
 1

MODIFY®
The Most Under-Appreciated of the Data

Step File Handling Statements

Abstract

The MODIFY statement has been part of the SAS® set of tools for years, yet it is rarely used.
Good programmers have written very complicated code to accomplish that what be
done very readily using this statement. It allows changing of a SAS dataset in place using
a DATA Step, without creating a new or replacement dataset. If used correctly, it is
faster and more straight-forward than alternatives techniques using SQL. As a result it is
indispensable when working in a relational database, be it implemented in SAS or
another DBMS. This paper will discuss some of its syntax and uses, focusing on its use as a
batch transaction processing tool. It will also detail some of the SAS Access components
and options that can enhance its functionality against a non-SAS DBMS.

An Introduction to MODIFY

MODIFY is a file-handling statement like SET, MERGE, and UPDATE. These statements read
input datasets into the DATA step data vector. Datasets are any data type members of a
SAS library. They can be SAS datasets, tables accessed using ODBC, or those connected
using the other SAS/ACCESS engines. However, while this is true in theory, some of the
Access Engines support only parts of functionally required by MODIFY type processing.

What is unique about MODIFY is that it causes the DATA step to not replace, recreate, or
delete the original dataset! In all other uses of the DATA step, the datasets listed in the
DATA statement are replaced. If one attempts to change an existing dataset using the
DATA step as in the following example:

data MyTable;
 set MyTable;
 CurrentDate = date();
run;

SAS will read each dataset record into the data vector, make the coded changes, and
write each resulting record to a temporary dataset. Upon successfully reading,
modifying, and writing all of the records, the original dataset is replaced with the
temporary dataset. In many cases, this is the most efficient way this can be done. It
however is a severe limitation to those who are processing against datasets that can not
be over-written. The main causes of this limitation are relational integrity constraints and
the lack of the privileges needed to create a table in the RDBMS in which the dataset is
stored.

The following DATA step using MODIFY on the other hand does not replace the original
dataset.

data MyTable;
 modify MyTable;
 CurrentDate = date();
run;

In this example each record from MyTable will be read into the DATA step vector, the
coded changes to the record will be made, but then rather than write the results to a

 2

temporary dataset, SAS modifies the record directly in the MyTable dataset. If MyTable is
a SAS dataset, these changes are immediate. If MyTable is not a SAS dataset, SAS must
do different things based on the nature of the SAS ACCESS engine being used. This can
mean calls to ODBC, OLE DB, or the native database API. The net result is the functional
equivalent to a SQL update to each individual row. When writing to an RDBMS such as
Oracle®, MySQL®, Access®, or Microsoft® SQL Server®, the changes may not be
instantaneous. Once again, depending on the engine, there may be Rollback
maintained so that all changes will be undone if an error occurs. As you will see later, this
not only applies to updated records, but to added and deleted records as well.

Since MODIFY does not replace the dataset, it can be used to update datasets or tables
with primary, unique, and foreign keys. It can also make updates to tables in which the
user has only row update privileges. Often when a programmer is presented with this
problem they choose to use PROC SQL. This is of course a very viable solution if the
updates are simple enough that they can be coded in a SQL UPDATE statement. There
are however many situations which can benefit greatly from the added power of DATA
step process. This power can be used to handle errors encountered during processing,
process based on record order, retain temporary values between records, make several
changes to a record in a single pass through the data, output to separate datasets, and
make use of the powerful functions available within SAS.

There are four documented forms for using the MODIFY Statement. They will each be
discussed individually. They are:

MODIFY alone:
A sequential pass through a dataset

MODIFY with a BY Statement:
An ordered match merge

MODIFY with a KEY= Option and a SET Statement:
An individual index based record lookup

MODIFY with a POINT= Statement:
A record number based lookup

In exploring the use of these syntax forms, we will be using the simple sample dataset of
clients and their addresses.

Client
Number

Address City State ZIP AddressStartDate Address
EndDate

Current
Address

latitude longitude

716 6009 Silver Oaks Ct SE Tumwater WA 98501 01JUN2004:00:00:00 . . .
716 2991 Lookout Drive NW Olympia WA 98502 01DEC1995:00:00:00 . . .
716 144411 Martinson Rd SE Yelm WA 98597 01DEC1990:00:00:00 . . .
121 215 Legion SW Olympia WA 98502 01JUN2004:00:00:00 . . .
1221 101 Stewart St Seattle WA 98101 01JUN2004:00:00:00 . . .
721 1320 Broadway Plaza Tacoma WA 98402 01JUN2004:00:00:00 . . .
251 585 Liberty Avenue Salem OR 98501 01JUN2004:00:00:00 . . .
1222 900 SW Fifth Street Portland OR 98501 01JUN2004:00:00:00 . . .
1 11th Ave. and Columbia Olympia WA 98504 01JUN2004:00:00:00 . . .
35 1730 Minor Ave. Seattle WA 98501 01JUN2004:00:00:00 . . .
225 100 SAS Campus Drive Cary NC 27513 01JUN2004:00:00:00 . . .
104 One Microsoft Way Redmond WA 98052 01JUN2004:00:00:00 . . .
191 380 New York Street Redlands CA 92373 01JUN2004:00:00:00 . . .
212 500 Summer St. NE Salem OR 97301 01JUN2004:00:00:00 . . .
313 521 Wall St. Seattle WA 98121 01JUN2004:00:00:00 . . .
414 909 A Street Tacoma WA 98402 01JUN2004:00:00:00 . . .
515 1100 Fairview Avenue North Seattle WA 98109 01JUN2004:00:00:00 . . .

 3

This is a hypothetical list of addresses for a database of clients. The primary keys of this
dataset are ClientNumber and AddressStartDate. In this example all of our clients have a
single address except client number 716 which has three, each of which start on different
dates.

MODIFY Alone

This syntax form allows us to make a single pass through the records in a dataset, while
making changes to those records. The subset of records that are read can be changed
using a WHERE clause in the Modify statement. The order the records are read will be the
sorted order if reading a SAS dataset, or the order of the datasets primary key if reading
from a non-SAS dataset. If no primary key is present, no order may be assumed. Since
there is no BY statement, BY group (“FIRST.” and “LAST.”) type processing is not allowed.
Unfortunately, you cannot use a BY statement with a MODIFY statement that has a single
dataset. Attempting to do so will return an error to that effect. I will show a trick to get
around this later in the paper.

The following example will update all of the records in our address dataset that have a
start date of June 1st 2004.

data Clients.Addresses;
 modify Clients.Addresses(where =
 (AddressStartDate >= DHMS('01-JUN-2004'd,0,0,0)));
 CurrentAddress='T';
 NewVar1 = ‘This wont be kept’;
run;

In this example the dataset is stored in a Microsoft Access database, so the date values
needed to be converted to a date/time type before the comparison could be made.
This explains the use of the DHMS function. The CurrentAddress='T'; line refers to a
variable that already exists in the master dataset. This code will change the value of that
variable in the master table to the value “T”. On the other hand the NewVar1 variable
does not exist in the master table. The line changing its value is in effect creating a
temporary variable. This variable will not be created in the master table. Any changes
made to it will be lost.

This same result can be accomplished just as easily in PROC SQL using an UPDATE query
of the following form. Most uses of the MODIFY statement alone can be just as easily be
done using SQL, so the value of this syntax form is marginal.

proc sql;
 update Clients.Addresses;
 set CurrentAddress='T'
 where AddressStartDate >= DHMS('01-JUN-2004'd,0,0,0);
run;

Speed Testing

The earlier example begs the question “Which is faster MODIFY or UPDATE.” It turns out
much of that depends on the nature of the query and the SAS ACCESS engine being
used. I ran the following functionally equivalent step to test this.

data TestLib.MyEmptyTable;
 modify TestLib.MyEmptyTable;
 Var1 = ranuni(Var4);
run;

And...

 4

proc sql;
 update TestLib.MyEmptyTable
 set Var1 = ranuni(Var4);
quit;

First I tested them against 100,000 records in a Microsoft Access database using a SAS
Library connected using ODBC. I then tested them against 1,000,000 records in standard
SAS datasets. Between runs I completely deleted and recreated the database and/or
tables to be sure that all runs had the same environment. The use of a SAS only function
such as RANUNI with a parameter from within the dataset forces SAS to process the
query rather than just passing the SQL straight to Access. The results were interesting.

 Dataset MODIFY SQL
100,000 Rows in Access Tables 11.5 Seconds 8.5 Seconds
1,000,000 Rows in SAS Datasets 4.9 Seconds 9.0 Seconds

It appears that when processing SAS datasets MODIFY is almost twice as fast as SQL.
However when used against a remote RDBMS MODIFY is significantly slower. In situations
where processing time is critical, both of these methods should be tested to see which
performs the best. When using SAS ACCESS engines, a helpful tool is the following SAS
option.

options sastrace=‘d,,,d' sastraceloc=saslog nostsuffix;

This option writes all activity passing through the SAS/ACCESS engines to the log. This
activity may be SQL queries, OLE DB calls, or any other communication that SAS is using
to perform the tasks required. There are different values allowed for the value of
SASTRACE, so see the documentation for the settings appropriate to your needs.

MODIFY with a BY Statement

When you start using MODIFY with a BY statement its real power is revealed. This works a
little like a MERGE statement in that is combines two datasets doing ordered match
merge processing. Typically you have an existing master dataset and a transaction
dataset containing new and/or updated records for that dataset. This syntax form allows
BY group processing. It also allows updating existing records, deleting unwanted records,
and creating new ones all in the same pass through the data depending. The action
taken can be dependent on whether or not you get a match. You can even send any
records desired to another dataset.

There are three actions statements that can be used on each record. They are:

OUTPUT – Creates a new record in the master dataset, or an alternate
output dataset.

REPLACE – Updates the currently matched record in the master dataset
REMOVE – Deletes the currently matched record in the master dataset

The REPLACE and REMOVE actions are only make sense if the incoming transaction
record matches a record in the master dataset. For this reason they can only be used to
write to the master dataset, not an alternate output dataset. The OUTPUT action is
typically only used to write a record that did not match to the master dataset but it can
be used to create duplicate records as well. It is also used to write records to alternate
output datasets, as we will see later. If no Action is specified in a DATA step, REPLACE is
assumed for matched records. An ERROR condition is returned for unmatched records.

 5

Here is an example we could use to update our Addresses dataset with a list of new
address. In this example the new address are stored in the temporary dataset
NewClientAddresses.

data Clients.Addresses;
 modify Clients.Addresses NewClientAddresses;
 by ClientNumber AddressStartDate;
 select (_IORC_);
 when (%SYSRC(_SOK)) do;
 replace;
 end;
 when (%SYSRC(_DSENMR)) do;
 output;
 error=0;
 end;
 when (%SYSRC(_DSEMTR)) do;
 put 'ERR' 'OR: Duplicate Values on transaction dataset';
 stop;
 end;
 otherwise do;
 put 'ERR' 'OR: Unknown IO ';
 stop;
 end;
 end;
run;

Note that the master dataset is listed in the DATA statement and both the master and
transaction dataset are listed in the MODIFY statement. The BY statement lists the
variable on which the matching will occur. This is similar a MERGE statement but don’t
rely on this similarity. Both the master and transaction dataset must be either sorted by
the BY variables, or they must by indexed by those variables. Unlike MERGE, only the rows
from the transaction dataset are processed. Rows from the master dataset that are not
in the transaction dataset are not loaded into the data vector.

First I must give you a word of warning if you will be attempting this against a non-SAS
dataset. The standard LIBNAME statements for pointing at ODBC, OLE DB, or other SAS
ACCESS engines, do not have the correct defaults for this type of processing. The
following is a correctly formated library for a Microsoft Access database.

libname Clients odbc
 noprompt="driver={Microsoft Access Driver (*.mdb)};
 DBQ=c:\temp\ModifyTemp\Clients.mdb"
 reread_exposure=yes DBINDEX=YES UPDATE_LOCK_TYPE= NOLOCK;

Those options in the last line are needed to give SAS the access levels it needs. The
READ_EXPOSURE option gives SAS the ability to do individual record reads and writes.
The DBINDEX option allows SAS to directly reference the indexes in the remote DBMS.
Honestly, I am not sure why the UPDATE_LOCK_TYPE option is needed to disable record
level locking, but I could not get this to work without that option as well.

It most cases, the BY variables are the primary or a unique key of the master dataset.
While that is not required, it is highly recommended. If records with duplicate values for
the BY variables are found in the master dataset, only the first record is matched. None
of the other records will be matched regardless of how many records with those values
are found in the transaction dataset. If transaction dataset has records with duplicates
of the BY variables, the last record read will over-write the earlier values.

 6

As you can see in the example, this form of MODIFY requires the use of the _IORC_ or
“Input/Output Return Code” automatic variable. This variable actually exists in any DATA
step but is rarely used outside MODIFY processing. It contains a numeric value which
indicates the status of the last input/output action performed. While this value is numeric,
SAS provides the macro function %SYSRC that resolves a set of mnemonic codes to their
equivalent numeric values. SAS recommends that these values be tested using %SYSRC
in case the numeric return codes change in the future (However, SAS breaks this rule in all
of its examples and tests for the value 0 instead of using _SOK). In this example we are
testing for the codes returned by the matching of the master and transaction dataset.
There are three possible values at this point in the process:

_SOK The source record matched a record in the master dataset (0)
_DSENMR The source record did not match a record in the master dataset in

BY processing. (1230013)
_DSEMTR The source record did not match a record in the master dataset and

it is not the first record with that value of the by variables in BY
processing. (1230014)

In the previous example we first test the _IORC_ value to see if equals the value of _SOK.
This indicates that a match was found. If so, the values in the data vector that were
loaded from the master dataset will have already been over-written by the values from
the transaction dataset. We simply call the REPLACE action to write these updates to the
master dataset. If _IORC_ instead equals the value of _DSENMR, we know that the
record did not match and use OUTPUT to create a new record in the master dataset.
Finally if equal the value of _DSEMTR we known the transaction dataset has duplicates on
the BY variable. In this example this is treated as an error, but other actions could also be
taken. This example returns an error because the BY variables are a unique key of the
maser dataset. If we tried to write the second record after the first has already been
written, the unique key of the table would be violated. The record would then be
rejected with and uncontrolled error.

As mentioned earlier, if the transaction record does not match the master dataset and
we get a _IORC_ value other than 0, this is technically an error condition. These errors will
be written to the log, but they will not stop processing. If many transactions are being
added, this can add unwanted clutter to the log. For this reason the line _error_=0 is
added to the code. This clears the error before the end of the data vector loop, and
SAS does not write it to the log.

MODIFY with a KEY = Option and SET Statement

Functionally this form of MODIFY is virtually the same as using a BY statement. What
differs is how the matching to the master dataset is done. Rather than doing a sorted
match merge, this form does individual lookups for each transaction record. The lookup
is accomplished using an index on the master dataset. For this reason MODIFY does not
require that the transaction table be sorted on the BY variables. It is also very efficient for
transactions dataset that are small in relation to the master dataset as only the needed
records are read, not the entire master table. The master dataset must have an index on
the BY variables. Sorting alone is not sufficient. This form also tends to require a more
advanced SAS/ACCESS engine. Here is an example that is functionally the same as the
previous example.

 7

data Clients.Addresses;
 set NewClientAddresses (rename = (address = address_in
 city = city_in
 state = state_in
 zip = zip_in));
 modify Clients.Addresses key=AddressesPK;

 address = address_in;
 city = city_in;
 state = state_in;
 zip = zip_in;
 select (_IORC_);
 when (%SYSRC(_SOK)) do;
 replace;
 end;
 when (%SYSRC(_DSENOM)) do;
 output;
 error=0;
 end;
 otherwise do;
 put 'ERR' 'OR: Unknown IO ';
 stop;
 end;
 end;
run;

There are a few things that you should notice. First is that the SET statement must occur
before the MODIFY statement. This is because the new record must be read into the
data vector before the matching key values can be looked up in the master dataset. As
a result, if a matching record is found and read into the vector, its values will over-write
any existing values loaded from the transaction table. For this reason all of the variables
in the transaction dataset are renamed. Then all of the values are written back to their
original variables after the MODIFY statement has executed. Some efficiency can be
gained here by checking to see if there are any actual changes. Code can be written
to test this and only perform a REPLACE if any are found.

Second, notice that the key variables are not mentioned by name at all. They are
determined by the variables that make up the index to which the KEY= option points.
This requires that you known the name of the index needed. This can also be
accomplished by using the DBKEY option to declare the key variable of the master table.
The following modify statement is equivalent that of the previous example.

modify Clients.Addresses(dbkey = (ClientNumber AddressStartDate)) key=dbkey;

This form is useful if you don’t know the name of the index you need. It looks up the
correct index based on the passed variables names. This is necessary in some ACCESS
engines as the name of the index does not appear to be passed correctly if it listed
explicitly. This form has worked for me in this situation.

Third, notice that we have introduced a new _IORC_ value.

_ DSENOM The transaction record did not matched a record in the master
dataset in KEY= and POINT= processing. (1230015)

This acts much the same as _DSENMR, only it applies to KEY= and POINT= processing only.
There is no equivalent to _DSEMTR in KEY= processing so you must code your own ways of
catching these situation if needed.

 8

In there are multiple records in the transaction dataset with the same key values, special
effort must be taken. This is especially true if a matching record is not found in the master
dataset. To handle this, the UNIQUE option must be included on the MODIFY statement.
By default the MODIFY statement will not re-query if consecutive records with the same
key values are found. This can be a problem if the first record is new. In this case the first
record will come up as not matched so the code will write out a new record. The
subsequent record will still come up as not being matched. When the code tries to write
this record, the unique key of the table is likely to be violated. The UNIQUE option forces
the match to be re-queried on every incoming record.

MODIFY with a POINT = Option and SET Statement

This form of MODIFY is similar to KEY= processing in most ways, except instead of looking
up rows using an index, the records are looked up by the row number of the master
table. The row number must have been included in the transaction dataset as an extra
variable. This make for very fast processing. The following example updates the latitude
and longitude of our address table.

data Clients.Addresses;
 set AddressesGeocoded(rename = (latitude = lat_in
 longitude =long_in));
 modify Clients.Addresses point=RecordNumber;
 if _iorc_=%sysrc(_SOK) then do;
 latitude = lat_in;
 longitude = long_in;
 replace;
 end;
 else do;
 put "ERROR: Invalid record number: " RecordNumber;
 stop;
 end;
run;

The transaction dataset used in this example was extracted from the master table and
the value of the _N_ automatic variable was stored in a variable named RecordNumber.
The table has no other identifying columns. Notice that just like the KEY= processing, the
incoming variables must be renamed and the master tables values must be updated
with code. It makes no sense to do this type of processing were there are records that
don’t match. For this reason anything except a match is reported as an error and
processing is stopped. The SAS documentation strongly recommends including a stop
statement for un-matched records, as not doing so can result in infinite loops.

Despite the potential speed improvements this form may offer, I find it to be very
dangerous and personally never use it. The same thing can be accomplished using key
values, without the risk. If any records are added or deleted between the extraction of
your dataset and the MODIFY step, the wrong records will be updated. Also, most
RDBMS do not have a permanent record number concept that is accessible through
SAS, so it is of limited value. If you do choose to use this form, I recommend leaving the
unique key values in the transaction dataset. This way you can write code to double
check the keys of the transaction to those of the matched row. This should alleviate
some of the risk.

MODIFY with a KEY = Option and INFILE Statement

 9

This can be considered an undocumented fifth form of the MODIFY statement. It work
much the same as MODIFY with the KEY= option and a SET statement, only now the INFILE
statement supplies the incoming records instead of the SET statement. This allows one to
load data into a dataset directly from a text file. Using MODIFY in a DATA step however,
you can accomplish the entire extract, transform, and load process in a single step.
Using INFILE you can read the data in to the data vector. Once in, you can do all kinds
of transformations and cleaning of the data. When the data is ready to be loaded, you
can capture errors in the loading process and handle them appropriately. The next
section of this paper will describe this type of error handling in more detail. For now, here
is an example of this syntax form that loads data from a text file directly into an empty
table.

data Clients.Addresses;
 modify Clients.Addresses key=AddressesPK;
 infile "E:\PNWSUG\Papers\Modify\ClientAddresses.txt"
 dsd dlm=",";
 input ClientNumber Address City State ZIP
 AddressDateIn date11.;
 AddressStartDate = DHMS(AddressDateIn,0,0,0);
 output;
 error=0;
run;

This is actually the code I used to initially load the Addresses dataset we have been
using. As mentioned earlier, the INFILE statement is use in place of the SET statement. In
this example we are assuming an empty destination table. This is a limitation of this form.
Note that we are able to transform the date value into a date time value before it is
output to the master table. This is just an example of what could be done using formats,
SAS functions, SAS hash lookups, or even inline queries using the OPEN and FETCH
functions. The possibilities are great and in my opinion surpass the capabilities of most
native database load facilities.

Capturing and Handling Constraint Violations

This is where MODIFY really stand apart from other options for loading data into relational
tables. Constraints are used to enforce many of the business rules of a database. They
come in many forms from basic primary, unique, or foreign keys, to the advanced trigger
logic available in many RDBMS. When a record is added, or an existing record is
updated in such a way that it violates one of these keys, the DBMS returns an error
condition and rejects the transaction. If you are attempting to load data using
traditional SQL, these errors force a rollback of all of the records already posted. If you
need more control than this, the data is often loaded into a temporary table, and DBMS
native cursor logic is used to work around the problem. This code can be quite complex.
MODIFY provides a very good alternative to this. The following is a simple example of
how errors can be captured and the offending records written out to a dataset of
rejected records.

 10

data ClientsS.Addresses
 RejectedRecords;
 modify ClientsS.Addresses NewClientAddresses;
 by ClientNumber AddressStartDate;
 select (_IORC_);
 when (%SYSRC(_SOK)) do;
 replace ClientsS.Addresses;
 if _IORC_ NE %SYSRC(_SOK) then do;
 ReturnCode = _IORC_;
 ErrorMessage = IORCMSG();
 output RejectedRecords;
 put 'WARNING: Rejected Record On Replace! ' ErrorMessage;
 error=0;
 end;
 end;
 when (%SYSRC(_DSENMR)) do;
 output ClientsS.Addresses;
 if _IORC_ NE %SYSRC(_SOK) then do;
 ReturnCode = _IORC_;
 ErrorMessage = IORCMSG();
 output RejectedRecords;
 put 'WARNING: Rejected Record On Output! ' ErrorMessage;
 end;
 error=0;
 end;
 when (%SYSRC(_DSEMTR)) do;
 put 'ERR' 'OR: Duplicate Values on the transaction table';
 stop;
 end;
 otherwise do;
 put 'ERR' 'OR: Unknown IO ';
 stop;
 end;
 end;
run;

This DATA step is nearly identical to the earlier example of MODIFY with a BY statement.
The only changes are the addition of an alternate output dataset named
RejectedRecords and an IF block that appears after the OUTPUT and REPLACE
statements. Either of these two actions could result in an attempt to apply a change to
the dataset that would violate its constraints. As mentioned earlier, the _IORC_ variable
represents the result of the last output action as well as the input actions. By testing its
value after the attempted output action, we can capture any error conditions. In this
example, any result other than success causes the record to be written to the
RejectedRecords table and a warning to be written to the log. The value of the _IORC_
variable is captured as well as the value returned by the IORCMSG() function. This
function returns a human readable version of the error condition. By writing the rejected
record to a dataset along with the error code and message, it can later be reviewed
and the errors corrected. An attempt could then be made to load it into the database
at a later time. In the mean time, a rollback is not triggered and the DATA step continues
processing the rest of the records.

There are other actions that could be taken based on specific values of the _IORC_
variable. Here are some values that this variable can take as the result of an output
action.

_SENOCHN The OUTPUT or REPLACE action violated a Unique Key. (630058)

 11

_SEICAU Add or Update failed for data set because data value(s) do not
comply with integrity constraints. (660130)

_SENMCH Observation was not added or updated because no match was
found for the foreign key value. (630188)

_SEINTG Add or Update failed because data value(s) do not comply with an
integrity constraint that utilizes index for corresponding file. (630025)

The first of these values can be found in the documentation. It turns out that the code
for the SYSRC macro function can be found in C:\Program Files\SAS\SAS
9.1\core\sasmacro\sysrc.sas. This is where I found the other three values listed. There
are actually hundreds of these, but I have only found uses for these. For example, you
could use the knowledge that a foreign key was broken obtained from the return code
_SENMCH to write code that inserted the missing value into the foreign key table, and
attempted to re-output the record. Many other possibilities exist as well, making this a
very powerful tool.

I must give you another word of warning here. This example will not work against a
Microsoft Access database. I have had very good success using it with SAS datasets and
Oracle database tables, and I expect that it will work in others. This code is supposed to
capture the errors and work around them, and this usually works fine. The MS Access
errors however, cause the SAS DATA step loop to stop. This prevents the processing of
the remainder of the records. I suspect that this has something to do with Microsoft using
OS level errors in Access and that those errors are picked up by SAS as OS errors, not
DBMS errors. That is pure speculation however.

Merging a Master Dataset on itself to get BY processing

This is a bit of a non-standard trick I have developed to enable BY group processing to a
pass trough a master table. This type of processing is very difficult thing to do using SQL
but can be done very quickly with this trick.

data Clients.Addresses;
 modify Clients.Addresses Clients.Addresses ;
 by ClientNumber descending AddressStartDate;
 retain LastDate;
 if first.ClientNumber then CurrentAddress = 'T';
 else do;
 AddressEndDate = LastDate;
 CurrentAddress = 'F';
 end;
 replace;
 LastDate = AddressStartDate;
run;

In order to get all of the records from the master table to pass through the data vector,
and have a BY statement to establish BY group processing, I used the master dataset as
both the master and transaction dataset and the BY statement joins them on the values
by which I want the records sorted. In this case the desired order is ClientNumber and
descending AddressStartDate. This passes through all the address for each client in order
and returns the most recent address first followed by any earlier addresses. This way I can
mark the first address found for a client as the most recent. I can also create a
temporary retained variable which contains the start date of the previous record. In this

 12

way, I can set the end date of an address to equal the start date of the next newer
address. This turns the records into address spans.

If it’s so good, why isn’t everybody using it?

As you can see the concepts of the MODIFY statement are quite a bit different than
many of the other SAS concepts. For this reason and others it can be hard to
understand. This I think makes it a bit daunting to many. The error messages that occur
can also be just as much of a barrier to its use. Working around these can take a fair
amount of knowledge or perseverance. Particularly difficult is getting the correct options
set up on the SAS ACCESS statements. The errors resulting form getting these incorrect
erroneously appear to preclude the use of MODIFY against that engine entirely. This
would turn away many programmers, as it did me the first few times I encountered them.
Another limitation is that, as I mentioned earlier, not all of the features work with all of the
SAS/ACCESS engines. I have found however that using the engine specific to the DBMS
as opposed to using ODBC or OLE/DB can give better results. There are of course many
programmers that never work with remote and/or relational tables, and therefore have
little use for this tool. I suspect that there are also situations where this could be helpful in
modifying large dataset with limited resource. And finally, there are situations were
MODIFY can be slower than SQL alternatives. This should be tested if performance is
critical.

Conclusion

If you are using SAS to maintain relational tables, you should be using MODIFY. If you are
using tools other than SAS to do this type of processing, you should consider SAS, as
MODIFY makes it a very powerful tool for doing this. With a little trial and error, and the
correct SAS/ACCESS modules, I know of no better tool for doing this type of processing
with a minimal investment in programming.

Biography

Curtis currently works for Looking Glass Analytics as a SAS consultant and GIS service
manager. Prior to that, he worked for the Washington State Department of Social &
Health Services Division of Research and Data Analysis, and the US Census Bureau. He
has worked extensively with SAS for fifteen years. He has expertise in Geographic
Information Systems, database design/programming particularly using Oracle and
PL/SQL, and in demographic analysis. He holds a bachelors degree in Geography from
the University of Washington.

Curtis Mack
Looking Glass Analytics
Curtis.Mack@lgan.com
www.LGAN.com

Acknowledgements

SAS is a registered trademark of SAS Institute, Inc. in the USA and other countries. Other
brand and product names are registered trademarks or trademarks of their respective
companies.
® indicates USA registration.

