
Using the SQL Procedure

Kirk Paul Lafler
Software Intelligence Corporation

Abstract

The SQL procedure follows most of the guidelines
established by the American National Standards Institute
(ANSI). In its current form, PROC SQL provides many
features available in the DATA step and the MEANS,
PRINT, and SORT procedures. An advantage of using
PROC SQL is that it can often result in fewer and
shorter statements than using existing DATA step and
procedure methods. This hands-on workshop illustrates
numerous examples of how PROC SQL and its many
statements can be used. In particular, participants will
learn how to create and modify tables and views,
retrieve data using the SELECT statement, and perform
efficient queries against SAS System data sets.

Prerequisites

This workshop introduces the syntax and uses of the
SQL Procedure. No prior knowledge of SQL is
required since this material is designed to acquaint the

, user and/or programmer to the many features found
within the SQL Procedure. You should have a working
knowledge of the following concepts before enrolling in
this workshop:

• How to use the SAS System on your host
computer system.

• How to interact with the SAS System in your
environment.

•
•
•

How to create and process SAS System data sets
under Version 6.06.

How to use the SAS System Display Manager
System windows and text editor.

How to assign and reference Librefs and Filerefs
in your environment.

• What the rows and columns represent in a SAS
System data set.

Workshop Objectives

After completion of this workshop, you should have a
working knowledge of the following concepts:

555

• Basic SQL concepts.

• Specific SQL syntax requirements.

• How to construct queries to retrieve, sum, group,
and sort data.

• How to create and modify simple tables and
views.

• How to Rearrange data using the ORDER BY
clause.

Brief History of Structured Query
Language (SQL)

Structured Query Language (SQL) has an interesting
history: It is a universal language that was developed
to easily access data that is stored in relational databases
Of tables. A relation is represented as a
two-dimensional table consisting of rows and columns.
A series of guidelines were developed by Dr. E. F.
Codd, an IBM mathematician, through the use of
relational mathematics. SQL evolved over time to access
data regardless of the application software (e.g.,
COBOL, PIjI, etc.) being used.

Basic SQL Concepts

SQL boasts the ability to define, manipulate, and control
relational databases or tables as well as providing easy
user access. The concept behind SQL is that the user
does not have to specify physical attributes about the
data such as data structure, location, and/or data type.
The user will concentrate on what data should be
selected, but not how to select them. It also provides
methods of making changes to tables without the need
to cbange application programs. Consequently, data
independence is one of the design goals of the relational
model.

The SQL Procedure in the Base SAS System

PROC SQL has the following features:

• Can run interactively as well as batch
(noninteractive).

•
•
•

Uses the Structured Query Language to create,
modify, and retrieve data from tables.

Can be augmented through the use of Global
statements such as TIllE and FOO1NOTE.

Accesses tables via a two-level name where the
first level is the Libref and the second level name
is the name of the table.

Terminology

The following terminology is provided to help relate
SQL and SAS System terms and concepts.

Column -- the same as a variable in the SAS System.

Libref - acts as the alias or nickname. Points to a
SAS data library.

Relational Database Management System -- a database
system that forms relationships between data items.

Row -- the same as an observation in the SAS System.

Structured Query Language (SQJ..) a highly
standardized high-level language used in relational
database management systems to create and alter objects
within a database.

Table the same as a SAS System data set.

VIew contains a definition or description of data
stored in another location.

To retrieve and display data, the SELECT statement is
used. To display data in a specific order, list the
columns (variables) in the order desired on the SELECT
statement

To sum and display data in groups, SQL uses the
GROUP BY clause. The GROUP BY clause is used
when a summary function is specified in the query. The
resulting output is grouped by the column specified in
the GROUP BY clause.

To arrange results in a particular order (Ascending or
Descending), SQL uses the ORDER BY clause. One
or more columns can be selected for sorting. The
default sort order is ascending (lowest to highest). To
order data from highest to lowest specify the DESC
(Descending) option following the column-name in the
ORDER BY clause.

556

Retrieve and Display Data

To extract and retrieve data, we will use the SQL
Procedure's SELECT statement. You will see in the
following examples that the desired column(s) or
variable(s) are displayed in the order indicated in the
SELECT statement

Exercise 1:

PROC SQL;
SELECT SSN, SEX

FROM libref.PATIENTS;
QUIT;

In Exercise 1, the columns SSN (Social Security
Number) and SEX from the PATlENTS data set are
selected and displayed.

Output:

Exercise 2:

SSN

123456789
043667543
153675389
932456132

PROC SQL;

SEX

M
F
M
M

SELECT SSN, LAS1NAME
FROM libref.PATIENTS;

QUIT;

In exercise 2, the columns SSN and Patient's Last Name
from thePATlENTS data set are selected and displayed.

Output:

SSN LAS1NAME

123456789
043667543
153675389
932456132

Smith
Jones
Cranberry
Henderson

Sum aud Display Data iu Groups

To sum and display data in groups, we will use the SQL
statement GROUP BY. In the next example the
GROUP BY clause is used when a summary function
is used in a query. The column being summed is
WEIGHT (Patient's Weight) with the results of the
query being grouped by SEX (Patient's Gender).

Exercise 3:

PROC SQL;
SELECT SEX, SUM(WEIGHT) AS

TOTWEIGH
FROM libref.PATIENTS

(* Shortness of Breath * (

QUIT;

WHERE SYMPTOM='lO'
GROUP BY SEX;

We are requesting the SQL procedure to perform
several operations in exercise 3. Let's first examine the
significance of the WHERE clause. It tells the SQL
processor to extract only those rows (records) that
contain a value of '10' (Shortness of Breath) in the
SYMPTOM column. Rows not meeting this criteria are
automatically excluded from the query. Then, the
columns SEX (gender) and WEIGHT are selected from
the PATIENTS data set. Next, the SQL processor
groups rows (in ascending order) by the value found in
the column SEX and totals each patient's weight storing
the results in TOTWEIGH. Finally, the columns SEX
and TOTWEIGH from the PATIENTS data set are
selected and displayed.

Output:

SEX TOTWEIGH

F
M

1800
3155

Arrange Results in Ascending Order

To arrange results in ascending order, we will direct
SQL by using the ORDER BY clause. One or more
columns can be selected for sorting. One or more
columns can be ordered in either ascending and/or
descending order. The default sort order is ascending
(lowest to highest). If you want to override the default
order (arrange in descending order), you need to specify
DESC following the column·name that is specified.

557

Exercise 4:

PROC SQL;
SELECT LASTNAME, EDUC

FROM libref.PATIENTS
ORDER BY EDUC;

QUIT;

In exercise 4, all rows are first arranged in ascending
order by the column EDUC (patient's years of
education). Then the columns LASTNAME and EDUC
from the PATIENTS data set are selected and displayed.

Output:

LASTNAME EDUC

Candle 10
Robertson 12
Cranberry 13

Syntax Requirements

The Structured Query Language (SQL) is directed by
the statements, options, and components within the SQL
procedure to create, retrieve, and modify data from
tables and views. The syntax requirements for using the
SQL procedure within the SAS System follow.

PROC SQL < option(s) > ;
CREATE create-statement;
DELETE delete-statement;
DROP drop-statement;
SELECT select-statement;
UPDATE update-statement;

QUIT;

SQL Procedure Statements

SQL procedure statements are presented on the
following pages.

SELECT Statement
The SELECT statement tells the SQL processor what
columns of data to use in the query, formats desired
information, and displays it as output.

GelUiral Format - SELECT:

PROC SQL;
SELECT query-expression;

QUIT;

Exercise 5:

PROC SQL;
SELECT LASTNAME, DOB

FROM Iibref.PATIENTS;

SELECT CLINIC, SYMPTOM, DIAGNOSE
LABEL='Patient"s Diagnosis'
FROM hbref.PATIENTS;

QUIT;

CREATE Statement
The CREATE statement provides a way to create tables,
views, and indexes for a data set (table). There are
multiple ways of creating tables, views, and indexes. This
workshop will illustrate the statement that creates a new
table and the column definitions within the table.

General Format - CREATE TABLE:

PROCSQL;
CREATE TABLE table-name

(column-definition(s));
QUIT;

Data Types and Widths for Columns:

Data Types: CHARACTER, INTEGER, DECIMAL

Exercise 6:

Character columns default to 8 characters,
Numeric columns are created using the
maximum precision possible by the SAS
System. A LENGTH statement can be
specified in the DATA step.

PROC SQL;
CREATE TABLE CLINICS(CLIN_NO

char(6), DIRECTOR char(20));
QUIT;
PROC CONTENTS DATA=CLINICS;
RUN;

In exercise 6, a table called CLINICS is defined with
two columns, CLIN_NO and DIRECTOR. The
CONTENTS procedure is used to display data set
(table) information.

558

General Format - CREATE JlIEW:

PROC SQL;
CREATE VIEW view-name AS

query-expression;
QUIT;

the view-name should be kept to a
maximum of seven characters due to
constraints of some host systems.

A view is not the same thing as a table. A view
represents a stored query-expression (sometimes known
as a virtual table) where a table represents stored data.

Exercise 7:

PROC SQL;
CREATE VIEW Iibref.CONTACTS AS

SELECT CLIN NO, LASTNAME
FROM IibreLPATIENTS;

SELECT *
FROM IibreLCONTACTS;

QUIT;

In exercise 7, a view is created called CONTACTS using
the data derived from the PATIENTS data set. A query
is then performed on the new view.

DELETE Statement
The DELETE statement removes one or more rows
from a table as indicated in the WHERE clause. It is
typically used with a WHERE clause in order to inform
the SQL processor what row(s) to exclude.

General Format - DELETE FROM:

PROCSQL;
DELETE FROM table-name

WHERE sql-expression;
QUIT;

Exercise 8:

PROC SQL;
DELETE FROM CLINICS

WHERE CLIN_NO='0l1234';

1* Displays all fields in CLINICS 'I
SELECT CLIN NO, REGION

FROM CLINICS;
QUIT;

In exercise 8, rows containing the value of '011234' in
the CLIN NO column are removed from the CLINICS
data set - A query is then performed to select and
display the columns CLIN NO and REGION from
CLINICS. -

DROP Statement
The DROP statement deletes a table, view, or index.
You must specify the libref when tables, views, or
indexes are stored permanently.

General Format - DROP:

PROC SQL;
DROP TABLE table-name;
DROP VIEW view-name;
DROP INDEX index-name

FROM table-name;
QUIT;

Exercise 9:

PROC SQL;
DROP TABLE hbref.CLINICS;

DROP VIEW libref.CONTACTS;
QUIT;

In exercise 9, the table (data set) CLINICS is first
deleted. Then the view CONTACTS is deleted.

UPDATE Statement
The UPDATE statement allows for columns within
existing rows (observations) of a table or view to be
changed. Caution should be exercised while updating
tables. Make sure you back-np your tables prior to
changing data since accidents can happen.

559

General Format - UPDATE:

PROC SQL;
UPDATE table-name I libref.view-name

SET set-clause
< WHERE where-expression >;

QUIT;

.Exercise 10:

PROCSQL;
UPDATE libref.PATCOPY f* Backup Copy *1

SET WEIGHT=WEIGHT + 1;

QUIT;

SELECT LASTNAME, WEIGHT
FROM hbref.PATCOPY;

In exercise 10, an UPDATE statement is used to
increment the WEIGHT column because of improper
calibration of the scale. A query is then performed to
select and display the columns LASTNAME and
WEIGHT from the PATCOPY data set.

SQL Procedure Statement Components

The SQL procedure statement components provide a
way to further enhance the selection and/or update
criteria. The following components are available.

BETWEEN -- searches for data lying within certain
parameters.

Column-Definition -- defines data types and widths.

Column-Modifier -- establishes column attributes.

From-List -- indicates what table or view to use in a
FROM clause.

Group-by-ltem -- indicates the groups of variables values
processed in a GROUP BY clause.

Order-by-ltem -- indicates the order in which observations
are displayed in an ORDER BY clause.

SQL-Expression -- identifies functions, expressions, and
operators that are used to connect them.

Conclusion

Structured Query Language (SQL) is a universal
language that is available within the base SAS System
product. It was developed to easily access data that is
stored in relational databases or tables. Relations can
be thought of as two-dimensional tables consisting of
rows and columns (like a SAS System data set).
Through the use of relational mathematics a series of
guidelines for defining, manipulating, and controlling
tables were developed by Dr. E. F. Codd.

The concept behind SQL is to free the user from having
to specify physical attributes about the data such as data
structure, location, andlor data type. The user
concentrates on what data should be selected, but not
how to select it.

The SQL Procedure provides a standardized way to
retrieve and display data, sum and display data in
groups, and arrange results in ascending or descending
order by columns.

PROC SQL can run in both interactive and batch
modes. It can be used to create, modify, and retrieve
data from tables. Global statements such as TITLE and
OPTIONS can be used with PROC SQL. Tables are
accessed via two-level names where the first is the Libref
and the second level is the name of the table.

Acknowledgments

My sincere thanks are extended to everyone involved
with the SUGI Conference especially Gary Katsanis and
David Woo, Section Chairs of the Hands·on Workshops.

SAS is a registered trademark of SAS Institute Inc.,
Cary,NC, USA

Author Contact

The author will be happy to answer questions and accept
suggestions at the following address:

Kirk Paul Lafler
Software Intelligence Corporation

P.O. Box 1390
Spring Valley, CA 91979-1390

Tel: (619) 670-S0Ff or (619) 670-7638

560

