
Paper 73-26

That Mysterious Colon (:)
Haiping Luo, Dept. of Veterans Affairs, Washington, DC

ABSTRACT
The colon (:) plays certain roles in SAS coding. Its usage,
however, is not well documented nor is it clearly indexed in SAS
manuals. This paper shows how a colon can be used as a label
indicator, an operator modifier, a format modifier, a key word
component, a variable name wildcard, an array bound delimiter,
an argument feature delimiter, a special log indicator, or an index
creation operator. Mastering these usages can give your code
needed functionality and/or an efficiency lift.

AN OVERVIEW
In SAS language, the colon (:) has many different uses, although
they are not well documented. It is difficult to search for the
colon’s usage in SAS OnlineDoc, System Help, and printed
manuals. From the scattered documentations, publications, and
featured programmers, this paper collected nine types of colon
usages:

1. Label indicator
2. Format modifier
3. Operator modifier
4. Key word component
5. Variable name wildcard
6. Array bound delimiter
7. Argument feature delimiter
8. Special log indicator
9. Index creation operator

Some of these usages can improve coding efficiency while others
provide unique and necessary capacities for various
circumstances. This paper will use examples to demonstrate
different ways in which the colon can be used. Most of the
examples in this paper were tested under SAS for Windows
Version 8. Some of them were tested under version 6.12 and
found not working. These known invalid cases are indicated in the
text.

1. LABEL INDICATOR
A colon after a string signals the string as a label and the
statement(s) after the colon as the labeled statement(s). The label
string must be a valid SAS name. Any statement(s) within a data
step can be labeled, although no two labels in a data step can
have the same name. The statement label identifies the
destination of a GO TO statement, a LINK statement, the
HEADER= option in a FILE statement, or the EOF= option in an
INFILE statement.

The labeled statement referred to by a GO TO or a LINK
statement is used to alter the sequential flow of program
execution. For example, in the following code:

data a;
input x y z;
if x=y then go to yes;
x=10;
y=32;
return;
yes:
put x= z=;
delete;
cards;
. . .

statements 'x=10;' 'y=32;' will be executed for all observations

when x is not equal to y. The statement ‘return;’ brings the
execution back to the beginning of the data step for the next
observation, without executing the two statements after the ‘yes:’
label. Only when the condition 'x=y' is met, will the program jump
to the label ‘yes:’ and execute the two statements which follow the
label. The value of x and z will be printed to the log, the
observation will be deleted and the then the program will read in
the next observation.

Similarly, a LINK statement also branches execution to
statements after a label. The difference between the GOTO and
the LINK statements is that after the execution the code following
the label (the labeled statement group), a ‘return;’ statement in a
LINK structure will bring execution to the statement following the
LINK statement, while a ‘return;’ in a GOTO structure will bring
execution to the beginning of the data step. The use of label in a
LINK structure can be seen in the following example:

data workers;
set tickets; by ssn;
if first.ssn then link init;
tickets+1;
tothrs+hours;
if last.ssn then output;
return;
init:
tickets=0;
tothrs=0;
return;

This data step sums tickets and total hours for each worker in the
dataset ‘tickets’ and outputs the sums to dataset ‘workers’. The
statements after the label ‘init’ are only executed for the first
observation of a social security number. After execution of the
labeled statement group, execution continues to ‘tickets+1’ for the
same first.ssn observation since this is the statement immediately
following the LINK statement. If GO To were used instead of
LINK, execution would cause immediate reading of the next
observation without incrementing ‘tickets’ and ‘tothrs’ with data
from the first observation for this worker.

Label can be used in report writing to execute statements when a
new report page is begun. The following code uses a data step to
write a customized report with a HEADER=label option in a file
statement:

data _null_;
set sales;
by dept;
/* header refers to the statements after the
label newpage */
file print header=newpage;
/*Start a new page for each department:*/
if first.dept then put _page_;
put @22 salesrep @34 salesamt;
return;
/* the put statement is executed for each
new page */
newpage:
put @20 'Sales for 2000' /

@20 dept=;
return;
run;

Label can also be used in the EOF=label option of an INFILE
statement to indicate how execution is to proceed after the end of

Coders' Corner

2

a file is reached. In the following code, suppose mydat.txt has 3
observations while mydat2.txt has 6. Without EOF=, the input
statement will stop reading at observation 3 when it reaches the
end of mydat.txt; dataset a will have only 3 observations and 6
variables. With EOF=more and the label ‘more:’, the data step
continues, so the remaining 3 observations in mydat2.txt are read
by the second input statement: dataset a will have 6 observations
and 6 variables.

data a;
infile "d:\mydat.txt" eof=more ;
input @1 name $20. @21 x 5.1 @26 y 8.;
more:
infile "d:\mydat2.txt";
input @1 book $20. @21 test 8.1 @29 st 8.;
run;

In SAS Macro Language, there is a %GOTO statement that
branches macro execution to a labeled section within the same
macro. Branching with the %GOTO statement has two
restrictions. First, the label that is the target of the %GOTO
statement must exist in the current macro. Second, a %GOTO
statement cannot cause execution to branch to a point inside an
iterative %DO, %DO %UNTIL, or %DO %WHILE loop that is not
currently executing. The following example uses %GOTO to exit
the macro when a specific type of error occurs:

%macro check(parm);
%local status;
%if &parm= %then %do;
%put ERROR: You must supply a
parameter to macro CHECK.;

%goto exit;
%end;
more macro statements that test for
error conditions . . .

%if &status > 0 %then %do;
%put ERROR: File is empty.;
%goto exit;

%end;
more macro statements . . .
%put Check completed successfully.;

%exit:
%mend check;

In SAS/AF, the colon is used as a section label indicator in label-
return structures to group code for frame labels or other frame
entries. The following sections define the code for a ‘RUN’ and a
‘PRINT’ button in a frame:

RUN:
if levelte='_Required_' then do;
msg='You must select a level before

running the report!!';
return;
end;
msg='Please wait while your request is

processed.';
refresh;
call display('means.scl',name,levelte);

return;

PRINT:
rc=woutput('print',

'sasuser.profile.default');
rc=woutput('clear');

return;

2. FORMAT MODIFIER
The colon as an input/output modifier is documented in SAS
manuals. You can find examples of its use if you know to search

for ‘format/informat modifier’ instead of ‘colon’; alternatively, you
find examples by getting lucky. For input, colon enables you to
use an informat for reading a data value in an otherwise list input
process. The colon informat modifier indicates that the value is to
be read from the next nonblank column until the pointer reaches
the next blank column or the end of the data line, whichever
comes first. Though the data step continues reading until it
reaches the next blank column, it truncates the value of a
character variable if the field is longer that its formatted length. If
the length of the variable has not been previously defined, its
value is read and stored with the informat length.

In the following case, the input data are not lined up neatly. Some
of the problems are: the first data line does not start in column 1;
there are single spaces and a semi-colon embedded in character
values; the value of ‘city’ in the second data line starts in column
12, which is within the defined range of the first variable; and
there are 2 or more spaces between variables. Given these
features of the data, if no colon is used, the code will produce the
output printed at the end of the code:

/* Without colon in the input statement*/
data a;
input student $14. city & $30.;

cards4;
Jim Smith Washington DC; L.A.

Key Jones Chicago
;;;;
proc print;
run;

The output missed the starting character of the variables
OBS STUDENT CITY
1 Jim Smith
2 Key Jones Chi cago

If, however, a colon is added to the input statement:
input student : $14. city & $30.;

The output becomes:
OBS STUDENT CITY
1 Jim Smith
2 Key Jones

There is still a problem – the variable values have not been
separated correctly. If an ampersand (&) is also added to the
input statement:

input student : & $14. city & $30.;

The output becomes what we wanted:
OBS STUDENT CITY
1 Jim Smith Washington DC; L.A.
2 Key Jones Chicago

In the above example, the colon causes the input statement to
read from the next non-blank character until the pointer reaches
the next blank column. The ampersands(&) tell SAS that single
blanks may be embedded within character values. The
combination of colon and ampersand causes the input statement
to read from the next non-blank character until the pointer
reaches double blanks. Also note that, due to the semi-colon
within the data, a CARDS4 statement and 4 semi-colons (;;;;) are
used to indicate the beginning and the end of the data lines.

For output, a colon preceding a format in a PUT statement forms
a ‘Modified List Output’. Modified List Output generates different
results compared to that from a Formatted Output. List output and
formatted output use different methods to determine how far to
move the pointer after a variable value is written. Modified list
output writes the value, inserts a blank space, and moves the
pointer to the next column. All leading and trailing blanks are

Coders' Corner

3

deleted, and each value is followed by a single blank. Formatted
output moves the pointer the length of the format, even if the
value does not fill that length. The pointer moves to the next
column; an intervening blank is not inserted. The following DATA
step uses modified list output to write each output line:

data _null_;
input x y;
put x : comma10.2 y : 7.2;
datalines;

2353.20 7.10
231 21
;

These lines are written to the SAS log, with the values separated
by an inserted blank:

----+----1----+----2
2,353.20 7.10
231.00 21.00

In comparison, the following example uses formatted output:

put x comma10.2 y 7.2;

These lines are written to the SAS log, with the values aligned in
columns:

----+----1----+----2
2,353.20 7.10
231.00 121.00

3. OPERATOR MODIFIER
In SAS, character strings must be adjusted to the same length
before they can be compared. When SAS compares character
strings without the colon modifier, it pads the shorter string with
blanks to the length of the longer string before making the
comparison. When SAS compares character strings with the
colon modifier after the operator, it truncates the longer string to
the length of the shorter string. This feature of the colon modifier
makes the comparison of a character string's prefix possible. For
example,

if zip='010' then do;
* This will pick up any zip which equals
'010' exactly;
if zip=:'010' then do;
* will pick up any zip starting with '010',
such as '01025','0103', '01098';
if zip>=:'010' then do;
* will pick up any zip from '010' up
alphabetically, such as '012', '21088';
where lastname gt: ‘Sm’;
* will pick up any last name alphabetically
higher than ‘Sm’, such as ‘Smith’,‘SNASH’,
‘Snash’;

The colon modifier can follow all comparison operators (=:, >=:,
<=:, ne:, gt:, lt:, in:) to conduct prefix comparison. The following
'in:' operation will select the students located in zip codes which
begin with '010', '011', '0131', '0138', respectively:

data s; set student;
if zip in:('010','011','0131','0138');

4. KEY WORD COMPONENT
In PROC SQL, the colon is part of the “SELECT… INTO :”
structure. This structure turns the values of a selected field into a
string of a macro variable for later use. The syntax of this
structure is:

SELECT field-name1, . . ., field-nameN
INTO :macro-variable-name1,. . .,

:macro-variable-nameN,
[SEPARATED BY 'a blank, a character, or a
character string' [NOTRIM]]

FROM a dataset or table;

In the following example, we have a list of social security numbers
(SSNs) to use as a basis for selecting matching records from a
large, raw data file. There are a number of different ways to do
this. A macro variable created via SELECT INTO: is an efficient
way.

*** get base SSN list;
data ssn_list;
input ssn $9.;
datalines;
123456789
234567890
345678901
456789012
;
run;
*** create a macro variable ssnok;
proc sql noprint;
select ssn into :ssnok
separated by ', '
from ssn_list;
quit;
*** display the value of the macro variable
in the LOG as
123456789, 234567890, 345678901, 456789012;
%put &ssnok;
*** dataset selected will contain only the
records of those SSNs in the base list;
data selected;
input @1 ssn @;
*** use the macro variable &ssnok (a list of
SSNs) to filter records;
if ssn not in (&ssnok) then return;
input <list of variables>;
output;
run;

Thanks to the macro variable &ssnok, the dataset ‘selected’ will
have only those observations whose social security numbers
match the SSNs in dataset ‘ssn_list’. Note that there is a length
limitation in this SELECT INTO: structure in case you are going to
generate a very long list. The length of the generated macro
variable cannot exceed 32K characters.

5. VARIABLE NAME WILDCARD
A colon following a variable name prefix selects any variable
whose name starts with that prefix. This useful feature can make
it possible for a short statement to process a large group of
variables whose names begin with the same prefix. For example,

drop hi:;
*** This will drop any variable whose name
starts with 'hi', such as high, hi, hifi;
data b; set a(keep=d:);
*** This keeps every variables whose name
starts with d, such as d1, d2, degree, date;
total=sum(of times:);
*** The function sums all variables with the
prefix of ‘times’. Note this last form is
invalid under version 6.12 or lower for
Windows;

6. ARRAY BOUND DELIMITER
We can use a method called array processing to perform the
same tasks for a series of related variables within a dataset. The
variables involved in the processing are related by arrays. An
array is a temporary grouping of SAS variables that are arranged
in a particular order and identified by an array-name; its definition
is valid only in the same data step.

Coders' Corner

4

By default in SAS, the subscript in each dimension of an array
ranges from 1 to n, where n is the number of elements in that
dimension. In an array statement, the lower bound can be omitted
if its value is 1. An array with 2 dimensions ranging from 1 to 3
and 1 to 6, respectively, can be declared as:

array test{3,6} test1-test18;

Using a formal Bounded Array Declaration, we can declare this
same array as:

array test{1:3,1:6} test1-test18;

In a bounded array declaration, the colon is used to separate the
lower and upper bounds of an array’s dimension. The bounded
array declaration is useful in defining array dimensions which are
not based on 1. In the following case, defining the array bounds
according to year numbers makes the code more readable and
reusable:

array sales{1980:2000} sales1980-sales2000;
do i=lbound(sales) to hbound(sales);
. . .
if sales{i}<0 then do;
call symput('y',i);
call symput('sales',sales{i});
%put &y: Sales Error! Sales&y=&sales;

end;
. . .

end;

Suppose that ‘sales1987’ has a sales value of –5,000, that is,
sales{1987}=-5000. The above code will put this line in the log
(given that ‘options symbolgen;’ is in effect):

1987: Sales Error! Sales1987=-5000;

7. ARGUMENT FEATURE DELIMITER
In SAS/AF, a colon can be used both as an argument’s feature
delimiter and as a label indicator. In a METHOD statement, each
argument type must be declared and colons are used to separate
the elements of declaration:

label: method public
arg1:output:num
arg2:input:char(32)

endmethod;

In the argument segments of the above code, the first element,
e.g. ‘arg1’, is the argument’s name, the second, e.g., ‘output’, is
the argument’s usage, and the third, e.g., ‘num’, is the argument’s
data type.

8. SPECIAL LOG INDICATOR
In SAS for Windows version 8, a colon can be combined with
keyword ERROR, NOTE, or WARNING in a %PUT statement to
generate customized error, note, or warning text in SAS log.
These particular user-defined log strings have the same color as
the system generated error, note, and warning messages. In the
%PUT statement, the keyword must be the first word after %PUT,
must be in upper case, and must be followed immediately by a
colon or a hyphen. The following statements

%put ERROR: You made a wrong turn!;
%put NOTE: Your Lucky Number IS - &lucky.;
%put WARNING: Stop and Check!;

generate these colored strings in the log:

ERROR: You made a wrong turn! (Burgundy)
NOTE: Your Lucky Number IS - 9058. (Blue)
WARNING: Stop and Check! (Green)

9. INDEX CREATION OPERATOR
In SAS/IML(Interactive Matrix Language), a colon can serve as an

index creation operator to create a row vector. The syntax for the
vector creation is:

rowname = value1:valueN;

In the statement, the colon delimits the first element and the last
element of the index row vector. When the first element of the
vector is smaller than the last element, the elements in the row
vector increment one by one from the left to the right. For
example, the statement

normalrw = 4:9;

results in
normalrw 1 row 6 cols (numeric)
4 5 6 7 8 9

When the first element of the vector is larger than the last
element, a reverse order index is created with an incremental
value of –1. This statement

reverserw = 10:3;

results in
reverserw 1 row 8 cols (numeric)
10 9 8 7 6 5 4 3

When the elements of the vector are character arguments with a
numeric suffix, the arguments should be put in quotation marks.
The following statement

charrw = ‘month3’:’month7’;

generates an index row of
charrw 1 row 5 cols (character)
month3 month4 month5 month6 month7

If the element’s increment is not 1 or -1, a DO function should
replace the colon delimited phrase ‘value1:value2’ to generate the
index row vector.

CONCLUSION
In SAS language, a colon (:) can be used in many different ways.
This paper explained how it may be used as a label indicator, a
format modifier, an operator modifier, a key word component, a
variable name wildcard, an array bound delimiter, an argument
feature delimiter, a special log indicator, and an index creation
operator. Mastering these different uses can give you added
flexibility in writing efficient, highly functional code.

REFERENCES
SAS Institute: SAS OnlineDoc, version 8, 1999
SAS Institute: SAS System Help, V6, V8, 1996, 1999
Grant, Paul: SUGI 23: Simplifying Complex Character
Comparisons by Using the IN Operator and the Colon (:) Operator
Modifier, 1998
Cody, Ronald P.: SUGI 23: The INPUT Statement: Where It's @,
1998
Kuligowski, Andrew T.; Roberts, Nancy: SUGI 23: Basic Methods
to Introduce External Data into the SAS System, 1998
Timbers, Vincent L.: SUGI 23: SAS/AF Frame Entries: A Hands-
on Introduction, 1998
Olson, Diane: SUGI 25: Power Indexing: A Guide to Using
Indexes Effectively In Nashville Releases, 2000
Jaffe, Jay A.: SUGI 24: SAS Macros: Beyond the Basics, 1999
Satchi, Thiru: SUGI 24: An SQL List Macro to Retrieve Data from
Large SAS/DB2 Databases, 1999

ACKNOWLEDGEMENT
I appreciate the contribution from Arthur L. Carpenter of California
Occidental Consultants and Phillip Friend of USDA as well as my
colleagues in the Department of Veterans Affairs.

Coders' Corner

5

CONTACT INFORMATION
Hope you can provide your cases of using colons in SAS. Please
contact the author at:

Author Name Haiping Luo
Email hpluo@yahoo.com
SAS Discussion Board http://clubs.yahoo.com/clubs/sas
 http://go.to/sas-net

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other Countries.  indicates USA registration. Other
brand and product names are registered trademarks or
trademarks of their respective companies.

Coders' Corner

	SUGI 26 Title Page

