ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344314192
A Recursive SAS Macro Technique and its Application to Statistics

Conference Paper - August 2003

CITATIONS READS
0 300
1 author:

@ Yohji Itoh
& » A2Healthcare
56 PUBLICATIONS 2,875 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yohji Itoh on 20 September 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344314192_A_Recursive_SAS_Macro_Technique_and_its_Application_to_Statistics?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344314192_A_Recursive_SAS_Macro_Technique_and_its_Application_to_Statistics?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

SUGI-J 2003, 31 August 2003

A Recursive SAS Macro Technique and its Application to Statistics

Yohiji Itoh
Statistics & Programming Department, AstraZeneca K.K., Osaka, Japan

ABSTRACT

The recursive call of modules is an important function for iterative computation and it is avalilable
in some programming languages. However, the SAS System does not provide the recursive call
facility, thus users need to take other approaches. Here a new technique called “recursive macro call”
is proposed. This technique utilizes CALL EXECUTE routine, thus the explanation about it is given
in the first place, and then the recursive macro technique is derived. This technique is very useful
especially for statistical iterative computation because it enables us to use powerful SAS procedures
iteratively. As an example of its application to statistics, the power-of-the-mean model using PROC
MIXED is illustrated.

Key words: recursive call, macro, CALL EXECUTE

1. INTRODUCTION

In some programming languages, such as Pascal and PL/I, a recursive call of subroutines is available.
The recursive call technique enables us to write a subroutine that can call itself and sometimes
makes iterative processing very easy. However, the SAS System does not provide a recursive call
facility, thus users need to take other approaches. Benjamin (1999) proposed "pseudo-recursive"
SAS macros, by which he simulated a "run-time stack" for recursive processing adopted by other
languages, but his approach is very complicated and needs special knowledge, so it is difficult to use

for general programmers.

Here, a new approach for a recursive macro call is proposed. It is very simple and does not require

any special knowledge about the recursive subroutine call.

First, a general problem that SASA macros have will be presented and the use of "CALL
EXECUTE" will be explained as a tool for covering the defect. Next, based on this technique, the
"recursive macro call" is derived. An example of its application to iterative computation in

statistics is presented, i.e. the power-of-the-mean model utilizing PROC MIXED.

2. CALL EXECUTE

CALL EXECUTE is a DATA step call routine and it is Program 1

well described by Riba (1997). It is used as shown in data ...;
the following program. An argument to be specified

for CALL EXECUTE should be a character string

call execute('SAS statemants');

consisted of SAS statements and it can be either of a run,
character constant or a character variable.
The knowledge of the process flow of CALL EXECUTE
is important fi derstanding the " i "
is important for understanding the "recursive macro", so SAS progarm
it is explained in this section. Before explaining it, —
Submission
however, it is worth explaining the process flow of usual
SAS programs. Program stack
. . . run;
Figure 1 illustrates the flow of the execution of a usual
SAS program. When program statements are "submitted", Comilation
they are not compiled immediately by the SAS System.
Instead they are first stored in a "program stack". When
a RUN statement or the next step is detected, the SAS Execution

statements stored in the program stack are compiled and Figure 1. Process flow of usual SAS

then executed. progorams

The knowledge of the process flow of CALL EXECUTE is important for understanding the
"recursive macro call", so it is explained in this section. Before explaining it, however, the process

flow of usual SAS programs is explained first.

Figure 2 illustrates the flow of the execution of a SAS program that includes CALL EXECUTE
statement. Until the start of the execution of the program, the process is the same as a usual
program that does not include CALL EXECUTE. When the CALL EXECUTE is executed, its
argument (‘abc' in Figure 2) is stored in the program stack. When the execution of the program is
finished, the control is moved to the program statements stored in the program stack, and then they

are compiled and executed.

An interesting feature of this processing is that the program statements generated by CALL
EXECUTE are not compiled until the execution of the DATA step is completed. This feature is
very important when you want to execute a macro conditionally using CALL EXECUTE. This

topic is discussed later.

SAS program

Submission

Program stack

run;

Compilation

Start of execution

abc
CALL EXECUTE('abc') '~ A
Program stack
V
End of execution o
Compilation
V
Execution

Figure 2. Process flow of SAS programs including CALL EXECUTE

3. PROBLEM OF MACRO PROCESSING

When the following program is submitted, one may Program 2

expect that macro "%macrox" will be resolved data ...
depending on the result of the condition of the IF
o) if (condition) then %macrox(a);
statement, that is, it will be resolved using argument else %macrox(b);

"a" if the condition is TRUE, or resolved using

run;

argument "b" if it is FALSE.

However, this will not occur, because the SAS macro processor resolves the macro before the
execution of the DATA step as shown Figure 3. Therefore, the macros are already been resolved at
the start of the execution of the DATA step. So in general the SAS macro resolution cannot be

changed depending on the results of program execution as described by Riba (1997).

SAS program SAS program
Submission Submission
Program stack Program stack
"run;’ 'run;’
Compilation Macro resolution
Execution Compilation
Macro resolution Execution
Incorrect interpretation Correct interpretation

Figure 3. Interpretation of process flow of Program 2

4. MACRO INVOCATION BY CALL EXECUTE

If we use CALL EXECUTE, we can change Program 3

macro resolution depending on the results of data ...

program execution. In the following program,
if (condition) then call execute('%macrox(a);');

text '%omacrox(a)' will be stored in the else call execute(%macrox(b););

program stack if the condition is TRUE, and

run;

'%omacrox(b)' will be stored in the program
stack if the condition is FALSE. These
texts stored in the program stack will not be compiled until the execution of this DATA step is
finished. So in this case, we can control the macro resolution depending on the condition of the IF

statement.

5. RECURSEIVE MACRO CALL

If we extend this idea, we can construct a macro program that can call itself. Program 4 illustrates
this idea. In this program, macro %mcrx calls itself by CALL EXECUTE. When the execution of
the macro is finished, the macro itself called by CALL EXECUTE will be compiled and executed, so
the macro program can be executed recursively. If the condition of the IF statement is FALSE, the

macro will not be called, so the process will finish.

Similar service of recursive processing is Program 4

available in other languages like PL/I and %macro mcrx;

PASCAL, and it is called "recursive call" of
data ...;

subroutines. Although such service is not

. s 10 .
available in the original SAS system, it is if (condition) then call execute(*omenx;’);

possible even in the SAS System if we use run;
CALL EXECUTE. We call the method
%mend;
described here "recursive macro call" after
%mcrx;

other computer languages.

6. APPLICATION OF RECURSIVE MACRO TO STATISTICS
- Power-of-the-mean models

6.1 What is “Power-of-the-mean models”?

We will show an application of the recursive macro call to a statistical problem, the
power-of-the-mean model (Carroll & Ruppert, 1988, Littell et al., 1996). In this model, the error
variance of an observation is assumed to be proportional to the power of the expected valued of the

observation, that is, if we assume a linear model, the variance of the i-th individual is expressed as:

2 2,
G, —O | X; B |e
2, .
where © is a variance parameter,
x; is the i-th row of design matrix X,
B is a vector of fixed effects, and

0 is a power coefficient to be estimated.

In SAS, the power-of-the-mean model can be specified by LOCAL=POM option in REPEATED
statement in PROC MIXED (Littell et al., 1996).

REPEATED /LOCAL=POM(SAS datasets);

In the parentheses after POM, we should specify a SAS dataset in which some values of fixed effects,
like regression coefficients, are included. Thus, in this model, the values of the fixed effects are
assumed to be known. In practice, however, we usually have to estimate them from data. Once
we obtain the estimates, we can apply the power-of-the-mean model using the estimates to compute
new estimates for the fixed effects and the power coefficient. Furthermore, we can use these
estimates to compute new estimates again, and if we repeat this process, we may obtain more

reliable estimates.

6.2 NUMERICAL EXAMPLE

To illustrate the power-of-the-mean model, we use the data given by the following program:

Program 5

data doseres;

input dose @;

do i=1to 10;
input res @;
output;

end;

keep dose res;

cards;

1 92 6.8 100 124 92 116 109 71 129 59
2 239 248 239 196 183 127 10.7 184 171 21.1
3 26.0 225 369 27.8 29.0 308 233 398 299 16.1
4 446 47.7 30.2 554 188 40.0 394 555 284 38.0

run;

This data consists of two variables DOSE and RES. We would like to know the dependence of
RES on DOSE. The graph below shows the relationship of the two variables. The graph suggests
that the regression of RES on DOSE may be linear, but the variance of RES increases depending on

DOSE. These features of data distribution suggest that the power-of-the-mean model may fit the

data.
RES
60
o
50 i
O
40 0 g
30 3
,
2
0 :) 0
= @)
10| ° g
8
0
1 2 3 4

DOSE

Figure 4. Plots of numerical example for the. Power-of-the-mean model

6.3 SAS PROGRAM FOR ITERATIVE CALCULATION

Program 6 shows a basic idea of analyzing this data by the
Program 6

ods output solutionf=solf1;
proc mixed data=doseres;

model res=dose / s;
run;

power-of-the-mean model using PROC MIXED. This

program consists of two steps.

The first step is a preliminary step that provides the

estimates of regression parameters based on a regression ods output solutionf=solf2;

proc mixed data=doseres;
model res=dose / s;
repeated / local=pom(solf1);
run;

model with the homogeneous variance assumption and

these estimates will be stored in dataset “solf1.”

In the next step, “repeated / local=pom(solf1)” is specified,

so estimation is done based on the power-of-the-mean

model. In this calculation, the estimates obtained in the first step are used to compute new estimates
that will be stored in dataset SOLF2. Furthermore, we can execute PROC MIXED again using these
estimates, if we want. If we repeat these steps and the regression parameter values converge, finally

we will get the estimates that we want.

However, it is tedious to repeat these steps manually, so we hope that the iteration can be conducted
automatically. This automatic iterative computation is possible if we use the technique described

in the previous section. Program 7 shown below enables us to compute the power-of-the-mean

model automatically.

The first %LET statement gives the
initial value of 1 to the macro variable
“reg” that stores the estimate of
regression coefficient tentatively. This
macro variable will be used for the

judgment of convergence in a later step.

The next is macro program “pom” that
consists of two steps of PROC MIXED
and DATA step.

Macro program %pom has macro
parameter “first.” When it has the
value of 1, it means the first cycle of the

iteration. In that case, the condition of

Program 7

%let reg=1;

Y%macro pom(first);
ods output solutionf=solf2;
proc mixed data=doseres;
model res=dose / s;
%if &first*=1 %then repeated/ local=pom(solf1);;
run;
data solf1;
set solf2;
if effect="dose'
and abs(estimate - ®)>1e-8 then do;
call symput('reg',left(put(estimate,e17.10)));
call execute('%pom();");
end;
run;
%mend;

%pom(1);

the %IF statement inserted into the MIXED procddure is not TRUE, so the REPEATED statement is
not specified, then the computation will be done based on a homogeneous variance model. If the
value of &fist is not 1, “repeated/ local=pom(solf1)” will be specified, then the computation based
on the power-of-the-mean model will be done. The resulting estimates of regression parameters will

be stored in dataset “solf2.”

In the next data step, the convergence of the regression coefficient is judged. The new estimate of
the regression coefficient is read from data set “solf2,” and then it is compared with the previous
value stored as macro variable “reg.” If the absolute value of the difference between them is larger
than 1078, then the convergence is considered not to be reached and the preparation for the next cycle
will be done, i.e. replacement of the macro variable by the new regression coefficient and a recursive
call of the macro by "call execute('%pom();');". In this case, the argument is not specified for %POM,
so it means that the power-of-the-mean model is specified in the next cycle. If the difference of the
new regression coefficient and the previous one is not greater than 10, the convergence is assumed

to be reached. In this case, the macro is not called, so the iteration will be stopped.

The results of iteration are shown in Table 1. The third column in this table represents the change in
the regression coefficient between two consecutive cycles. The regression coefficient converged at
the 6th cycle where the change is less than 10-8. The last column represents the estimated power

coefficient, which also seems to have converged.
The last line is for the initial call of macro “pom.”

The results of iteration are shown in Table 1. The third column in this table represents the
change in the regression coefficient between two consecutive cycles. The regression coefficient
converged at the 6th cycle where the change is less than 10-8. The last column represents the

estimated power coefficient, which also seems to have converged.

Table 1. Iteration history of numerical example of power-of-the-mean model

Iteration =~ Regression coefficeint Change Power coefficient (0)
1 9.9760000000 - -
2 9.6919601675 -0.2840398325 2.0816386164
3 9.6898237032 -0.0021364643 2.1587574892
4 9.6898171411 -0.0000065621 2.1590014405
5 9.6898171209 -0.0000000202 2.1590021894
6 9.6898171209 -0.0000000000 2.1590021917

7. GENERAL ALGORITHM FOR ITERATIVE COMPUTATIONS

The algorithm for the iterative computation presented in the previous section can be expressed in a

general form schematically as Program 8.

In the iterative computations using recursive macros as shown here, we need to use a macro variable
for controlling the iteration; we need a %LET statement for the initialization of it, and CALL

SYMPUT for the renewal of it in each cycle.

Program 8
%let macro variable = ...; (1)
%macro macro name;
data ..,
if (more iterations needed?) then do; (2)
call symput('macro variable’,variable); (3)
call execute('macro name'); (4)
end;
run;
%mend;
%macro name; (5)
Note:
(1) Initialization of a macro variable
(2) Judgment for convergence by referring the macro variable
(3) Replacing the macro variable by the new result
(4) Recursive macro call
(5) Initial macro call

8. CONCLUSION

In this paper, the recursive macro using CALL EXECUE was presented. It is a powerful technique

especially for iterative computations in statistics.

Iterative computations are also possible by a DO loop of DATA-step programming or IML, but we
have to write all program codes for computing algorithms. So, the iteration by the DO loop is

restricted to cases where algorithms are simple.

On the other hand, the recursive macro technique can utilize powerful SAS procedures. This point is

the most useful aspect of this technique. For example, PROC MIXED was used in the example in

this paper. In statistics, iterative computations are necessary in various problems, i.e. estimations in
nonlinear models, the EM algorithm in incomplete data (Dempster et al., 1977), etc. Some of them
may be computed by iterative execution of existing SAS procedures, then the recursive macro

technique is very useful for these cases.

References

Benjamin, W. E. Jr. (1999), A Pseudo-Recursive SAS Macro, Observation, 07MAY 1999, obswww18.
(http:// support.sas.com/documentation/periodicals/obs/obswww18/index.html)

Carroll, R. J., Ruppert, D. (1988), Transformation and weighting in regression, Chapman & Hall

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38.

Littell, R. C., Milliken, G. A., Stroup,W. W., Wolfinger, R. D. (1996), SAS System for Mixed
Models, SAS Institute Inc., Cary, NC

Riba, S. D., (1997), Self-modifying SAS programs: a DATA step interface. Obsevation, 07SEP1997,

obswwwO3 (http://support.sas.com/documentation/periodicals/obs/obswww03/toc.html)

10

https://www.researchgate.net/publication/344314192

	1. INTRODUCTION
	2．CALL EXECUTE
	Program 1
	3. PROBLEM OF MACRO PROCESSING
	4. MACRO INVOCATION BY CALL EXECUTE
	Program 3
	5. RECURSEIVE MACRO CALL
	Program 4
	6. APPLICATION OF RECURSIVE MACRO TO STATISTICS - Power-of-the-mean models
	6.1 What is “Power-of-the-mean models”?
	6.2 NUMERICAL EXAMPLE
	6.3 SAS PROGRAM FOR ITERATIVE CALCULATION

	Program 5
	Program 6
	Program 7
	7. GENERAL ALGORITHM FOR ITERATIVE COMPUTATIONS
	8. CONCLUSION
	References

