
1

An Animated Guide: The SAS® Data Step Debugger
Russ Lavery, Contractor

ABSTRACT
The Data Step Debugger (DSD) simplifies the debugging of individual Data Steps and not whole SAS programs. The
SAS Debugger is not a “use everyday” tool, but is extremely useful when debugging complex data steps. Using the de-
bugger requires some understanding of how SAS works because the DSD does not issue any error messages. When
using the DSD, a programmer mentally compares what s/he sees, displayed in the Program Data Vector (PDV), with
what s/he expected to see. Critical, to use of the DSD, is an understanding of the PDV and, as a side issue, the DSD is
an excellent way to learn the PDV.

The goal of a programmer should be to learn to combine DSD commands and to link those combinations to a key or a
macro. Linking a series of commands to a key, or a macro makes the DSD much more powerful.

FIGURE 1

1

2

5 6

3

7

8

DATA Step ProgrammingNESUG 2011

2

INTRODUCTION
This paper concentrates on using the DSD interactively to boost productivity. It will quickly cover DSD commands, and
then concentrate on explaining the most useful combinations of commands, and the programming situations, where
the DSD is likely to give a productivity boost. The first goal of a programmer starting to learn the DSD should be to link
DSD commands to a function key or to a macro. Linking commands to a function key, or a macro, makes the DSD
much more powerful.

USING THE DSD IN INTERACTIVE MODE
The debugger is most often used in interactive mode. To operate in this manner, SAS must be running with the SAS
editor window active. The data step you are trying to debug must not have syntax errors, only logical errors. In short,
syntax errors cause the DSD to not start (the usual situation) or to misbehave. For example, if you leave out a semico-
lon, and try to run the DSD, the DSD will not start and the DSD screens will not be displayed. Referencing non-existing
variables might cause the DSD to not stop at break points.

The DSD is invoked by adding “/debug” to the data step line [circle (1) Figure 1], highlighting the data step code and
then hitting <F3> (or run). Invoking the DSD will add two more windows to your computer screen, the DSD log and the
DSD source. These windows are shown in Figure 1. Since the debugging work is done in these two windows, program-
mers typically hide the SAS log, SAS list and SAS editor windows so as to be easily able to see activity in the DSD log
and DSD source [Figure 1].

A workable screen layout is shown in Figure 1. The messages shown in the DSD log are rather short and programmers
often make the DSD source wider than the DSD log. Once you have found an effective layout, you should issue WSAVE
on the command line [circle (2) Figure 1] in both windows (note that only the active window shows its command line)
and SAS will open the DSD with that layout in future sessions.

To make the command line appear in a window, work through the following steps: Tools-Options-Preferences-Select the
View tab – click on command line and OK. When the command lines appear issue the WSAVE command in each win-
dow. It should be noted that the log window must be wide enough so that commands can be typed. The Debugger log
does not scroll, to the right, as commands become longer than the window can accept. The red message (circle (3)
Figure 1), in the log in Figure 1, was caused be a command (the B121 … shown just above the red line) becoming too
wide for the screen as it was typed. If the DSD stops accepting characters and returns a red message because the
command has become too long, simply use the mouse to widen the window and re-enter the command.

Running the DSD is fairly simple. DSD commands are typed in a command line in the bottom of the log window (circle
(4) Figure 1). The line about to execute is highlighted in black in the DSD source window [Figure 1]. The DSD only stops
on (reverse highlights) executable lines. In the code in Figure 1, the DSD will never stop with line 107 in reverse highlight
because line 107 is not executable. Because the DSD only stops on executable lines, it is sometimes useful to insert
executable "nonsense lines" like:

Book="mark1";

into the SAS code so that you will have an executable line where you'd like to make the DSD to stop.

Progress messages [circles (5 & 6) Figure 1], as well as the results of DSD queries are written to the DSD log window.

BINDING/USING GROUPS OF DSD COMMANDS
There are only a handful of easy-to-learn DSD commands. However; using sequences of commands, not using individ-
ual
commands, is what makes the DSD a useful tool.

Binding a useful, and frequently used, series of commands to a key-combination, or including them in a macro, is the
starting point for DSD power use. These two techniques should be a goal of everyone starting to learn the DSD. The
DSD is slow if you are a bad typist and do not “bind” commands.

DATA Step ProgrammingNESUG 2011

3

DSD COMMAND FUNCTIONAL GROUPS
The DSD commands are generally grouped by the functions they perform and will be grouped that way in this paper.
The
commands have abbreviations to reduce typing and options to increase their power/flexibility. The most frequently used
commands have been underlined below. Many commands have abbreviations that can be discovered in the SAS help
pages.

Generally, binding commands to a key, or calling a macro of DSD commands into the DSD, minimizes the need to use
the abbreviations.

Execution commands move the (reverse highlighted) "active line" of code- by executing steps or skipping steps.
The four commands are: Step, Go, Jump, Quit

Suspension commands tell SAS where to stop execution of code. Execution must be stopped to display the PDV.
The four commands are: Break, Watch, Delete, Trace

Display commands can show the PDV, and input buffer, in the DSD LOG.
The three commands are: Examine, List, Describe

Window commands toggle the active window between editor a/log. Only the active window has a scroll bar, and can be
scrolled.

The two commands are: Swap, mouse-click

Other commands do miscellaneous things
The three commands are: Calculate, Set, Help

SPEED TRICKS make the DSD convenient to use
The tricks are: Binding Commands to Keys, <F4>, Do-Loop Macro, Calling a macro of DSD commands

DSD EXECUTION COMMANDS

Execution commands cause lines of code to execute or jump over lines of code without executing.

Step causes the DSD to execute lines. Pressing the return key is abbreviated <ret> in this paper.
The commands Step<ret> (or st<ret> or step 1<ret> or <ret>) all will cause the editor to execute one command and
stop. Step n will cause the editor to execute n commands and stop. Usually, if you want to execute one, or a few lines,
you will hit the return key, rather than typing step. If you want to execute a number of lines, the Go linenumber<ret> (Go
to line number n, executing lines as you go) command is easier than step n. Line numbers are shown in the Debugger
Editor window. In Figure 1, line numbers go from 104 to 145. Line numbers are counted as the number of lines executed
since the SAS session started. If you re-run a DSD session on the same date step, you will see different line numbers in
the editor.

Go has several options and does several things.
A Go <ret> will execute lines until the DSD encounters a condition for which you have coded a stop. If you have set a
break point at a line, or instructed the DSD to watch a variable for value changes, issuing Go<ret> will cause the DSD to
execute lines until the break line is reached or the watched variable changes value. If you have not set any stop/break
points, GO will cause processing of all observations through all the lines in the data step, effectively running the data
step “to a normal conclusion”.

Two useful Go options are:

Go linenumber <ret>. This command will cause the DSD to execute all lines between the current line and the specified
line number. Line numbers are shown in the left-hand side of the Data Step Source window. This can be more conven-
ient than repeatedly typing Step<ret>.

Go label<ret>. You can put a SAS label in your code and issue the command Go label<ret>.

Jump is a command that lets you skip lines of code. If your DSD window showed the screens in Figure 1, and you is-
sued jump 124<ret>, you would not execute any of the lines of code between lines 108 and 124. The jump command is
useful if you think one block of code is causing a problem, and you do not want the block of code to run but also do not
want to exit the debugger to comment out the suspicious block of code.

DATA Step ProgrammingNESUG 2011

4

QUIT ends the debugger session. It closes the debugger log and debugger editor.

DSD SUSPENSION/BREAK COMMANDS
Suspension/break commands simply specify where/when to stop execution and do not display any information. You can
tell the DSD to stop (break) at a line number [circle (5) Figure 1], or stop on a line when a logical condition is true [cir-
cles (6 & 7) Figure 1]. As Figure 1 shows, you can set several break points, each having different logical conditions.
You can also ask the DSD to stop immediately, if a variable changes value [circle (8) Figure 1]. When you issue a
"suspension command” you will get a message in the DSD log and see an ! in the DSD source (see lines 119, 121,124,
127 in the source window in Figure 1) indicating the line has been tagged as a “break line”. You usually break, or sus-
pend execution, so that you can then issue “display commands” to check values of variables as execution waits on that
line. Printing commands are separate from break commands.

Break tells the DSD to "stop on a line" and has useful options.
Most often control passes down from the top of the data step code to the run statement and the cycle repeats. This pro-
cess happens for each observation, with little internal “cycles” for Do loops. Sometimes you will want to stop every time
the DSD is about to execute a line. In that case, if the DSD is highlighting the line you wish to make into a "break every
time this line is about to execute" line you can simply type b *<ret> [see first line in the debugger log, Figure 1]. This
makes the line a "break every time you are about to execute" line. Generally, If you want to make a line that is not re-
verse highlighted a "break every time you are about to execute " line, you issue the command break linenumber<ret>.
[circle (5) Figure 1]. When a break has been set successfully, the DSD writes a message to the DSD log and puts an
exclamation point on that line in the DSD Source Window [Figure 1].

When your programming problem is to debug a do loop or to try to find "odd observations" (a missing value or that “one
darn observation” that is giving you trouble), "break at this line when a condition is true" is a useful option. Often you
want to see the last “pass through a loop” or you would like to see the processing of observations through the nesting of
“IF-ELSE-IF” code. Detailed debugging (good programming practice) requires that we check the execution of every IF
statement. Breaking when a variable reaches certain values is useful for debugging loops and IFs. It is also useful for
examining what happens when certain observations pass through the data step [see the break commands in the DSD
log in Figure 1].

You might want to check that each level in an IF statement executes correctly (see the IF series in Figure 1 for back-
ground). We might like to check the proper routing of observations that are close to the critical values of the IF state-
ments (when age1 equals 11, 12,13,19, 20, 21, 22). We know that observations with age1 equal eleven should be clas-
sified as a child. Observations with ages twelve through twenty should go to teen. Observations with age equal Twenty-
one should be classified as adult.

A useful breakpoint for the example above might be Break (at) 124 when age in (11,12,13,19,20,21,22)<ret> followed by
a GO. This would process observations, possibly very many observations, and stop processing on line 124 when an
observation with an age1 close to the "IF breakpoints" is about to be processed. After breaking execution on an inter-
esting observation you could then proceed to "step" that observation through the data step – one line at a time.

The debugger log also shows the issuance of a "break (at) line-number after n" command [circle (6) Figure 1]. This
command is useful in debugging loops. You can tell the DSD to stop processing after a line has been passed n (a cer-
tain number of) times. This means you can instruct the DSD to cycle through a do loop and then stop when it is just
about to leave the loop. You can then step through the last cycle and see what happens as you leave the loop. [see Fig-
ure 1,especially “break 124 when i=age1”].

You have options in debugging loops. Stopping execution at a particular stage of a loop can be done with a break after
or with a break when.

Watch tells the DSD to stop when a variable changes its value, regardless of what line is executing. The command is
watch var.-name<ret> and does not take a line number argument [circle (6) Figure 1],. The watch command is very
useful when you are trying to debug the setting of a flag, especially when the flag can be set in several places in your
code.

Delete is maintenance command that “clears” break and watch points. Sometimes, you can use the DSD to examine
two, or three, problems. If you resolve the first problem you will want to clear the break points and the watch variables
associated with that first problem. You might then set new breaks/watch variables to investigate the second problem.

Delete will clear both breakpoints and watchpoints. The command to clear a break is Delete B linenumber<ret>.

DATA Step ProgrammingNESUG 2011

5

The command to clear a watchpoint is Delete W varname<ret>. You can save time with D B _all_<ret> or D W
all<ret>.

Trace can be toggled on and off. When trace is on, messages are written to the log that show the lines that were exe-
cuted. This can be useful if you issue a go and want to be able to determine what path execution took through an IF-
ELSE section. Its use is limited to tracking execution through line numbers and does not provide any information about
variables changing values

DSD DISPLAY COMMANDS
Display commands show values, or attributes, of variables. The reason you set break points on particular lines of the
data step is so that you can, later, issue display commands at particular points in your program. Once you have halted
execution with a break you will issue the display commands, explained below, to show the PDV and input buffer.

EXAMINE
Examine is the most useful display command and displays values from the PDV in the DSD log.
The syntax is examine variable(s) format<ret> . Examine <varnames> format will show, in the DSD log,
current PDV values for the variables listed.

The format is not a required option but, if used, applies a format and can be useful in making output more readable.

To save keystrokes you can issue the command as E _all_<ret>. This command will examine (show in the DSD log)
all variables in the PDV. While this is an “easy to type” command it usually provides more output than is desired, or
convenient. Repeatedly typing this command with a list of many variables (e.g. examine var1 var12 var13
var24 var5) gives you just what you want to see, but can be tedious. To save typing, the examine command is usu-
ally bound to a function key (explained below) or the programmer can use the <F4> key.

Examine does not accept the following SAS abbreviations:
Examine _numeric_ or Examine _character_ or e var_nm1-var_nm3 or e varnm1--varnmchar

LIST
List is a DSD display tool and writes messages to the DSD log to describe your DSD session. List d<ret> provides
information about the SAS data set you are creating. List I<ret> will list the current infile (the source of data) and
display the input buffer.

Imagine, you are reading a text file and have made a mistake in coding the input statement (maybe typing
the wrong column number in the input statement). You can use list I<ret> to see the input buffer and
then use examine varname<ret> to see if what you read into the PDV is what SAS has in the input buffer.
The input buffer shows what is in the data file and the PDV shows what you "got" into your variables.

List b<ret> writes a message that tells you what lines have breakpoints set, but it produces very sparse messages.
Remember that you can associate conditions with the breakpoints when you set the breakpoints. You might set break-
points with associated conditions like when var=" and "after n". However, list b<ret> will not report on the condi-
tions that are associated with the breakpoints. It just reports the line number, not the associated condition.

List W<ret> will write a message to the DSD log that indicates the variables you are watching and tells the current
values of the variables.

List _all_<ret> will report on all the list options.

DESCRIBE writes information about variables to the DSD log. The format is Describe firstvar secondvar
thirdvar<ret>. Describe causes SAS to write the variable name, type and length to the DSD log. The output is simi-
lar to that of a PROC CONTENTS, but just on the variables specified.

DSD WINDOW COMMANDS
The window command toggles the active window between editor and log (using a mouse is usually faster). Only the
active window has a scroll bar and a command line. If your data step does not fit on one screen, you might want to
scroll up/down to see code that is not currently displayed. You will issue the WSAVE command on the command line of
every window whose shape you want SAS to remember. You can change the active window with Swap<ret> or by left

DATA Step ProgrammingNESUG 2011

6

mouse clicking on the window you wish to make active.

DATA Step ProgrammingNESUG 2011

7

DSD SPEED TRICKS
Using speed tricks makes the DSD a powerful tool and a pleasure to use. The most important speed trick is
binding a set of commands to a key (or pair of keys) on your keyboard.

FIGURE 2 FIGURE 3

If the DSD is active and you press <F9> the DSD keys window will be displayed [see Figure 2]. Figure 2 shows that
two types of commands have been linked to keys: command line commands (like help, reshow, end, recall, etc) and
DSD commands (see shift <F1> and shift<f11>). Note that <F9> has already been linked to the keys command.
That is why pressing <F9> displays the DSD keys window.

The keys window, in Figure 2, shows what key bindings that are in effect when the author’s DSD is running and your key
bindings may differ. These key bindings differ from bindings in effect when regular SAS is running. Pressing <F9>,
when in the regular SAS editor, will also display a keys window. However, the key bindings would be different from the
DSD key bindings shown above.

Please note that binding commands to keys is a critical productivity technique for using the DSD. Looking in Figure 2,
shift <F1> shows a variation of one of the most useful DSD command strings. Pressing Shift<F1> will execute one
line and then display the full PDV (Shift <F1> is linked to: DSD st; DSD examine _all_;). If there were re-
peated need to examine four or five variables you could save time by binding the examine command (e.g. DSD Step;
DSD examine var1 varB var 23 varAA;) to a key and you would never need to type the command again.

Key binding is easy to set up. Open the key window and use the mouse to position the cursor on a blank line [circle (1)
Figure 2] or a line that holds a command you wish to modify. Type in the DSD commands, remembering two rules. 1)
DSD commands must begin with the string DSD and 2) DSD commands must end with a semicolon. Several com-
mands can be linked to one keystroke.

(You can see examples of these rules in Figure 2. – note shift-<F1> and shift-<F11>) To finish the key binding
process, close the keys window to have a better view of events. Finally, make the DSD log window active. You can then
press the key(s) to which you have bound the commands and watch the DSD execute them. NOTE: Your key bindings
will only work when the DSD Log window is active.

By default, the <F4> key is usually bound to the recall command. It has the same function as DOSKEY does in DOS.
Pressing <F4> will recall the last twenty DSD commands back to the DSD log command line. Once the proper com-
mand is on the DSD log command line, it can be executed by hitting <ret>. This can be a small timesaver, if you do
not want to bind a command string to a key.

DATA Step ProgrammingNESUG 2011

8

Figure 3 (above) shows how the DSD can be run from pull down menus. Right clicking on the DSD editor, or DSD log,
will produce a menu of DSD commands. DSD commands (examine, list, break, delete etc) can be executed from this
menu. A useful feature of the menu is the ability to save the DSD Log, and/or DSD Editor, to a file. From the menu
shown in Figure 3, select File - Save As. This "easy save" is the most useful command in the menu.

Multiple DSD commands can be "set to exe-
cute" after a break by enclosing them in a
Do-End as can be seen in FIGURE 4.

This requires a lot of typing on the command
line (often resulting in typos for me). If’s are
supported inside the Do-End.and this feature
has a use in debugging loops.

The complex command in Figure 4 can be
bound to a key but is easier to type if put in a
macro.

Often, there is an interest to see values both
at the start of the loop and at the end of the
loop. The code in FIGURE 4 (combined with
issuing the Go command) will EXamine the
full PDV during the first, and last pass,
through the loop.

On other passes, it will EXamine just the
loop counter and age1. A user, at any time,
could issue additional examine commands to
EXamine other variables in the PDV.

FIGURE 4
The SAS editor is better than the DSD com-
mand line editor.

Saving a series of DSD commands, in the
SAS macro catalog and recalling the com-
mands into the DSD is another speed trick.

This trick allows you to use the SAS editor (a
editor than the debugger ‘editor”) when cre-
ating a complex bit of code.

The tow macros in FIGURE 5 are created
and run outside the DSD in order to compile
the macro in the normal SAS Macro Catalog.

The DSD is then started.

To call the macro named G inside the DSD,
and have the DSD stop on line 134, the user
would type %G(134) on the DSD log
command line. [circle (4) Figure 1]

To execute the Lp macro from inside the
DSD, type %lp(127,age1) <ret> and
then a series of Go <ret> commands (Or
one Go <ret> and a series of <F4> <ret>
) commands

FIGURE 5

DATA Step ProgrammingNESUG 2011

9

RUNNING THE DSD ON CODE GENERATED BY A MACRO
Macros are often difficult to debug and often do unintended things. A programmer is left to wonder if the macro evalu-
ated incorrectly and gave “poor SAS code” or if the macro evaluated correctly and the underlying logic of the source
code was wrong (and is therefore a candidate for analysis using the DSD). In this situation, the programmer needs to
have clean code (the result of the macro execution) to be “put into” the DSD.

In the past, programmers occasionally turned on MLOGIC, ran the code, copied the log into an editor and then manually
removed SAS comments and notes from the code to create code to be then run through the DSD. Clean code, gener-
ated by macro execution, can now be captured with the following easy method that uses MPrint MFile and a Filename
statement.

IMAGINE A MACRO DEFINED AS BELOW. THIS MACRO HAS NO BUSINESS REASON, IT JUST ILLUSTRATES A
FEW POINTS.
%MACRO series(DSET=);
 data new_&Dset;
 total= %do i=6 %to 12;
 &i %str(+) %end; 0 ; run;
 proc print data=new_&Dset; run;
 proc means data=new_&Dset; run;
%MEND series;

The programmer could issue the commands below.
options mprint mfile;
filename mprint "c:\temp\series_txt.txt";
%series(DSET=PLACE); *this runs the macro;
options nomfile;
run;

The %series statement runs the macro and options nomfile closes the file being creted. Note that if the macro is
run again, the results of the new run will be APPENDED to the old run. There is no option that will cause SAS to over-
write the old file. Appending to the collecting file (series_txt.txt) is the only option. The file series_txt.txt shows how the
macro evaluated the %do loop and all the other statements inside the macro. A programmer desiring to step through
this code with the debugger need only cut and paste the data into SAS, change “new_PLACE;” to “new_PLACE
/DEBUG;” and re-run.

ENDING THE DSD SESSION

The debugger session is ended by typing quit<ret> in the DSD command line of the DSD log.

CONCLUSIONS
The DSD is a powerful tool for debugging the Data Step parts of programs. It should be in the toolkit of every SAS
programmer. The basic output is a listing of values in the PDV. Effective use of the DSD requires understanding the
PDV.

REFERENCES
Heffner and Schaffer. “The Data Step Debugger “, Proceedings of the Twentieth Annual SAS Users Group International
Conference”, 20

Riba, S. Davids, “How to use The Data Step Debugger “ Proceedings of the Twenty-Third Annual SAS Users Group
International Conference”, 25, paper 52

Schaffer and Kalt, “The Data Step Debugger: Bug hunting made Easy “, Proceedings of the Sixteenth Annual SAS Users
Group International Conference”, 16

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

The file series_txt.txt contains the following
text.
data new_PLACE;
total= 6 + 7 + 8 + 9 + 10 + 11 + 12 + 0 ;
run;
proc print data=new_PLACE;
run;
proc

DATA Step ProgrammingNESUG 2011

10

Russ Lavery Bryn Mawr, PA Email: Russ.Lavery@verizon.net Web page for all papers: Russ lavery.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.Other brand and product names are trade-
marks of their respective companies.

DATA Step ProgrammingNESUG 2011

