(age, height, weight, name);
 ** y contains the number of missing arguments;

 z = n(a,b,c,d);
 ** z contains the number of nonmissings in the list;

Within the DATA step, the programmer can encounter missing data in arithmetic operations. Remember that in simple
assignment statements, missing values propagate from the right side of the equal sign to the left; if any argument in
the expression on right is missing, the result on the left will be missing. Watch for the “missing values generated”
messages in the SAS log. Although DATA step functions assist in handling missing values, it is important to
understand their defaults as well. Both the SUM and MEAN functions ignore missing values in calculations: SUM will
add all the non-missing arguments and MEAN will add the nonmissings and divide by the number of nonmissings. If
all the arguments to SUM or MEAN are missing, the result of the calculations will be missing. Depending on how the
result will be used (in a later calculation) may determine whether or not that is acceptable:

x = a + b + c; * if any argument is missing, x = . ;
x = SUM(a,b,c); *with missing argument, x is sum of nonmissings;
x = SUM(a,b,c,0); * if a,b,c are missing, result will be zero;
y = (d + e + f + g) / 4; *y is missing if any variable in the calculation is missing;
y = MEAN(d,e,f,g); *number of nonmissings is divided by 4;
 * if all arguments are missing, y = . ;

Since there are 90+ DATA step functions, the moral of the function story is to research how each handles missing
values.

Missing values should also be taken into account when accumulating totals across iterations of the DATA step. By
default, new variables created in the DATA step are initialized to missing at the beginning of each iteration of
execution. Declaring a RETAIN statement overrides this default. But there are limitations.

 retain total 0;
 total = total + add_it;

 * this will work as long as add_it is never missing;

The SUM statement combines all the best features of the RETAIN statement and the SUM function:

 total + add_it;

 *total is automatically RETAINed;
 * add_it is added as if using the SUM function;
 * missings will not wipe out the accumulating total;

Missing values can also be a factor when combining data sets. Missing values from the right-most data set coded on
a MERGE or UPDATE statement have different effects on the left-most data set. When there are common variables
in the MERGE data sets, missings coming from the right will overwrite. However, UPDATE protects the variables in
the master file (left-most) from missings coming from the transaction file. (See Real World 7 example.)

Other Data Issues
Re-Ordering Variables

SAS-L users periodically carry on the discussion of re-ordering variables as they appear in a SAS data set.
Remember that as the compiler is creating the PDV, variables are added in the order they are encountered in the
DATA step by the compiler. This becomes their default position order in the PDV and data set descriptor. The best
way to force a specific order is with a RETAIN statement, with attention to placement. Make sure it is the first
reference to the variable and the attributes are correct. It is possible to use a LENGTH statement to accomplish this,
but a variable attribute could be inadvertently altered.

 data new;
 retain c a v; * first reference to a b c;

 SUGI 29 Tutorials

5

 set indata; * incoming position order is a b c;
 x = a || b || c;
 run;

 data new;
 length x $ 35 a $ 10 b $ 7 c $ 12; * first reference to x a b c;
 set indata; *contains c a b, in that position order;
 x = a || b || c;
 run;

Handling Character Data

Character-handling DATA step functions can simplify string manipulation. Understand the defaults and how each
function handles missing data for optimal use.

Length of target variables

Target refers to the variable on the left of the equal sign in an assignment statement where a function is used on the
right to produce a result. The default length for a numeric target is 8; however, for some character functions the
default is 200, or the length of the source argument. The SCAN function operates unexpectedly:

 data _null_;
 x= ’abcdefghijklmnopqrstuvwxyz’;
 y = scan(x,1,’k’);
 put y=;
 run;

 y=abcdefghij; * y has length of 200;

The results from SUBSTR are different:

 data old;
 a=’abcdefghijklmnopqrstuvwxyz’;
 b=2; c=9;
 run;

 data new;
 set old;
 x=substr(a,23,4);
 y=substr(a,b,3);
 z=substr(a,9,c);
 put a= b= c= x= y= z=;
 * a is length $ 26; * x y z have length $ 26;
 run;

 data old;
 length idnum $ 10 name $ 25 age 8;
 idnum=substr(var1_200,1,10);
 name=substr(var1_200,11,25);
 age=substr(var1_200,36,2);
 * length statement overrides default of 200
 * for idnum, name, and age;
 run;

SUBSTR as a pseudo-variable

Another SAS-L discussion involved the use of SUBSTR as a pseudo-variable. Note that when the function appears to
the left of the equal sign in the assignment statement, text replacement occurs in the source argument:

 data fixit;
 source = ‘abcdefghijklmnopqrstuvwxyz’;

 SUGI 29 Tutorials

6

 substr(source, 12, 10) = ‘##########’;
 put source=;
 run;

 source=abcdefghijk##########vwxyz

Numeric substring

A similar function to SUBSTR if often desired for numerics. One cumbersome solution involves: 1) performing
numeric to character conversion, 2) using SUBSTR to parse the string, and 3) converting the found string back to
numeric. SAS would also do such conversions for you if you reference a numeric as an argument to a character
function or include a character variable in a numeric calculation. See section on data conversions.

A simpler and less error-prone solution (trick) is the use of the numeric MOD and INT functions:

 data new;
 a=123456;
 x = int(a/1000);
 y = mod(a,1000);
 z = mod(int(a/100),100);
 put a= x= y= z=;
 run;

 a=123456
 x=123
 y=456
 z=34

Handling imbedded blanks

The TRIM and TRIMN functions are used to removed embedded blanks. Notice the different results:

 data _null_;
 string1='trimmed ';
 string2='?';
 string3='!';
 string4=' ';
 w=string1||string2;
 x=trim(string1)||string3;
 y=string2||trim(string4)||string3;
 z=string2||trimn(string4)||string3;
 put w= x= y= z=;
 run;

 w = trimmed ?
 x = trimmed!
 y = ? !
 z = ?!

Table Lookup

Recoding is a common programming challenge, and can be accomplished in several ways:

⇒ hard-coded IF statements
⇒ MERGE
⇒ PROC FORMAT with the PUT function
⇒ data driven FORMATs.

Hard-coded IF statements

 SUGI 29 Tutorials

7

For this example, we know the DEPTINFO (descriptive information for each DEPTNAME) for each sort code
(SORTCD):

1001 Operations
1002 Hardware
1003 Software (IBM)
1004 Software (MAC)
1005 LAN/WAN
1006 Technical Support
1007 Help Desk 1008 Administrative Support
1009 Documentation Library
1010 Incentive Program
1011 Unassigned 1011
1012 Unassigned 1012
1013 Unassigned 1013
1014 Unassigned 1014
1015 Unassigned 1015

Data set EXPENSES contains the expense data with only SORTCD as an identifier. It is required that all reports must
display the lengthy department description.

1002 12 94 150000
1005 12 94 200000
1003 12 94 500000
1006 12 94 329500
1010 12 94 975200
1007 12 94 150000
1011 12 94 50000
2004 12 94 230500

The users want a listing and separate SAS data set with valid expense data (an “unassigned” sortcode with expenses
is considered an error). The deliverables will be an error report and an error file to facilitate corrections.

EXAMPLE 1: Table Lookup with IF statements:

 data ifexp iferr;
 set expenses;
 length deptname $25 ;
 if 1001 le sortcd le 1010 then
 do;
 if sortcd = 1001 then deptname = ’Operations’;
 else if sortcd = 1002 then deptname = ’Hardware’;
 else if sortcd = 1003 then deptname = ’Software (IBM)’;
 else if sortcd = 1004 then deptname = ’Software (MAC)’;
 output ifexp;
 end;
 else output iferr;
 run;

This method uses the IF/ELSE statements efficiently and accomplishes the objective. But having a separate data set
for users to track the sort codes they can still assign would be more useful and easily maintainable.

Table Lookup using MERGE

EXAMPLE 2: Table Lookup with MERGE (assuming a data set with department descriptions (DEPTINFO) for each
SORTCD has been created:

 proc sort data=expenses;
 by sortcd;
 run;

 proc sort data=deptinfo;
 by sortcd;
 run;

 SUGI 29 Tutorials

8

 data expens2 errdept missmnth;
 merge expenses(in=inexp) deptinfo(in=indpt);
 by sortcd;
 if inexp and indpt then
 do;
 if index(upcase(deptname),’UNASSIGNED’) > 0 then output errdept;
 else output expens2;
 end;
 else if inexp and not indpt then output errdept;
 else if (indpt and not inexp) and index(upcase(deptname),’UNASSIGNED’) = 0
 then output missmnth;
 run;

The MERGE provides the users with a “bonus” file by coding multiple data set names on the DATA statement and
using the IN= option on the MERGE statement. Data set EXPENS2 contains the valid expense data; ERRDEPT holds
the incorrect expense data; and MISSMNTH (optional) shows which sortcodes have no expense data for the month.

PROC FORMAT and the PUT function

EXAMPLE 3: PROC FORMAT with PUT function:

 proc format;
 value regfmt 100-200 = “NE”
 201-300 = “NW”
 301-400 = “SE”
 401-500 = “SW”;
 run;

 data new;
 set indata; *contains numeric variable city;
 region = put(city, regfmt.);
 *creates a new variable region based on values of city;
 run;

 data sw;
 set indata;
 if put(city, regfmt.) = “SW”;

 * creates a subset based on value of city;
 * does not create a new variable to do this;
 run;

Accomplishing data recoding using PROC FORMAT with the PUT function provides several benefits to the users and
programmer: it is readable; easy to maintain -- the list of values need only be changed in one location; the formats
can be permanently stored in a format library; the DATA step code itself is shorter and easier to follow.

 DDaattaa DDrriivveenn PPRROOCC FFOORRMMAATT GGeenneerraattiioonn

EXAMPLE 4: Table Lookup using a SAS data set to generate the PROC FORMAT:

 data fdnm(keep=start end label fmtname);
 set deptinfo end=eofdept;
 length label $32;
 start = sortcd;
 end = sortcd;
 label = deptname;
 fmtname = 'convdept';
 output fdnm;
 if eofdept then
 do;
 start = .;
 end = .;
 label = ’ERROR’;

 SUGI 29 Tutorials

9

 fmtname = ’convdept’;
 output fdnm;
 end;
 run;

 proc format cntlin=work.fdnm;
 run;

The overhead associated with this solution comes from reading the DEPTINFO dataset and using it to make a
CNTLIN dataset for PROC FORMAT (see SAS log). The temporary dataset, WORK.FDNM, is passed to PROC
FORMAT with the CNTLIN= options to create the SAS format CONVDEPT:

FORMAT NAME: CONVDEPT LENGTH: 22 NUMBER OF VALUES: 18
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 22 FUZZ: STD

START END LABEL (VER. 6.11)

. . ERROR
0 1000 ERROR
1001 1001 Operations
1002 1002 Hardware
1003 1003 Software (IBM)
1004 1004 Software (MAC)
1005 1005 LAN/WAN
1006 1006 Technical Support
1007 1007 Help Desk
1008 1008 Administrative Support
1009 1009 Documentation Library
1010 1010 Incentive Program
1011 1011 Unassigned 1011
1012 1012 Unassigned 1012
1013 1013 Unassigned 1013
1014 1014 Unassigned 1014
1015 1015 Unassigned 1015
1016 9999 ERROR

Once the format (or informat) has been created, it can be used to read the expense data with an informat statement,
print the expense data using the format in a PROC PRINT, or apply the format to the SORTCD variable in the
expense program giving the users the monthly expense and error reports required:

 data fmtexp fmterr;
 set expenses;
 length deptname $25;
 deptname = put(sortcd,convdept.);
 if deptname = ’ERROR’ or index(upcase(deptname),’UNASSIGNED’) gt 0)
 then output fmterr;
 else output fmtexp;
 run;

Using format from CNTLIN with PROC PRINT:

OBS SORTCD EXPENSES MONTH YEAR DEPTNAME
1 1002 150000 12 94 Hardware
2 1003 500000 12 94 Software (IBM)
3 1005 200000 12 94 LAN/WAN
4 1006 329500 12 94 Technical Support
5 1007 150000 12 94 Help Desk
6 1010 975200 12 94 Incentive Program

ERRORS using Proc Format CNTLIN data set

OBS SORTCD EXPENSES MONTH YEAR DEPTNAME
1 1011 50000 12 94 Unassigned 1011
2 2004 230500 12 94 ERROR

Table Lookup Conclusions

 SUGI 29 Tutorials

10

For small lists and table lookups against small lists on relatively static data, the MERGE example is preferable to
IF/ELSE. Where data are volatile, or the lookup list is very large, it will prove more efficient to use the PROC
FORMAT with the PUT function and/or create the formats from data that drives the list. The formats are easily
maintained, excellent documentation, and provide a mechanism for making changes in only one location in the
program.

Notice from the example that other applications of PROC FORMAT with the PUT function become apparent. The
table lookup can re-code variables, assign values, range-check values, and shorten expressions.

Data Set Management

Here’s where the rubber meets the road -- the odd challenges encountered in user applications, like ‘em or not. And
this is where the power of the DATA step can be the most effective -- in handling “real world” situations:

 referencing a data set at compile time
 oddly located “bad” records
 writing for word processing packages
 variable-length raw data records
 deleting observations based on last in a series
 optimizing first. processing
 manipulating sort order
 choosing MERGE or UPDATE

 Real Word 1: Referencing a Data Set at Compile Time

It is often necessary to capture the number of observations in a data set at compile time:

 data _null_;
 call SYMPUT(‘n_obs’, put(n_obs, 5.));
 stop;
 set indata nobs = n_obs;
 run;

The SYMPUT function in the example above will capture the number of observations from the data set descriptor at
compile time, without processing any data. The value of the macro variable &n_obs becomes available to reference
from another program step.

 Real Word 2: Other People’s Data

Other people’s data entry programs can cause unexpected problems. Suppose there’s a bug in the CICS/COBOL
program that collects sales data. The first record for each city and each hour is known to be "bad" data. The COBOL
programmers get rid of the record when they pass the data to the General Ledger system. However, other
departments can only read the raw data for ad hoc reports.

This input data shows which lines should be deleted (note: you can’t delete the first observation and every third
observation because there aren’t always three people working in an hour, nor do they necessarily occur in the same
order):

BOSTON 7 BILL 107000 -- delete this
BOSTON 7 DAVE 345998
BOSTON 7 JEAN 356754
BOSTON 8 DAVE 40 -- delete this
BOSTON 8 BILL 98
BOSTON 8 JEAN 64
….
….

A simple way to solve this problem uses the features of PROC SORT. After you read the raw data, sort the data by
CITY and HOUR (not by name, so SAS will retain the names in the order they appeared in original data set). This sort
assures there will never be HOUR 7 for LONDON occurring immediately after HOUR 7 for BOSTON. Use the
first.hour automatic SAS variable to delete bad data.

 proc sort data=citysale;

 SUGI 29 Tutorials

11

 by city hour;
 run;

 data dropit keepit;
 set citysale;
 by city hour;
 if first.hour then
 do;
 output dropit;
 delete;
 end;
 output keepit;
 run;

Using first.hour would drop these:

CITY NAME HOUR DOLLARS

BOSTON BILL 7 107000
BOSTON DAVE 8 40
BOSTON JEAN 9 98
LONDON MONTY 15 567838
LONDON JEAN 16 56
LONDON HELEN 17 773
PARIS SERGEI 3 7698
. . .
. . .

Using first.hour would keep the correct records:

CITY NAME HOUR DOLLARS

BOSTON DAVE 7 345998
BOSTON JEAN 7 356754
BOSTON BILL 8 98
BOSTON JEAN 8 64
BOSTON DAVE 9 63
BOSTON BILL 9 25
LONDON HELEN 15 245810
LONDON JEAN 15 45625
LONDON HELEN 16 32
LONDON MONTY 16 354
LONDON MONTY 17 232
LONDON JEAN 17 456
PARIS PIERRE 3 7936
PARIS AIMEE 3 12948

 Real Word 3: VP’s Admin like WORD

The user wants mailing labels from their SAS data set in WORD format. The text strings ’NAME’ and ’LOCATION’
must appear on the first line of the file; on the subsequent data lines, each field must be separated by the WORD tab
character (hex value =09). After the OUTLABEL file (ASCII) is written, it is “pulled” into WORD and merged with the
WORD label document:

libname newlabl ’c:\saspaper’;
filename outlabel ’c:\saspaper\barbnew.txt’;
 *** the note-1 field to stuff the envelopes with the right document;
 *** note-1 appears on the checklist but not the labels;

proc sort data=newlabl.barb;
 by note1 lastname name1;
run;

proc print data=newlabl.barb;

 SUGI 29 Tutorials

12

 title ’SAS dataset: newlabl.barb -- do labels with WORD’;
 title2 ’Envelope checklist’;
 id name1;
 var lastname deptloc note1 note2;
run;

data _null_;
 set newlabl.barb;
 length hextab $1;
 retain hextab ’09’x;
 file outlabel;
 if _n_ = 1 then put @1 hextab ’NAME’ hextab ’LOCATION’;
 put hextab : $1. name1 : $15.-l lastname : $15.-l hextab : $1. deptloc : $8.-l ;
run;

The resulting ASCII file is ready to bring into WORD (tab characters do not display):

NAME LOCATION

LORD GEOFFREY VANDERSNEER 1111/111
BOBBIT ALITTLE 3195/717
LEOPOLD BLOOM 6969/069
HERMAN MELVILLE 8592/533
GEORGIA ONMYMIND 4854/217
ISHMAEL SAILOR 3299/007
MAX ANDERSON 4423/12
BILBO BAGGINS 9366/941
WRASSLE BALDARCHER 5467/149
R. T. EFMANUAL 1929/507
SEAMUS JOYCE 6969/069
DONNA REED 7907/626
THOMAS T. RHYMER 8832/777
PUDDIN TAME 8633/321
KERMIT PHROG 9923/555

 Real Word 4: Hinky Data

Transferring ASCII files between various software packages and platforms can also cause problems. When an ASCII
file was transferred between a MACINTOSH mail program to a PC, the text lines were written as variable length
records (vs. fixed on the MAC), and many apostrophes became represented by hex code 12 (shows as a ‘.’ in the
SAS LOG). In addition, the MAC tab character became ‘>‘ in the translated file.

If a 40 page story is late for a publishing deadline: you can:

 beg secretary to make changes in WP package;
 make changes in the word processor yourself; or
 write program using character manipulation functions.

The “damaged” file (note periods instead of apostrophes and >):

>I.ll never see another loss like that. No more soldiers, no more blood.
She hadn.t ever tried to talk to the ghosts; it was hard to tell which one was
>The travel clerk didn.t have to remind her not to approach the time tourists,
said to the uncaring sky. "What.s the good of all these dead custers,
anyway?"
(undamaged text deleted)

 filename hinky ’c:\saspaper\hinky.txt’;
 filename fixed ’c:\saspaper\fixed.txt’;
 data _null_;
 infile hinky missover length=lg;
 input @1 textline $varying200. lg;
 length badchar apos parachar $1;
 retain badchar ’12’x apos "’" parachar ’>’;
 if index(textline,badchar) gt 0 then

 SUGI 29 Tutorials

13

 do;
 list;
 textline = translate(textline,apos,badchar);
 end;
 file fixed;
 if index(textline,parachar) gt 0 then
 do;
 textline = translate(textline,’ ’,parachar);
 put @4 textline;
 end;
 else put @1 textline;
 run;

(corrected text)
I’ll never see another loss like that. No more soldiers, no more blood.
She hadn’t ever tried to talk to the ghosts; it was hard to tell which one was
The travel clerk didn’t have to remind her not to approach the time tourists,
uncaring sky. "What’s the good of all these dead custers, anyway?"

 Real Word 5: Need to delete ‘last’ in a series

A health care worker has a data set with unequal lines of data per person for different years with the same variables
per line. The objectives:

 keep all lines for person if last yr is 1991 or less
 delete all lines if year on last record is GE 1992:

 data yrinfo;
 length id 3 yr 3 info $10;
 input id yr info;
 cards;
 1 80 asthma
 1 82 bronchitis
 1 83 asthma
 1 86 pneumonia
 1 91 pleurisy <--- keep all for id 1
 2 90 bronchitis
 2 91 bronchitis
 2 92 sinusitis <--- delete all for id 2
 3 80 bronchitis
 ;
 run;

The simplest solution is a sort of the input data by ID and descending YR. This order allows the first.yr automatic
variable to be the last year in the patient’s data. When first.yr is greater than or equal to 92, then a delete flag
(DELFLAG) will be set. The code creates two data sets: KEEPIT and DELETEIT; however, in a production
environment, it might only be necessary to use a subsetting IF (if delflag=0;) to output only the desired observations:

 proc sort data=yrinfo;
 by id descending yr ;
 run;

 data keepit deleteit;
 set yrinfo;
 by id descending yr ;
 length delflag 3;
 retain delflag ;
 if first.id then delflag = 0;
 if first.id and first.yr and yr ge 92 then delflag = 1;
 if delflag = 1 then
 do;
 output deleteit;
 delete;
 end;

 SUGI 29 Tutorials

14

 if delflag = 0 then output keepit;
 run;

 Real World 6: They Want WHAT???!!!

The creation of a “super-sort” variable can allow you to minimize the number of first. variables used to successfully
process a data set. In this example, trouble tickets (TICKET) can be assigned to multiple directors (DIRECTOR) and
multiple reporting areas (AREA) for investigation of system outages (DURATION). The system outages (OUTAGES)
can affect multiple lines of business(LINEBUSN):

TICKET LINEBUSN DIRECTOR AREA DURATION
321 NET TURNER OPERATIONS 35
565 CRP MILLER SOFTWARE 12
565 CRP MILLER LAN/WAN 12
565 NET MILLER SOFTWARE 15
565 NET MILLER LAN/WAN 30
565 BUS MILLER SOFTWARE 30
565 BUS MILLER LAN/WAN 30
436 CRP JONES HARDWARE 80
436 CRP MILLER SOFTWARE 25
436 NET JONES HARDWARE 75
436 NET MILLER SOFTWARE 25
436 BUS MILLER SOFTWARE 75
436 BUS JONES HARDWARE 25

To complete the tracking process, users want two reports: 1) a summary by line of business and director showing the
total number of minutes for each ticket and the number of areas affected; 2) a list indicating line of business at the top
of each page for every unique line of business/director/ticket combination. A “super-sort” variable can be created
(using character concatenation) to simplify processing, replacing the more tedious first. processing for all the
combinations of LINEBUSN, DIRECTOR and TICKET (though NOT AREA):

 data sortexmp;
 set outages;
 length suprsort $11;
 suprsort =linebusn||substr(director,1,5)||put(ticket,3.0);
 run;
*(Note numeric variable ticket converted to character for the substring);

Subsequent processing uses the SUPRSORT variable to produce the detail report and summary report file in one
data step:

 proc sort data=sortexmp;
 by suprsort linebusn director area ticket;
 run;

 filename detail ’c:\saspaper\suprdetl.prn’;

 data dirtotl(keep=linebusn director ticket numarea dirtot);
 set sortexmp;
 by suprsort;
 retain dirtot numarea;
 file detail print;
 if first.suprsort then
 do;
 dirtot=0;
 numarea = 0;
 put _page_ ;
 title ’detail listing by line of business’;
 put @5 ’line of business: ’ linebusn;
 end;
 dirtot + duration;
 numarea + 1;
 put @1 linebusn director area ticket duration;
 if last.suprsort then output dirtotl;

 SUGI 29 Tutorials

15

 run;

 proc sort data=dirtotl;
 by linebusn director;
 run;

 proc print data=dirtotl;
 by linebusn;
 sum dirtot;
 run;

The SUPRSORT variable can also be used in SAS procedures, like PROC MEANS or PROC FREQ, to minimize the
unnecessary _TYPE_s (PROC MEANS) or TABLEs (PROC FREQ) produced by using multiple BY statements. The
summary report from data set DIRTOTL:

LINEBUSN=BUS

OBS DIRECTOR TICKET DIRTOT NUMAREA

1 JONES 436 25 1
2 MILLER 436 75 1
3 MILLER 565 60 2

LINEBUSN 160

And the detail report looks like:

-(new page) -detail listing by line of business

LINE OF BUSINESS: BUS
BUS JONES HARDWARE 436 25

-(new page) -detail listing by line of business

LINE OF BUSINESS: BUS
BUS MILLER SOFTWARE 436 75

-(new page) -detail listing by line of business

LINE OF BUSINESS: BUS
BUS MILLER LAN/WAN 565 30
BUS MILLER SOFTWARE 565 30

 Real Word 7: Manipulating Sort Order

When a Performance Tracking system was coded, three-character codes were used for line of business. However,
the users rejected the report because the lines of business printed in alphabetical order, not in the order that the
customers expected. The first report generated appeared as follows:

Listing by Line of Business in Alpha Order

Line of Business=ACT

App Calc Performance
Name Used Objective
ACCOUNTS RECEIVABLE VIP 0.9756
CONTROLLER NONVIP 0.9900
GENERAL LEDGER NONVIP 0.9800
PAYROLL VIP 0.9787

Line of Business=CRP

App Calc Performance
Name Used Objective
BENEFITS NONVIP 0.9800
GROUNDS NONVIP 0.9800

 SUGI 29 Tutorials

16

HUMAN RESOURCES NONVIP 0.9500
MEDICAL NONVIP 0.9900
PURCHASING NONVIP 0.9800
RECEIVING NONVIP 0.9800
TRAVEL NONVIP 0.9700

Line of Business=NET

LOCAL AREA NETWORK NONVIP 0.9900
ROLM EQUIPMENT VIP 0.9900
SITE LICENSE NONVIP 0.9900
SYSTEM SOFTWARE VIP 0.9787
TECHNICAL SUPPORT VIP 0.9700
WIDE AREA NETWORK NONVIP 0.9900

Using PROC FORMAT, the system designer can code the line of business and force the specific expected order on
the report:

 proc format;
 value $lobord ’NET’ = 1
 ’CRP’ = 2
 ‘OPR’ = 3
 ’ACT’ = 4;
 value nicename 1 = ’NETWORK’
 2 = ’CORPORATE’
 3 = ’OPERATIONS’
 4 = ’ACCOUNTING’;
 run;

 data neword;
 set applinfo;
 length ordlob 3.;
 ordlob = put(linebusn,$lobord.);
 run;

 proc sort data=neword;
 by ordlob appname;
 run;

Once the data is sorted by the coded variable and appname, the NICENAME format can be applied to substitute the
long name for lines of business and manipulate the order of presentation on the users’ reports:

List of Applications by Line of Business (in different order)

Line of Business=NETWORK

App Calc Performance
Name Used Objective
LOCAL AREA NETWORK NONVIP 0.9900
ROLM EQUIPMENT VIP 0.9900
SITE LICENSE NONVIP 0.9900
SYSTEM SOFTWARE VIP 0.9787
TECHNICAL SUPPORT VIP 0.9700
WIDE AREA NETWORK NONVIP 0.9900

(Line of Business=CORPORATE, etc., follow.)

 Real Word 8: MERGE vs. UPDATE

If a file only needs a few changes, why recreate the entire file just to make those changes? This scenario
demonstrates the benefit of the UPDATE statement over the MERGE for some applications. The master file
(MASTER) contains names, birthdays, gift ideas and other information:

NAME BDATE SIZE COLOR INTEREST WHAT LIMIT
jody 08-23-84 g14 purple Nancy Drew niece 20
john 10-14-93 t4 red Lion King nephew 20

 SUGI 29 Tutorials

17

meghan 12-02-83 j5 green music godchild 50
morgan 12-02-83 j5 teal theater godchild 50
sal 04-11-45 mxl none hang gliding college 5
mary ann 10-17-95 b18 pink rattles daughter 100

Using a MERGE to add a new person is fine. But the merge will produce unreliable results when changing values of
any of the variables (Morgan’s favorite color to orange or Jody’s interest to Goose Bumps books). This application
might suggest a file of change transactions (UPDTTRNS) and a merge by NAME and BDATE:

 data newmstr2;
 merge master(in=inmast) updttrns(in=intran);
 by name bdate;
 if (inmast and intran) or (inmast and not intran)then output newmstr2;
 if intran and not inmast then output newmstr2;
 run;

The resulting data set added Suzanne, but lost all of Jody’s information except INTEREST. Morgan's color changed,
but all of other information was lost:

New master file after using merge
NAME BDATE SIZE COLOR INTEREST WHAT LIMIT
Jody 08/23/84 _ Goose Bumps .
john 10/14/93 t4 red Lion King nephew 20
mary ann 10/17/95 b18 pink rattles daughter 100
meghan 12/02/83 j5 green music godchild 50
morgan 12/02/83 orange .
sal 04/11/45 mxl none hang gliding college 5
suzanne 11/15/50 na na mystery series coworker 5

An UPDATE application is actually called for. Create an update transaction, using named input and the special
missing option (_) to change only the variables requiring update. Use the same variables on the transaction file as on
the master file. Variables in the transaction file with missing values will NOT overwrite the fields in the master file.
(LIMIT for Morgan has been explicitly coded to “.” to demonstrate this feature). Only those changes with the special
missing character underscore (_) will update a master file field to missing (see Jody’s color):

data updttrns;
 length bdate 8 interest $15 limit 8;
 informat bdate mmddyy8.;
 input name= $& bdate= size= $ color= $ interest= $& what= $ limit=;
 missing _ ;
cards;
name=morgan bdate=12-02-83 color=orange limit=.
name=jody bdate=08-23-84 interest=Goose Bumps color=_
name=suzanne bdate=11-15-50 size=na color=na interest=mystery series limit=5
what=coworker
;
run;

 proc sort data=updttrns;
 by name bdate;
 run;
 ** master file previously sorted by name and bdate;

 data newmstr;
 update master updttrns;
 by name bdate;
 run;

The UPDATE statement produces the desired result:

Master file after being updated by transactions
NAME BDATE SIZE COLOR INTEREST WHAT LIMIT
jody 08/23/84 g14 Goose Bumps niece 20
john 10/14/93 t4 red Lion King nephew 20
mary ann 10/17/95 b18 pink rattles daughter 100

 SUGI 29 Tutorials

18

meghan 12/02/83 j5 green music godchild 50
morgan 12/02/83 j5 orange theater godchild 50
sal 04/11/45 mxl none hang gliding college 5
suzanne 11/15/50 na na mystery series coworker 5

REFERENCES

1. Proceedings of the Annual Conference of the SAS Users Group International. Cary, NC: SAS Institute Inc.

 DiIorio, F.: The Case for Guidelines: A SAS System Style Primer. San Francisco, CA, April 1989.
 Howard, N: Efficiency Techniques for Improving I/O in the DATA Step. New Orleans, LA, February 1991.
 Rabb, Henderson, Polzin: The SAS System Supervisor – A Version 6 Update, 1992
 Repole, W: Avoiding, Accepting, and Taking Advantage of Missing Data, 1994
 Howard, N: Discovering the FUN in Functions. New York, NY, April 1994.
 Howard, N, Zender, C.: Advanced DATA Step Topics and Techniques, March 1996.
 Howard, N, Zender, C.: Advanced DATA Step Topics and Techniques, April 1999.

2. SAS Institute Inc.: Advanced SAS Programming Techniques and Efficiencies: Course Notes, 1992. SAS
Programming Tips: A Guide to Efficient SAS Processing, 1990.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Neil Howard
i3 Data Services
131 Morristown Rd
Basking Ridge, NJ 07920
Work Phone: 973-348-1137
Email: neil.howard@i3data.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

 SUGI 29 Tutorials

	SUGI 29 Proceedings Table of Contents

