
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344314192

A Recursive SAS Macro Technique and its Application to Statistics

Conference Paper · August 2003

CITATIONS

0
READS

300

1 author:

Yohji Itoh

A2 Healthcare

56 PUBLICATIONS 2,875 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yohji Itoh on 20 September 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344314192_A_Recursive_SAS_Macro_Technique_and_its_Application_to_Statistics?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344314192_A_Recursive_SAS_Macro_Technique_and_its_Application_to_Statistics?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yohji-Itoh?enrichId=rgreq-a7ae5ee0770e1c9d56dfa23ea77cb9c2-XXX&enrichSource=Y292ZXJQYWdlOzM0NDMxNDE5MjtBUzo5Mzc2ODI5ODk0OTgzNjhAMTYwMDU3MjQ1NDEzMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 1

SUGI-J 2003, 31 August 2003

A Recursive SAS Macro Technique and its Application to Statistics

Yohji Itoh
Statistics & Programming Department, AstraZeneca K.K., Osaka, Japan

ABSTRACT
The recursive call of modules is an important function for iterative computation and it is avalilable
in some programming languages. However, the SAS System does not provide the recursive call
facility, thus users need to take other approaches. Here a new technique called “recursive macro call”
is proposed. This technique utilizes CALL EXECUTE routine, thus the explanation about it is given
in the first place, and then the recursive macro technique is derived. This technique is very useful
especially for statistical iterative computation because it enables us to use powerful SAS procedures
iteratively. As an example of its application to statistics, the power-of-the-mean model using PROC
MIXED is illustrated.

Key words: recursive call, macro, CALL EXECUTE

1. INTRODUCTION

In some programming languages, such as Pascal and PL/I, a recursive call of subroutines is available.

The recursive call technique enables us to write a subroutine that can call itself and sometimes

makes iterative processing very easy. However, the SAS System does not provide a recursive call

facility, thus users need to take other approaches. Benjamin (1999) proposed "pseudo-recursive"

SAS macros, by which he simulated a "run-time stack" for recursive processing adopted by other

languages, but his approach is very complicated and needs special knowledge, so it is difficult to use

for general programmers.

Here, a new approach for a recursive macro call is proposed. It is very simple and does not require

any special knowledge about the recursive subroutine call.

First, a general problem that SASA macros have will be presented and the use of "CALL

EXECUTE" will be explained as a tool for covering the defect. Next, based on this technique, the

"recursive macro call" is derived. An example of its application to iterative computation in

statistics is presented, i.e. the power-of-the-mean model utilizing PROC MIXED.

 2

2．CALL EXECUTE

CALL EXECUTE is a DATA step call routine and it is

well described by Riba (1997). It is used as shown in

the following program. An argument to be specified

for CALL EXECUTE should be a character string

consisted of SAS statements and it can be either of a

character constant or a character variable.

The knowledge of the process flow of CALL EXECUTE

is important for understanding the "recursive macro", so

it is explained in this section. Before explaining it,

however, it is worth explaining the process flow of usual

SAS programs.

Figure 1 illustrates the flow of the execution of a usual

SAS program. When program statements are "submitted",

they are not compiled immediately by the SAS System.

Instead they are first stored in a "program stack". When

a RUN statement or the next step is detected, the SAS

statements stored in the program stack are compiled and

then executed.

The knowledge of the process flow of CALL EXECUTE is important for understanding the

"recursive macro call", so it is explained in this section. Before explaining it, however, the process

flow of usual SAS programs is explained first.

Figure 2 illustrates the flow of the execution of a SAS program that includes CALL EXECUTE

statement. Until the start of the execution of the program, the process is the same as a usual

program that does not include CALL EXECUTE. When the CALL EXECUTE is executed, its

argument ('abc' in Figure 2) is stored in the program stack. When the execution of the program is

finished, the control is moved to the program statements stored in the program stack, and then they

are compiled and executed.

An interesting feature of this processing is that the program statements generated by CALL

EXECUTE are not compiled until the execution of the DATA step is completed. This feature is

very important when you want to execute a macro conditionally using CALL EXECUTE. This

topic is discussed later.

 Program 1

 data …;
 …
 call execute('SAS statemants');
 …
run;

run;

Submission

SAS progarm

Program stack

Comilation

Execution

 Figure 1. Process flow of usual SAS
progorams

 3

3. PROBLEM OF MACRO PROCESSING

When the following program is submitted, one may

expect that macro "%macrox" will be resolved

depending on the result of the condition of the IF

statement, that is, it will be resolved using argument

"a" if the condition is TRUE, or resolved using

argument "b" if it is FALSE.

However, this will not occur, because the SAS macro processor resolves the macro before the

execution of the DATA step as shown Figure 3. Therefore, the macros are already been resolved at

the start of the execution of the DATA step. So in general the SAS macro resolution cannot be

changed depending on the results of program execution as described by Riba (1997).

 Program 2

data ...;
 ...
 if (condition) then %macrox(a);
 else %macrox(b);
 ...
run;

run;

abc

Program stack

Compilation

Execution

Submission

End of execution

SAS program

Program stack

Compilation

CALL EXECUTE('abc')

Start of execution

Figure 2. Process flow of SAS programs including CALL EXECUTE

 4

4. MACRO INVOCATION BY CALL EXECUTE

If we use CALL EXECUTE, we can change

macro resolution depending on the results of

program execution. In the following program,

text '%macrox(a)' will be stored in the

program stack if the condition is TRUE, and

'%macrox(b)' will be stored in the program

stack if the condition is FALSE. These

texts stored in the program stack will not be compiled until the execution of this DATA step is

finished. So in this case, we can control the macro resolution depending on the condition of the IF

statement.

5. RECURSEIVE MACRO CALL

If we extend this idea, we can construct a macro program that can call itself. Program 4 illustrates

this idea. In this program, macro %mcrx calls itself by CALL EXECUTE. When the execution of

the macro is finished, the macro itself called by CALL EXECUTE will be compiled and executed, so

the macro program can be executed recursively. If the condition of the IF statement is FALSE, the

macro will not be called, so the process will finish.

 Program 3

 data ...;
 ...
 if (condition) then call execute('%macrox(a);');
 else call execute('%macrox(b);');
 ...
run;

Incorrect interpretation

Correct interpretation

' run; '

Submission

SAS program

Program stack

Execution

Macro resolution

Compilation

' run; '

Submission

SAS program

Program stack

Compilation

Execution

Macro resolution

Figure 3. Interpretation of process flow of Program 2

 5

Similar service of recursive processing is

available in other languages like PL/I and

PASCAL, and it is called "recursive call" of

subroutines. Although such service is not

available in the original SAS system, it is

possible even in the SAS System if we use

CALL EXECUTE. We call the method

described here "recursive macro call" after

other computer languages.

6. APPLICATION OF RECURSIVE MACRO TO STATISTICS
- Power-of-the-mean models

6.1 What is “Power-of-the-mean models”?

We will show an application of the recursive macro call to a statistical problem, the

power-of-the-mean model (Carroll & Ruppert, 1988, Littell et al., 1996). In this model, the error

variance of an observation is assumed to be proportional to the power of the expected valued of the

observation, that is, if we assume a linear model, the variance of the i-th individual is expressed as:

 σei

2 = σ2 | xi
′ β |θ

where σ
2 is a variance parameter,

 xi
′ is the i-th row of design matrix X,

 β is a vector of fixed effects, and

 θ is a power coefficient to be estimated.

In SAS, the power-of-the-mean model can be specified by LOCAL=POM option in REPEATED

statement in PROC MIXED (Littell et al., 1996).

 REPEATED /LOCAL=POM(SAS datasets);

In the parentheses after POM, we should specify a SAS dataset in which some values of fixed effects,

like regression coefficients, are included. Thus, in this model, the values of the fixed effects are

assumed to be known. In practice, however, we usually have to estimate them from data. Once

we obtain the estimates, we can apply the power-of-the-mean model using the estimates to compute

new estimates for the fixed effects and the power coefficient. Furthermore, we can use these

estimates to compute new estimates again, and if we repeat this process, we may obtain more

reliable estimates.

 Program 4

 %macro mcrx;
 ...
 data ...;
 ...
 if (condition) then call execute('%mcrx;');
 ...
 run;
 ...
%mend;

%mcrx;

 6

6.2 NUMERICAL EXAMPLE

To illustrate the power-of-the-mean model, we use the data given by the following program:

Program 5

data doseres;
 input dose @;
 do i=1 to 10;
 input res @;
 output;
 end;
 keep dose res;
cards;
 1 9.2 6.8 10.0 12.4 9.2 11.6 10.9 7.1 12.9 5.9
 2 23.9 24.8 23.9 19.6 18.3 12.7 10.7 18.4 17.1 21.1
 3 26.0 22.5 36.9 27.8 29.0 30.8 23.3 39.8 29.9 16.1
 4 44.6 47.7 30.2 55.4 18.8 40.0 39.4 55.5 28.4 38.0
;
run;

This data consists of two variables DOSE and RES. We would like to know the dependence of

RES on DOSE. The graph below shows the relationship of the two variables. The graph suggests

that the regression of RES on DOSE may be linear, but the variance of RES increases depending on

DOSE. These features of data distribution suggest that the power-of-the-mean model may fit the

data.

Figure 4. Plots of numerical example for the. Power-of-the-mean model

 7

6.3 SAS PROGRAM FOR ITERATIVE CALCULATION

Program 6 shows a basic idea of analyzing this data by the

power-of-the-mean model using PROC MIXED. This

program consists of two steps.

The first step is a preliminary step that provides the

estimates of regression parameters based on a regression

model with the homogeneous variance assumption and

these estimates will be stored in dataset “solf1.”

In the next step, “repeated / local=pom(solf1)” is specified,

so estimation is done based on the power-of-the-mean

model. In this calculation, the estimates obtained in the first step are used to compute new estimates

that will be stored in dataset SOLF2. Furthermore, we can execute PROC MIXED again using these

estimates, if we want. If we repeat these steps and the regression parameter values converge, finally

we will get the estimates that we want.

However, it is tedious to repeat these steps manually, so we hope that the iteration can be conducted

automatically. This automatic iterative computation is possible if we use the technique described

in the previous section. Program 7 shown below enables us to compute the power-of-the-mean

model automatically.

The first %LET statement gives the

initial value of 1 to the macro variable

“reg” that stores the estimate of

regression coefficient tentatively. This

macro variable will be used for the

judgment of convergence in a later step.

The next is macro program “pom” that

consists of two steps of PROC MIXED

and DATA step.

Macro program %pom has macro

parameter “first.” When it has the

value of 1, it means the first cycle of the

iteration. In that case, the condition of

 Program 6

 ods output solutionf=solf1;
proc mixed data=doseres;
 model res=dose / s;
run;

ods output solutionf=solf2;
proc mixed data=doseres;
 model res=dose / s;
 repeated / local=pom(solf1);
run;
...

 Program 7

 %let reg=1;

%macro pom(first);
 ods output solutionf=solf2;
 proc mixed data=doseres;
 model res=dose / s;
 %if &first^=1 %then repeated/ local=pom(solf1);;
 run;
 data solf1;
 set solf2;
 if effect='dose'
 and abs(estimate - ®)>1e-8 then do;
 call symput('reg',left(put(estimate,e17.10)));
 call execute('%pom();');
 end;
 run;
%mend;

%pom(1);

 8

the %IF statement inserted into the MIXED procddure is not TRUE, so the REPEATED statement is

not specified, then the computation will be done based on a homogeneous variance model. If the

value of &fist is not 1, “repeated/ local=pom(solf1)” will be specified, then the computation based

on the power-of-the-mean model will be done. The resulting estimates of regression parameters will

be stored in dataset “solf2.”

In the next data step, the convergence of the regression coefficient is judged. The new estimate of

the regression coefficient is read from data set “solf2,” and then it is compared with the previous

value stored as macro variable “reg.” If the absolute value of the difference between them is larger

than 10-8, then the convergence is considered not to be reached and the preparation for the next cycle

will be done, i.e. replacement of the macro variable by the new regression coefficient and a recursive

call of the macro by "call execute('%pom();');". In this case, the argument is not specified for %POM,

so it means that the power-of-the-mean model is specified in the next cycle. If the difference of the

new regression coefficient and the previous one is not greater than 10-8, the convergence is assumed

to be reached. In this case, the macro is not called, so the iteration will be stopped.

The results of iteration are shown in Table 1. The third column in this table represents the change in

the regression coefficient between two consecutive cycles. The regression coefficient converged at

the 6th cycle where the change is less than 10-8. The last column represents the estimated power

coefficient, which also seems to have converged.

The last line is for the initial call of macro “pom.”

The results of iteration are shown in Table 1. The third column in this table represents the

change in the regression coefficient between two consecutive cycles. The regression coefficient

converged at the 6th cycle where the change is less than 10-8. The last column represents the

estimated power coefficient, which also seems to have converged.

 Table 1. Iteration history of numerical example of power-of-the-mean model

 Iteration Regression coefficeint Change Power coefficient (θ)

 1 9.9760000000 - -
 2 9.6919601675 -0.2840398325 2.0816386164
 3 9.6898237032 -0.0021364643 2.1587574892
 4 9.6898171411 -0.0000065621 2.1590014405
 5 9.6898171209 -0.0000000202 2.1590021894
 6 9.6898171209 -0.0000000000 2.1590021917

 9

7. GENERAL ALGORITHM FOR ITERATIVE COMPUTATIONS

The algorithm for the iterative computation presented in the previous section can be expressed in a

general form schematically as Program 8.

In the iterative computations using recursive macros as shown here, we need to use a macro variable

for controlling the iteration; we need a %LET statement for the initialization of it, and CALL

SYMPUT for the renewal of it in each cycle.

Program 8

%let macro variable = ...; (1)

%macro macro name;
 ...
 data ...;
 ...
 if (more iterations needed?) then do; (2)
 call symput('macro variable’,variable); (3)
 call execute('macro name '); (4)
 end;
 run;
%mend;

%macro name; (5)

Note:

 (1) Initialization of a macro variable
 (2) Judgment for convergence by referring the macro variable
 (3) Replacing the macro variable by the new result
 (4) Recursive macro call
 (5) Initial macro call

8. CONCLUSION

In this paper, the recursive macro using CALL EXECUE was presented. It is a powerful technique

especially for iterative computations in statistics.

Iterative computations are also possible by a DO loop of DATA-step programming or IML, but we

have to write all program codes for computing algorithms. So, the iteration by the DO loop is

restricted to cases where algorithms are simple.

On the other hand, the recursive macro technique can utilize powerful SAS procedures. This point is

the most useful aspect of this technique. For example, PROC MIXED was used in the example in

 10

this paper. In statistics, iterative computations are necessary in various problems, i.e. estimations in

nonlinear models, the EM algorithm in incomplete data (Dempster et al., 1977), etc. Some of them

may be computed by iterative execution of existing SAS procedures, then the recursive macro

technique is very useful for these cases.

References

Benjamin, W. E. Jr. (1999), A Pseudo-Recursive SAS Macro, Observation, 07MAY1999, obswww18.

(http:// support.sas.com/documentation/periodicals/obs/obswww18/index.html)

Carroll, R. J., Ruppert, D. (1988), Transformation and weighting in regression, Chapman & Hall

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38.

Littell, R. C., Milliken, G. A., Stroup,W. W., Wolfinger, R. D. (1996), SAS System for Mixed

Models, SAS Institute Inc., Cary, NC

Riba, S. D., (1997), Self-modifying SAS programs: a DATA step interface. Obsevation, 07SEP1997,

obswww03 (http://support.sas.com/documentation/periodicals/obs/obswww03/toc.html)

View publication stats

https://www.researchgate.net/publication/344314192

	1. INTRODUCTION
	2．CALL EXECUTE
	Program 1
	3. PROBLEM OF MACRO PROCESSING
	4. MACRO INVOCATION BY CALL EXECUTE
	Program 3
	5. RECURSEIVE MACRO CALL
	Program 4
	6. APPLICATION OF RECURSIVE MACRO TO STATISTICS - Power-of-the-mean models
	6.1 What is “Power-of-the-mean models”?
	6.2 NUMERICAL EXAMPLE
	6.3 SAS PROGRAM FOR ITERATIVE CALCULATION

	Program 5
	Program 6
	Program 7
	7. GENERAL ALGORITHM FOR ITERATIVE COMPUTATIONS
	8. CONCLUSION
	References

