
1

Off and Running with Arrays in SAS®
Stephen Keelan, SAS Canada, Toronto, On

ABSTRACT

Often we look at our newly completed SAS® program and think …
there must be a better way. If your programs have many
repetitious lines of code, calculating and re-calculating the same
thing, or if you need to rotate or transpose data … Arrays may be
for you. This tutorial will focus on introducing you to Arrays,
understanding what they are and how to add them to your SAS
programs. This tutorial will use Base SAS® and is appropriate for
beginner and intermediate SAS programmers.

INTRODUCTION

In SAS one of the most powerful transformation engines is the
Data Step. Part of it’s power is in the flexibility it affords in
different approaches that can be used to solve a business
problem. With arrays you can reduce or simplify the coding in
many cases and in other cases accomplish tasks not easily done
other wise. Starting with the basics and building from there we
will see what Arrays are and how we can benefit from using them,
either through modifying our existing programs or at least in
starting to use them in new applications that you develop.

GETTING STARTED WITH ARRAYS

In developing an application or simply writing some code to
create the data or the required report, one approach can be to
write the code first then look to improve it later. Step one would
mean writing out repetitious lines of code, following the logic and
the business rules to create the desired results. Then, having
understood the logic needed and recognized the repetition, step
two would be to use arrays to reduce the redundant code.
Alternatively, with experience in using arrays, you could jump to
writing the desired code with Arrays to begin with.

THE WHAT AND THE WHY

What is an array? Why use an Array? Well, at a high level an
array provides you with a means of dynamically referring to a
group of variables, through what are called an array reference
and a subscript. If in your process, you have the same
calculation or transformation that needs to be done on several
variables, using an array and just as important, how the array is
processed can reduce the code required.

If we don’t worry about repetitious code just yet, here is some
Retail data where we have several variables that have the price of
different products that are sold in various locations across the
country. Our business need is to apply a discount of 10% to all
products (all product variables) within each location (each
observation). To code this we might include an assignment
statement for each product variable:

data discount;
set CurrentPrice(keep=location

prod1
prod2
prod3
prod4);

Prod1=Prod1*(1-.1);
Prod2=Prod2*(1-.1);
Prod3=Prod3*(1-.1);

Prod4=Prod4*(1-.1);
run;

For this application, we have applied the discount and if we do
only have 4 products this program is most likely satisfactory. If
we have hundreds of products that’s when this code becomes
extremely repetitious and where Arrays can help us out greatly.

THE SYNTAX

A SAS array is a collection of SAS variables that can be
referenced in the Data Step under a common, single name. The
general syntax for defining an array is as follows:

ARRAY array-name{dimension} $ length elements (initial
values);

- ARRAY – is the Identifying Keyword for the statement.
- Array-name – is the name we create for the array. It must be a
valid SAS name and is recommended to not be the same as a
SAS Function name. In Version 7 and beyond the array name
can be up to 32 characters in length.
- {Dimension} – indicates the number of elements (or variables
referenced) in this array.
- $ - included on the ARRAY statement only if the array is
character, that is, if the array will be referencing new character
variables.
- Length – can be used to define the length of the new character
variables referenced by the array.
- Elements – can be used to define the variables that the array
will reference, either existing variables or new variables.
- Initial Values – can be included to give the elements of the array
initial values. This also causes these variables to be retained
during the data step (i.e. not reinitialized to missing at the
execution of the DATA statement).

Before looking at additional rules and recommendations, here’s
an example of defining an array to help with our discount
calculations:

data discount;
set CurrentPrice;
array Products {4} prod1-prod4;

…

At this point in the program, the first part of our work is done in
that we have defined an array. This is a must before we move to
the second part where we will “process” the array. On the
ARRAY statement, the array-name is Products and it has a
dimension of 4 meaning it will reference four numeric variables in
this data step. The elements or variables it will reference have
been defined on the ARRAY statement as prod1, prod2, prod3
and prod4 using a single hyphen to build the implied list. By
specifying the elements on the ARRAY statement and placing it
after the SET statement, the Products Array will reference the
Prod1-Prod4 variables that are brought in from the CurrentPrice
data set by the SET statement. In this case, the prod variables
are all numeric with a default length of 8 bytes.

To move on to the second part of “processing” the array, using a
simple DO loop will accomplish the repetitive calculation with just
one occurrence of the assignment statement. Notice from the
our first attempt at solving this with the 4 assignment statements,
the only part that is changing is the number of the Prod variable

Beginning TutorialsNESUG 15

2

that is being used in the calculation. The array allows us to
dynamically set which element of the array (and therefore which
variable) we are referring to as follows:

data discount;
set CurrentPrice(keep=location

prod1
prod2
prod3
prod4);

array Products {4} prod1-prod4;
do j = 1 to 4;

Products{j}=Products{j}*(1-.1);
end;

run;

Now we have reduced the … well, given that we only had four
assignment statements to start with, we actually have ended up
with the same number of statements. However, the combination
of the ARRAY statement and the DO loop has enabled us to
process a group of variables, whether it’s 4 or 400, with a single
assignment statement.

MORE DETAILS

The ARRAY statement is a Compile time only statement meaning
that it is not executed during the execution of the program, it is
only considered during the compile phase. The Array and the
ability to reference elements using the array name and a
subscript value are only valid for the duration of the Data Step.
Subsequent Procedure steps can only reference variable names,
not the array name. The same applies for subsequent Data
Steps, however you could simply redefine the array in this Data
Step to do further processing of the group of variables using the
new array. Variable names must also be used on LABEL,
FORMAT, LENGTH, DROP or KEEP statements, not the array
reference.

In the Data Step, the order of the statements is important in both
the compile and execution phases and this holds true for the
ARRAY statement in the compile phase. The ARRAY statement
must be defined in the Data Step prior to any references to the
array in other Data Step statements. If the elements are not
specified on the ARRAY statement, SAS will use the Array name,
append an element number as a suffix starting at 1 and check to
see if that variable name exists already in the Program Data
Vector (PDV). If those variable names do not exist, it is the array
that actually creates them as variables in the PDV. So, for our
example given that the input data set contains the variables
Prod1-Prod4 and our array name is Products, if we simply left off
the elements from the ARRAY statement, our program would not
work as we had hoped:

data discount;
set CurrentPrice(keep=location

prod1
prod2
prod3
prod4);

array Products {4};
do j = 1 to 4;

Products{j}=Products{j}*(1-.1);
end;

run;

In this program during compile the SET statement would add the
variables specified on the KEEP= data set option to the PDV then
the ARRAY statement would be encountered. Since there are no
elements defined, SAS will check for and then add Products1,
Products2, Products3 and Products4 to the PDV. The end result

will be that we have 4 additional variables added to the Discount
data set all with missing values instead of the discounted price as
intended. One way to make this program work is to change the
array name to align with the variable names, though this can get
confusing keeping track of what is a variable name and what is a
reference to the array.

data discount;
set CurrentPrice(keep=location

prod1
prod2
prod3
prod4);

array Prod {4};
do j = 1 to 4;

Prod{j}=Prod{j}*(1-.1);
end;

run;

Some additional points to keep in mind for Arrays are that they
can only be Character or Numeric, not a combination of both.
When specifying the dimension of the array you don’t have to use
curly braces {4} or for the index variable used {j} when processing
the array. Regular brackets (x) are acceptable syntax but the
curly braces help to distinguish an array reference for you and
your colleagues reading or updating the program. For the array
name, it can be the same as a SAS Function but it is
recommended that you avoid this as your program will lose the
use of that function. Here is a short example of this with the
warning from the LOG.

data test;
array sum {2} (10,20);
x=sum{1};
y=sum{2};

run;

WARNING: An array is being defined with the same
name as a SAS-supplied or user-defined function.
Parenthesized references involving this name
will be treated as array references and not
function references

The program does in fact run, the data set test has 4 variables:
sum1, sum2, x and y but if we tried to use the sum function it
would be considered as an array reference.

To this point we have developed a simple example to
demonstrate the syntax and concepts of an array in SAS. In
general we now have a way of processing a group of numeric
variables all in the same way.

MORE FEATURES

In this section we will expand the use of arrays to include lists of
variables that don’t have a numeric suffix and also define a
Character Array. Arrays can also be used to create a group of
new variables with the same attributes for type and length.

In our retail data, rather than having generic product variable
names like Prod1-Prod4, we may have more descriptive variable
names that don’t end in a convenient numerical suffix. In this
case you need to specify each of the variables on the ARRAY
statement, in the order you wish to process them.

data discount;
set ProductNames(keep=location

radio
TV
microwave
toaster);

Beginning TutorialsNESUG 15

3

array Products {4} radio
TV
microwave
toaster;

do j = 1 to 4;
Products{j}=Products{j}*(1-.1);

end;
run;

This example helps emphasize that the array name and the
variable names don’t need to be the same or even similar and
don’t need to have a numerical suffix. By specifying the elements
on the ARRAY statement (radio, TV etc) we are aligning the 4
array references to the variables coming in from the input data
set. Otherwise, without specifying the elements, we would end
up with 4 new variables (Producst1, Products2 etc.) that the array
would reference. When we are processing the array we can use
the same DO loop as we first did as we don’t have to worry about
substituting the variable names into the code (Radio = Radio * …)
that’s what the array reference and subscript do for us. One
additional point about the subscript, it can also be an expression
so, for example we could use a mathematical operator to allow us
to shift the element being referenced up or down. For example,
to calculate differences between months i.e. Feb – Jan and Mar –
Feb etc. you could use the following where each observation is
one year of historical data :

data Compare;
set yearly;
array monthly{12} Jan Feb Mar

Apr May Jun
Jul Aug Sep
Oct Nov Dec;

Array difference{11};

do k=1 to 11;
difference{k}=monthly{k+1} – monthly{k};

end;
run;

In this example, we would now have 11 new variables that would
contain the difference between the months for each year.

CREATING NEW VARIABLES

There may also be a need to create a new group of variables for
different reporting needs. Rather than modify the value of the
original Product variable, create a new variable to hold each of
the new prices, so we can maintain the original price and perhaps
do some comparison calculations. The long way to write this
code would be as follows:

NewPrice1=radio*(1-.1);
NewPrice2=TV*(1-.1);
NewPrice3=microwave*(1-.1);
NewPrice4=toaster*(1-.1);

To handle this type of situation with arrays, we will define a
second array to create the new variables and include this array
reference in the do loop as follows:

data discount;
set ProductNames(keep=location

radio
TV
microwave
toaster);

array Products {4} radio
TV
microwave
toaster;

array NewPrice {4};
do j = 1 to 4;

NewPrice{j}=Products{j}*(1-.1);
end;

run;

As mentioned earlier, for the NewPrice Array there are no
elements specified on the ARRAY statement so SAS will create 4
new variables (Numeric, length of 8) that will contain the new
discounted price of the products.

AUTOMATING TECHNIQUES

One of the themes of this paper is to reduce redundant code,
following closely with that theme is the desire to have code that is
easily maintained, especially if the data that we are working with
changes. In our Retail example, new products are always being
invented and therefore added to store inventories, and some
products that were not so successful get dropped. In our
program so far, the array and the do loop will handle hundreds of
products with the one assignment statement but there are a few
limitations. One limitation is that as new products get added and
deleted from our input data set we will have to update the
elements listed on the ARRAY statement. Another maintenance
task will be updating the dimension of our array and the
corresponding STOP value on the do loop. If the STOP value in
a DO Loop that is processing an array is greater than the
dimension of any of the arrays referenced in that DO Loop, the
Data Step will terminate with an Error in the log. For example:

array NewPrice {4};
do j = 1 to 5;

NewPrice{j}=Products{j}*(1-.1);
end;

ERROR: Array subscript out of range …

In order to automate the definition of the array to make our code
easier to maintain, we can use a key word and a function to have
SAS populate the variables that will be referenced in the array
and count how many that will be. This will be dependant on the
structure of the incoming data set, in our example we have only
one character variable for the Location and the rest are all
Numeric variables that contain a price for a product. So, instead
of listing the elements on the ARRAY statement we will use the
key word _NUMERIC_. When the ARRAY Statement is
compiled, using _NUMERIC_ will take all of the numeric variables
in the PDV at that time and define them in order to be the
elements of the array. Since our input data may change quite
frequently we won’t always know, or want to know how many
Product variables there will be so how would you code the
dimension of the Array? SAS allows an asterisk {*} to be
specified as the dimension of the Array if you wish SAS to
calculate the number of elements. To calculate the dimension,
SAS would count either the number of elements specified as
elements on the ARRAY statement or by counting how many it
found in the PDV using _NUMERIC_. The last part then of
reducing the maintenance of our program is to transfer this SAS
calculated dimension of the array to the STOP value of the DO
Loop where we will be processing the array. In the Data Step,
you can use the DIM function for this and putting all the pieces
together would look like the following:
Note: in this program the KEEP= data set option has been
dropped, it’s main purpose in previous examples was to display
the variables coming in from the input data set, now we won’t
want to have to maintain that list either.

data discount;
set CurrentPrice;
array Products {*} _Numeric_;
do j = 1 to dim(Products);

Products{j}=Products{j}*(1-.1);

Beginning TutorialsNESUG 15

4

end;
run;

Now our program is ready for any number of Product price
variables, the new Work.Discount data set will have the modified,
discounted prices. If you need the NewPrice variables, simply
define the second array and modify the assignment statement.

CHARACTER ARRAYS

An array can also refer to a group of character variables that
need to be treated in the same way. With each of our Product
variables that contain the price, we will assume there is also a
Product code variable (Prod_Code1-Prod_Code4) that contains a
string of information on who the manufacturer is, where the
product was manufactured, weight and dimensions. For
Reporting and Analysis, our business requirements are now to
expand the information in that column to include some
information from the Location variable. This location variable
contains the full mailing address as to where the product is being
sold, keeping in mind that the prices for these retail products vary
with location as might sales tax. For each observation there is a
location variable, and for each Product, a price variable and a
product code variable. In this example, we will define a character
array to concatenate the two-character State or Province code
from the Location variable to the end of the Product code
variable. To think of this the long way first may help, then go
back and update the program to utilize an array. The format of
the location variable looks like this for example, “123 First
Street,Toronto,ON,Canada,A1B 2C3” so we are looking for the
third field using the comma as a delimiter. To extract this string
(also considered a ‘word’ within the value), the SCAN function
can be used and has three arguments. The arguments are in
order and specify the 1) character string or variable to extract
from 2) which word by number to extract starting from the left and
3) what character will be the delimiter separating ‘words’ in the
value. The Prod_Code variable has a series of codes separated
by underscores, so for our example we will want to also
concatenate an underscore before appending the State/Province
code (using two exclamation marks !! as the concatenation
operator).

data CodesUpdate;
set CurrentPrice;
STPR_code=Scan(Location,3,”,”);
NewProd_Code1=Prod_Code1!!’_’!!STPR_code;
NewProd_Code2=Prod_Code2!!’_’!!STPR_code;
NewProd_Code3=Prod_Code3!!’_’!!STPR_code;
NewProd_Code4=Prod_Code4!!’_’!!STPR_code;

run;

Again, the more product variables we have the longer the code
becomes and also, as we add or remove products this code
needs to be constantly maintained. Having seen the pattern, now
we can recode using an array:

data CodesUpdate;
set CurrentPrice;
array Prod_Code {4};
array New {4} $ 50 NewProd_Code1 –
NewProd_code4;
do j = 1 to 4;
New{j}=Prod_Code{j}!!’_’!!Scan(location,
3, ’,’);
end;

run;

On the Prod_Code ARRAY statement, notice that even though
we have not specified a $, this is a character array since the
variables it will reference (Prod_Code1 – Prod_Code4) are
defined as character and already in the PDV when the ARRAY

statement is compiled. To save another assignment statement
we have moved the scan function that extracts the State or
Province code from the location onto the concatenation
expression. Since we were defining the NewProd_Code array to
reference a group of new product code variables, the ARRAY
statement needs to include the $ to indicate the variables will be
character and also specify a length (50 in this example). If the
length is not specified on the ARRAY statement for a character
array where the variables do not yet exist in the PDV at compile
time, they will be given a default length of 8 bytes which of course
in our example would lead to truncation.

There is also a corresponding keyword _CHARACTER_ that can
be used in the same way the _NUMERIC_ was, except of course
it will align all the character variables in the PDV at the time when
the ARRAY statement is compiled to the elements of that array.
To build an array using this technique to reference all of the
Prod_Code character variables, keep in mind you would have to
drop the Location variable if it was not needed or, only process
the desired elements of the array starting at the 2nd element
(assuming Location was the first character variable in the array).

data CodesUpdate;
set CurrentPrice;

array Prod_Code {*} _character_;
array New {4} $ 50 NewProd_Code1 –
NewProd_code4;

do j = 2 to dim(Prod_Code);
New{j-1}=
Prod_Code{j}!!’_’!!Scan(location, 3,
’,’);
end;

run;

SETTING INITIAL VALUES

Each individual array can only be defined as character or numeric
but within a data step it can be quite powerful to define several
separate arrays with some being numeric while others are
character. Arrays can also help to shorten a program that has a
large number of conditions to test in order to assign a value. In
our retail example, the taxes that are charged or applicable varies
between states and provinces and our requirements now call for
a variable that multiplies the price by the tax to calculate the total
price. For each observation or location, our program would need
to test over 60 conditions to determine the state or province and
then take the price and multiply it by the appropriate tax
multiplier. This could be quite lengthy, for this example, we will
only show a few states and rather than specify accurate tax rates,
our program will refer to them as simply multipliers and will be a
number less than 10%.

data Multiplier;
set CurrentPrice;
STPR_code=Scan(Location,3,”,”);
if STPR_code=’BC’ then
do;
total_1=prod1 * 1.07;
total_2=prod2 * 1.07;
total_3=prod3 * 1.07;
total_4=prod4 * 1.07;
end;
else
if STPR_code=’NJ’ then
do;
total_1=prod1 * 1.08;
total_2=prod2 * 1.08;
total_3=prod3 * 1.08;
total_4=prod4 * 1.08;

Beginning TutorialsNESUG 15

5

end;
else
if STPR_code=’FL’ then
do;
total_1=prod1 * 1.04;
total_2=prod2 * 1.04;
total_3=prod3 * 1.04;
total_4=prod4 * 1.04;
end;
if STPR_code=’ON’ then
do;
total_1=prod1 * 1.06;
total_2=prod2 * 1.06;
total_3=prod3 * 1.06;
total_4=prod4 * 1.06;
end;

/* and on and on for all
the states and provinces

*/
run;

As store locations expand across the US and Canada, this
program becomes very lengthy and contains predominantly
repetitive code. But how can arrays help us to reduce this
program when we need to test each observation to see what the
state or province code is? In order to accomplish this task we will
use the ability to define initial values in an array that is defined in
our data step. We will use these new arrays slightly differently in
that we won’t actually be using the arrays to refer to variables,
rather we will use them as a “virtual” table that will hold in one
array the values of the states/provinces and in another their
corresponding multiplier rate. Iterative and conditional
processing will allow us to assign the proper multiplier rate to be
applied to all the product price variables creating a new total
variable.
The initial values are included after the Elements are specified on
the ARRAY statement and are enclosed in parentheses. These
values will be automatically retained.

data Multiplier;
set CurrentPrice;
array Prod {4};
array total_ {4};

array ST_PR{4}$ (‘BC’, ‘NJ’, ‘FL’, ‘ON’);
array mult{4} (.07,.08,.04, .05) ;

do j= 1 to 4;
if Scan(Location,3,”,”)=ST_PR{j} then
multiplier=mult{j}+1; *gives us 1.07 etc;
end;

do k= 1 to 4;
total_{k}=prod{k}*multiplier;
end;

run;

With 3 numeric arrays, 1 character array, iterative and conditional
processing, this program is considerably easier and shorter to
code. It could be argued that the long version might actually run
faster due to the long list of conditions being linked with an ELSE
statement. With the ELSE statement, as soon as SAS
encounters a true condition, the remaining condition tests linked
with an ELSE are not tested. So, programmer efficiency or
runtime efficiency, which would it be? Why not both?

If we use a slight variation on the do loop we can achieve the
same efficiency gain without the else statements. It might also
be more efficient to include the separate assignment statement

that determines the state/province code rather than rescanning
this for every evaluation of the IF condition.

data Multiplier;
set CurrentPrice;
array Prod {4};
array total_ {4};

array ST_PR{4}$ (‘BC’, ‘NJ’, ‘FL’, ‘ON’);
array mult{4} (.07, .08, .04, .05) ;

STPR_code=Scan(Location,3,”,”);
stop=0;

do j= 1 to 4 until (stop=1);
if STPR_code =ST_PR{j} then
do;
multiplier=mult{j}+1;
stop=1;
end;
end;

do k= 1 to 4;
total_{k}=prod{k}*multiplier;
end;

run;

In this program, the DO statement includes an UNTIL condition
that allows iterating through the loop until a condition is met and
this condition is tested at the bottom of the DO loop. For each
observation read in from the input data set, stop is set to zero
and the array subscript variable j is set back to 1 upon entering
the loop. If the value of the state or province code is equal to the
value in the current array reference then the corresponding
multiplier rate is assigned to the variable for subsequent
calculation. The variable STOP is set to 1 which will terminate
this loop saving testing the remaining comparisons. On the DO
statement, the condition that will stop the loop could be either the
UNTIL condition or the counter variable J, having both conditions
guards against the case where the value extracted in STPR_code
is not in the ST_PR array and STOP would not get set to 1. If
this occurred due to invalid data or a new state that was not in the
data since the last update to this program, the subscript variable j
would not exceed the dimension of the array and therefore not
result in an ERROR in the program.

At this point if we run a Proc Contents on the
WORK.MULTIPLIER data set we would find many variables that
we don’t necessarily need. Remember that at compile time an
ARRAY statement either aligns an array reference to variables
that already exist in the PDV or it creates new variables. In our
example here, the ST_PR and Mult arrays are not needed as
variables in the output data set and would take up considerable
room being added to every observation. The data set would also
contain the index variables j and k as well as the stop variable we
are using for the efficiency gain. One approach would be to use
a DROP= data set option on the DATA statement or a DROP
statement within the data step. This is what we will do for the
index variables and the stop variable. For the arrays however, if
we code them on the option or the DROP statement, it will be
potentially lengthy and as our list of states and provinces grow or
shrink, it would become one more part of our program to
maintain.

To help in this situation, there is a keyword that can be included
on the ARRAY statement in place of element names. The
keyword is _TEMPORARY_ and what it signals to SAS is that is
does not need to create actual variables in the PDV for this array
and that the elements of the array will be held in memory but not
output as variables to the data set. In a sense we are using
these two arrays then as lookup tables to help us with our
processing. It is important to note that using _temporary_ also

Beginning TutorialsNESUG 15

6

provides efficiency gains in processing, taking less memory to
store and in some situations, less CPU to process.

data Multiplier(drop=j k stop);
set CurrentPrice;
array Prod {4};
array total_ {4};

array ST_PR{4}$ _temporary_ (‘BC’, ‘NJ’,
‘FL’, ‘ON’);
array mult{4} _temporary_ (.07, .08, .04,
.05) ;

STPR_code=Scan(Location,3,”,”);
stop=0;

do j= 1 to 4 until (stop=1);
if STPR_code =ST_PR{j} then
do;
multiplier=mult{j}+1;
stop=1;
end;
end;

do k= 1 to 4;
total_{k}=prod{k}*multiplier;
end;

run;

To take it one final step further by incorporating a previous
technique, we could use the asterisk to specify the dimension of
the arrays and the DIM function to set the stop value for the
incremental do loop as follows:

data Multiplier(drop=j k stop);
set CurrentPrice;
array Prod {*} _numeric_;
array total_ {4};

array ST_PR{4}$ _temporary_ (‘BC’, ‘NJ’,
‘FL’, ‘ON’);
array mult{4} _temporary_ (.07, .08, .04,
.05) ;

STPR_code=Scan(Location,3,”,”);
stop=0;

do j= 1 to 4 until (stop=1);
if STPR_code =ST_PR{j} then
do;
multiplier=mult{j}+1;
stop=1;
end;
end;

do k= 1 to dim(Prod);
total_{k}=prod{k}*multiplier;
end;

run;

TRANSPOSING DATA

Depending on the type of analysis that needs to be done, the
data may need more work than just subsetting, transformation or
creation of new variables. Often in reporting or Data Mining,
there is a need to merge many files together or take existing data
and rotate or transpose it so that information is arranged in a
different structure. There may be a need to take information that
was spread down many observations in one column and rotate it
so it becomes aligned across one row. Of course, transposing
data can also work the other direction where you take values in

the rows and rotate them to be in one column. In SAS, there is a
very powerful and flexible procedure for this: PROC
TRANSPOSE. Using arrays to rotate data can provide efficiency
gains when you need to do multiple transposes, but we will focus
on using arrays to see a simple example of rotating data.

Working again with our retail data, another business requirement
has arisen where we need to look at our data grouped by product.
With the current structure of the data if we wanted to produce a
graph to show the average price of each product across all
locations a simple PROC GCHART wouldn’t show us this. In this
case we need to change the structure of the data from one long
observation with all the product prices for a location to an
observation for each location, the product name and its price.
The change in the structure of the data would be something like
the following:
Original structure …

LOCATION PROD1 PROD2 PROD3 PROD4
123 My St,City,NJ,USA 319.43 89.99 149.55 17.99

New structure …

LOCATION Product Price
123 My St,City,NJ,USA PROD1 319.43
123 My St,City,NJ,USA PROD2 89.99
123 My St,City,NJ,USA PROD3 149.55
123 My St,City,NJ,USA PROD4 17.99

Now, with a PROC GCHART or similar procedure, we could chart
the Product variable and request the sum or mean statistic on the
price variable and see a bar chart for the average price of all
PROD1 (Television) prices across the locations. To assign a
Product name to the generic Prod variables and rearranging the
data without an array can be done but would involve a long
repetitive program.

data longRotate(keep=Location
Product
Price);

set CurrentPrice;
Length Product $ 12;

Product=’Television’;
Price= Prod1;
output;

Product=’Radio’;
Price=Prod2;
output;

Product=’MicroWave’;
Price=Prod3;
output;

Product=’Toaster’;
Price=Prod4;
output;

run;

To write this with an array and some of the techniques we’ve
seen so far will greatly reduce the redundant code, still provide a
descriptive value for the Products and enhance the ease of
maintenance for future additions of products.

data ShortRotate(keep=Location
Product
Price);

Set CurrentPrice;
Array Prod {*} _numeric_;
Array Product_Names {4} $ 12

Beginning TutorialsNESUG 15

7

(‘Television’,
‘Radio’
‘Microwave’
‘Toaster’);

do j= 1 to dim(Prod);
Product=Product_Names{j};
Price=Prod{j};
Output;
end;

run;

As the number of products grows we will need to add their
descriptive name to the initial values of the Product_Names array
or, if this mapping of Prod1 to Television existed in another data
source, it could be merged in to further automate the process.

CONCLUSION

Whenever there are a group of variables to be processed in the
data step, it might be well worth considering using arrays to help
accomplish the business objective. In some cases, arrays will
help to simply reduce redundant code and this provides the
opportunity for SAS programmers to either revise existing
programs and applications or to start using arrays in future
development.

Planning your code is important in any project. In planning a data
step, you may start by writing out a skeleton of the code needed
using a long form approach, simply following the business rules.
If you look at some of the examples in this paper, they show the
long approach then the shorter approach with arrays. This may in
fact be the steps you choose to follow in planning your code as it
will allow you to define the business process and rules then look
for ways to shorten the coding process via arrays. It won’t always
be immediately evident at first how you could use and benefit
from arrays quite often until you see the code starting to take up
a full page and the repetitive call to different variables to be
processed in the same way.

Shorter programs don’t always run faster (sometimes they do!)
but they can be easier to maintain and arrays do have many nice
features that allow programs to approach the “maintenance free”
status. The objective of this paper was to introduce and get you
“…off and running with arrays in SAS” by understanding the
benefit and how to implement them in your programs. There are
more advanced features of arrays such as multidimensional
arrays and also the SAS Macro Language is a powerful addition
allowing us to build data driven code.

ACKNOWLEDGMENTS

Special thanks to my colleague and mentor William Fehlner Phd.
for help in reviewing this paper. Also of special note are two
papers from previous SUGI’s written by Marge Scerbo (Paper 55-
25 and 52-26).

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

Stephen Keelan
 SAS Institute (Canada) Inc.
 181 Bay Street, Suite 2220
 Toronto ON M5J 2T3
 Work Phone: (416) 307-4592
 Fax: (416) 363-5399
 Email: Stephen.Keelan@sas.com
 Web: www.sas.com/training

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective
companies.

Beginning TutorialsNESUG 15

