
, 

232 
NON-STATISTICAL USES OF SAS 

Steven Ma.ys 
Un1Tersity of Texas Health Science Center a.t Dallas 

Introduction 

The everyday needs of a computer shop bring about new application 
of SAS. This has been particularly true for us at the UT Healtl 
Science Center at Dallas. I am in the general applications section of 
the computer center and am constantly in contact with people who need 
results. It is Obviously true that SAS can help qet these resul~ if 
they are statistical in nature. But wnat about ordinary applicat~ons, 
that are not necessarily statistical? It 2S the intention here to 
present some of these uses. Perhaps, something may be conveyed that 
will aid the reader. 

The following are several techniques and ideas, that have come 
about in the course of two years of experience. 

Using SAS to update non-SAS data sets 

There is often a need to update observations in a data set. If 
you are maintaining the data in the form of a SAS data set, then it is 
easy to use the MERGE statement. However, there may be a situation 
when the data is maintained in a standard 0.5. data set. This 
happened to us in a situation where the data had to be preprocessed 
with several programs before being handled by SAS and SPSS. Our 
client decided he wanted to correct some 200 or so observations. We 
decided to try SAS to update the data. What this meant was that even 
though we needed to forma SAS data set, ultimately we wanted to go 
back to the original pre-SAS format. We realized that· this may not 
have been the most efficient use of computer resources, but it was 
nice to have an existing mechanism to update, bypassing a program 
written from scratch. I believed it was an efficient use of computer 
software in the form of SAS to save valuable programmer time in a 
one-shot general applications environment. Here is a brief 
description of how we did it and comments on its effectiveness. 

IISTEPl EXEC SAS 
IlsAS.DOl OD DSN=JER.STAT1,UNIT=TAPE,DISP=OLO 
IlsAS.NEW D~ DSN=&&PASS,DISP=(NEW,PASS) , 
II UNIT=SYSDA,SPACE=(CYL,(5,S» 
IISAS.SYSIN.DD * 
DATA OLD; 
INPUT DONAMEFODl 
PAT NUN. 2-6 iCARD NUM 79-80 CARD $ 1-80; 
PROC SORT,BY PAT-NUM CARD NUM, 
DATA OPD; . - -
INPUT 
PAT NUM 2-6 C.iRDNUM 79-80 CARD $ 1-80; 
CARDS; 

.. "" ... ".. " ...... . 
PROC SORT,BY PAT NUM CARD_NUM' 
DATA NEW; 
MERGE OLD UPO, 
BY PAT NUM CARD NUMi 
DROP PAT NOM CARD NOM, 
/*. -

0- "-: ,., ,,_", 



.. 
~ .. -

NON-STATISTICAL USES OF SAS 

I/STEP2 EXEC FORNCX 
/IC.SYSIN DD '" 

INTEGER COUNT 
INTEGER"'2 ID 
LOGICAL*l CARDIBO) 
COUNT=O 

1 BEADIB) ID 
IF(ID.NE.99)GO TO 1 

2 READ(~,END=9)CARD 
COUNT=COUNT+l 
WRITE(9,3)CARD 

3 FORMAT (BOAl) 
IF(COUNT.GE.9)GO TO 2 
WRIT~(6,4)CARD 

4 FORMAT(lX,SOAl) 
GO TO 2 

9 CALL EXIT 
END 

1* 
Ilx.FT06FOOl DD SYSOUT=A 

233 

IIX.FTOBFOOl DO DSN=&&PASS,DISP=(OLD,DELETE) 
Ilx.FT09FOOl DD DSN=JER.NEW.STATl,DISP=(NEW,CATLG) ,UNIT=TAPE, 
II DCB=(RECFM=FB,LRECL=BO,BLKSIZE:l600) 

Ou~ first experience .w~th this wo~ked, except ~t was noticed that NEW 
had more observations than OLD. Now, if there were inserts, as 
opposed to only replacements, then t;his would be conceivable. 
However, we knew before that the~e were no adds. How could we detect 
these· bad updates? Fortunately, SAS has avery simple tool to detect 
these errors: 

DATA NEW 1 
MERGE OLD OPD ; BY PAT NUM CARD.1:ilIM ; 
IF MERGE = 2 THEN PUT PAT NOM CARD ; 
DROP PAT_NOM CARD_NOM, -

If you will remember MERGE accompanied by a BY statement provides two 
variables for assisting the progr~er: LASTBY and MERGE. When MERGE = 2 then there is no observation in OLD with the current BY value. So 
the IF statement above would cause PAT NOM and CARD to be printed when 
a bad update is made. With these we were able to trace down the 
errors, correct them and resubmit the update job. Even if there were 
to be inserts, the MERGE variable is helpful: 

IF MERGE .. 3 THEN PUT • *REPLACEMENT'" • PAT NUMCARD ; 
IF MERGE" 2 THEN PUT -*INSERTION * I PAT-NOM CARD ; 

The second step puts the data set back into ~ regular format. 
If you have the SAS Progr~er's Guide, there ~s a descr~ptio~ of how 
one reads a SAS data set in FORTRAN and writes it out back in 
character representation. A ~etter alternative is tne use of PRTPCH, 
a member of the SAS supplementary procedure library. Try: 

PROC PRTPCH; VAR CARD 1 



c. ," 
~. 

NON-STATISTICAL USES OF SAS 

PARMCARDSI 
(lOA8) 
and in STEPl override the FT02FOOl DD statement 
with 
IISAS.FT02FTOOl DD DSN~JER.NEW.STAT1,DISP~(NEW,CATLG), 
II UNIT~TAPE, 
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=l600) 

STEP2 would not be necessary then. 

No doubt, there is more overhead than necessary. Work is being 
expended to create the SAS data sets OLD and UPD. Then after the 
merge, work is required to undo NEW. For the 9660 SO-byte record data 
set about 42 c.p.u. sees. were used to do STEPl and another 55 sees. 
to do STEP2. This is worth it, however, when you consider programming 
is reduced to about 40 lines of code, including JCL, SAS, and FORTRAN. 

The use of SAS program statements in Reports 

SAS program statements provide surprising program flexibility. If 
one is concerned in getting out a quick report, SET, DROP, IF, GO TO, 
and RETURN along with the PRINT procedure can give a respectable 
summary. To show SAS's capability a sales analysis example is 
presented. 

Store X has seven salesmen. A record is kept for each sale. Each 
sales record contains the salesman's number, the part number, the part 
name, the quantity sold, and the price per unit. The gross amount is 
simply the product of quantity and price. One added factor is the 
determination of each man's commission, which depends on the man's 
rate, based on seniority and the total amount of his sales. 

The report consists of two tables. The first one is the summary 
of the salesmen including each individual's total sales and the 
calculated commission. The second one is a detail of all the sales by 
salesman. TO get the first table it is necessary to create the data 
set SUMMARY. Here is where the program statements come in handy. 
SUMMARY is a subset of SALES containing exactly one observation for 
each salesman. The program statements are shown on the next page. 



235 

NON-STATISTICAL USES OF SAS 

COMMENT SALES ANALYSIS BY SALESMAN 
; 
DATA SALES ; 
INPUT 

IF S NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
IF S-NO 
GROSS ~ 
CARDS; 
3 2305 
6 3502 . . . 

S NO 1-2 PART NO $ 5-11 
PARTNAME $ 12-30 QUANTITY 31-34 
PRICE 35-42 SALESMAN $ 51-75 
~ 1 THEN SALESMAN ~ 'JACK ADAMS' ; 
~ 2 THEN SALESMAN ~ 'BILL BELTON' ; 
~ 3 THEN SALESMAN ~ 'WAYNE CAMPBELL' ; 
~ 4 THEN SALESMAN ~ 'DICK HOLMES' ; 
~ 5 THEN SALESMAN; 'SID MCDOWELL' ; 
~ 6 THEN SALESMAN ~ 'NED TEMPLE' ; 
; 7 THEN SALESMAN; 'PETER YOUNG' ; 
~ 1 THEN RATE; .15 ; 
~ 2 THEN RATE; .10 ; 
; 3 THEN RATE ; .15 ; 
; 4 THEN RATE; .10 ; 
; 5 THEN RATE ; .10; 
; 6 THEN RATE; .20 ; 
; 7 THEN RATE; .15 ; 
QUANTITY * PRICE ; 

PENCIL SHARPENER 
BOOK CASE 

.. ... . ... .......... 

5 
1 

2.95 
25.70 

PROC SORT ; BY S_NO ; 

DATA SUMMARY ; SET SALES ; 
IF NO KEEP NO THEN GO TO SET2 ; 
IF KEEP NO-NE S NO THEN GO TO SETL 

ADD TOTAL; TOTAL + GROSS 
ORATE ; RATE ; 
MAN ; SALESMAN ; 

RETURN ; 
SETl : COMM; ORATE * TOTAL COMM = FLOOR (COMM * 100 + .5) I 100 ; 

OUTPUT ; 
SET2 , KEEP NO ; S NO 

TOTAL = 0 T 
GO TO ADD ; 

PROP KEEP_NO; 

PROC PRINT; TITLE 'SALES SUMMARY' ; ID MAN ; 
VAR TOTAL COMM ; 



, 
~ 
~' , 
i 
~ 
1 
i 
1-
", 

, NON-STATISTICAL USES OF SAS 
~ 
I 

, , 
t 

The total of sales is zeroed at the beginning of each salesman. 
(Note: it is important that SALES be sorted by salesman number prior 
to the creation of SUMMARY.) A record is output only when a change is 
encountered in the salesman number. The records contain the total and 
the commission for that particular salesman. The total is set to zero 
and the next salesman is processed. One thing should be kept in mind. 
When the last sales record of the last salesman is considered, there 
is no direct means within the program statements that allow for an 
observation for the last salesman. The way to get around this is 
inserting a dummy record, assigning 99 to the salesman's number. This 
means the dummy record will be sorted to the last, causing all the 
salesmen to be put on SUMMARY. Therefore, using 18 statements 
including those associated with PROC PRINT, one is able to produce the 
first table. 

MAN 
JACK ADAMS 
BILL BELTON 
WAYNE CAMPBELL 
nICK HOLMES 
SID MCDOWELL 
NED TEMPLE 
PETER YOUNG 
N=7 

SALES SUMMARY 

TOTAL 
3230.95 
816.65 

93.31 
647.99 
430.75 
225.70 
332.65 

COMM 
484.64 

81. 66 
14.00 
64.80 
43.07 
45.14 
49.90 



237 

NON-STATISTICAL USES OF SAS 

The second table is much easier, for it is just a listing of SALES. 

INPUT: 

PROC PRINT DATA = SALES ; BY SALESMAN ; 
VAR PARTNO PARTNAME QUANTITY PRICE GROSS ; 

OUTPUT: 

SALES SUMMARY 

------------------------ SALESMAN=JACK ADAMS -------------------------

OBS PARTNO PARTNAME 

1 3104 DESK -TYPE 1 
2 2345 SUIT CASE 
3 2708 DESK - TYPE 5 
4 2708 DESK -TYPE 5 

QUANTITY 

2 
1 
7 
4 

----------------------- SALESMAN=BILL BELTON 

OBS PARTNO PARTNAME 
1 3299 DESK - TYPE 4 
2 1205 i 2 PENCIL 
3 3103 FILING CABINET 
4 3325 DESK LAMP 
5 1704 DESK -TYPE 1 

QUANTITY 
3 

100 
3 
2 
1 

PRICE 

85.00 
45.95 

245.00 
325.00 

PRICE 
125.00 

0.04 
85.15 
25.85 

130.50 

GROSS 

170.00 
45.95 

1715.00 
1300.00 

GROSS 
375.00 

4.00 
255.45 

51. 70 
130.50 

--------------------- SALESMAN=WAYNE CAMPBELL ----------------------

OBS PARTNO PARTNAME 

1 2305 PENCIL SHARPENER 
2 2850 FORM 1200 
3 1864 BALL POINT PEN 
4 1845 SLIDE RULE 

QUANTITY 

5 
2000 

4 
2 

----------------------- SALESMAN=DICK HOLMES 

OBS PARTNO PARTNAME 

1 1804 GLOBE 
2 2100 DESK - TYPE 2 
3 2484 ELECT. CALCULATOR 

QUANTITY 

1 
4 
1 

---------------------- SALESMAN=sID ·MCDOWELL 

OBS PARTNO PARTNAME QUANTITY 

1 2402 CARD TABLE 
2 2401 DESK RADIO 
3 3325 DESK LAMP 
4 1105 CUSHIONED CHAIR 
II! •••• • • • • ...... 

1 
1 
1 
4 

PRICE 

2.950 
0.025 
0.890 

12.500 

PRICE 

22.00 
136.75 

78.99 

PRICE 

27.50 
35.00 
25.85 
85.60 

GROSS 

14.75 
50.00 

3.56 
25.00 

GROSS 

22.00 
547.00 

78.99 

GROSS 

27.50 
35.00 
25.85 

342.40 



238 

NON-STATISTICAL USES OF SAS 

Since the dummy card is in SALES, it will show up also in the PRINT. 
It will be the last record printed since it was sorted to the end. If 
the PAGE option is envoked then each salesman will be printed on 
separate pages. The last page will contain the dummy record, sO it 
can be easily discarded. If one prefers, a subset of SALES, made SO 
that it excludes the dummy record, can be printed. Or even something 
like this: 

DATA S ; INPUT - - - - ; 
CARDS I 

DATA DUMMY 
CARDS I 
99 
DATA SALES 

INPUT - - - -

SET S I SET DUMMY ; 

Then create SUMMARY from SALES, and print the second table from S. 
The alternative you choose depends on the quantity of data. 

From this start you can build and add more program statements for 
specialized situations. Here are some new factors: 

(1.) A salesman's commission is determined by the formula: 

COMMISSION ~ (TOTAL SALES - QUOTA) * RATE OF COMMISSION 

This means that besides the rate of commission, the salesman's quota 
must be known. 

(2.) The salesmen work at two stores 1 and 2. 

(3.) The first digit of the part number has a special significance. 
It describes the location where the item is stocked. 

Therefore, two new tables will be produced, one by store and 
ano.ther by stock location within salesman will be produced. The sales 
summary by salesman with the new way to calculate the commission will 
again be done. To code for each salesman's quota and the store he 
works in requires an additional 14 IF statements. There is an 
alternative to all those IF's and that is through the use of the MERGE 
statement. Without further comment the SAS statements involved are 
begun on the next page: 



239 

NON-STATISTICAL USES OF SAS 

COMMENT USE MERGE TO SUPPLY 
SALESMEN CODES 

, 
DATA M CODES ; 
INPUT S NO 1-2 RATE 4-5 2 

QUOTA 9-12 
16-40 ; 

STORE 7 
SALESMAN $ 

CARDS; 
1 15 2 175 
2 10 1 150 
3 15 2 125 
4 10 2 125 
5 10 1 135 
6 20 1 125 
7 15 1 125 

99 99 9 
DATA SALE ; 

JACK ADAMS 
BILL BELTON 
WAYNE CAMPBELL 
DICK HOLMES 
SID MCDOWELL 
NED TEMPLE 
PETER YOUNG 

INPUT S NO 1-2 PART NO $ 5-11 
QUANTITY 31-34 PRICE 35-42 
LOCATION $ 51-65 

GROSS = QUANTITY * PRICE 
IF LOC = 1 THEN LOCATION 
IF LOC = 2 THEN LOCATION = 
IF Loe = 3 THEN LOCATION = 
CARDS; 
3 2305 
6 3502 
2 3299 

PENCIL SHARPENER 
BOOK CASE 
DESK - TYPE 4 . . .. .... .... . .. 

PRoe SORT ; BY S NO ; 
DATA SALES; -
MERGE M CODES SALE ; 
BY S NO-; 

'LOCAL' ; 
'WAREHOUSE' ; 
'OUT OF TOWN' ; 

5 
1 
3 

2.95 
25.70 
125.00 

PARTNAME $ 12-30 
LOC 5 

COMMENT IF THERE IS NOT A RECORD FOR A SALESMAN THEN DELETE 
IF NO RATE THEN DELETE ; 
OUTPUT ; 



240 

NON-STATISTICAL USES OF SAS 

COMMENT SALES SUMMARY BY SALESMAN - WITH NEW SCH~ME 
FOR COMMISSION . , 

DATA SUMMARY ; S~'I.' SALES ; 
IF NO KEE'P NO THEN GO TO SET2 ; 
IF KEEP NO-NES NO THEN GO TO SET1 ; 

ADD : TOTAL = TOTAL + GROSS ; 
ORATE = RATE ; 
OQUOTA = QUOTA ; 
MAN = SALESMAN I 

RETURN ; 
SET1 COMM = ORATE * (TOTAL - OQUOTA) ; 

COMM = MAX(O,COMM) ; COMM = FLOOR (COMM * 100 + .5) / 100 
OUTPUT ; 

SET2 KEEP NO = S NO ; 
TOTAL = 0 T 

GO TO ADD; 
KEEP MAN TOTAL COMM ; 

PROC PRINT ; TITLE 'SALES SUMMARY , ; ID MAN ; 
VAR TOTAL COMM I 

MAN 

JACK ADAMS 
BILL BELTON 
WAYNE CAMPBELL 
DICK HOLMES 
SID MCDOWELL 
NED TEMPLE 
PETER YOUNG 
N=7 

SALES SUMMARY 

TOTAL 

3230.95 
816.65 

93.31 
647.99 
430.75 
225.70 
332.65 

COMM 

458.39 
66.66 

0.00 
52.30 
29.57 
20.14 
31.15 



NON-STATISTICAL US~S OF SAS 

COMMENT SUMMARY BY STORE 
; 
PROC SORT DATA = SALES ; BY STO~ , 
DATA SUMMARY ; SET SALES ; 

IF NO KEEP THEN GO TO SET2 ; 

241 

IF KEEP NE STO~ THEN GO TO SETl ; 
ADD : TOTAL = TOTAL + GROSS ; 

STO~S=STORE 

RETURN ; 
SETl OUTPUT; 
SET2 KEEP = STORE ; 

TOTAL = 0 , 
GO TO ADD; 

KEEP STORES TOTAL 

PROC PRINT; TITLE 'SALES BY STORE'; 
ID STORES , VAR TOTAL ; 

SALES BY STORE 

STORES 

N=2 

1 
2 

TOTAL 

1805.75 
3972.25 



i 

~: 

! 
t 
! 
! 
I 

I 
I , 

242 

NON-STATISTICAL USES OF SAS 

COMMENT SUMMARY BY STOCK LOCATION WITHIN SALESMAN ; 
PROC SORT DATA~SALES ; BY S NO LOC ; 
DATA SUMMARY ; SET SALES ; -

IF NO KEEP 1 THEN GO TO SET2 ; 
COMMENT EITHER A CHANGE IN S NO OR LOC CAUSES. 

A BREAK 

IF KEEP 1 NE S NO THEN GO TO SET1 ; 
IF KEEP ~ NE LOe THEN GO TO SETI ; 

ADD TOTAL = TOTAL + GROSS ; 
STOCKED~LOCATION ; 
MAN ~ SALESMAN 

RETURN ; 
SETl: OUTPUT; 
SET2 : KEEP 1 = S NO ; 

KEEP 2 ~ LOC ; 
TOTAL = 0 ; 

GO TO ADD ; 
KEEP MAN STOCKED TOTAL ; 

PRoe PRINT ; 
TITLE 'SUMMARY BY STOCK-LOCATION WITHIN SALESMAN'; 
ID MAN ; VAR STOCKED TOTAL ; 

SUMMARY BY STOCK LOCATION WITHIN SALESMAN 

JACK ADAMS 
JACK ADAMS 
BILL BELTON 
BILL BELTON 
WAYNE CAMPBELL 
WAYNE CAMPBELL 
DICK HOLMES 
DICK HOLMES 
SID MCDOWELL 
SID MCDOWELL 
SID MCDOWELL 
NED TEMPLE 
NED TEMPLE 
NED TEMPLE 
PETER YOUNG 
PETER YOUNG 
N=16 

STOCKED 

WAREHOUSE 
OUT OF TOWN 
LOCAL 
OUT OF TOWN 
LOCAL 
WAREHOUSE 
LOCAL 
WAREHOUSE 
LOCAL 
WAREHOUSE 
OUT OF TOWN 
LOCAL 
WAREHOUSE 
OUT OF TOWN 
WAREHOUSE 
OUT OF TOWN 

TOTAL 

3060.95 
170.00 
134.50 
682.15 

28.56 
64.75 
22.00 

625.99 
342.40 

62.50 
25.85 
49.25 

150.75 
25.70 

295.85 
36.80 



f 
t. 
r 
r , . 

243 

NON-STATISTICAL USES OF SAS 

A Job Request Information SysteM 

The previous topics about report writing used an example that was 
made up. It dwelt Mostly on the report capabilities of SAS and did 
not discuss how SAS assists in the management of the dat;a. This 
section brings up an actual application that demonstrates SAS in these 
two areas. Whenever a client comes in with a request, we will fill 
out a job request form.. Associated with this request is (1) a request 
number, (2) the investigator, (3) the project name, (~) the 
department, (5) a 30-character description of the job, (6) the date of 
the request, (7) the date the job is to be completed, (8) the status 
of the job, (9) the programmer(s) assigned to the job; (10) the 
computer used (DECsystem-10 or IBM 370), (11) the language(s), and 
(12) an internal account number. Once the job is initiated and 
entered into the JRIS (Job Request InfoDmation System), a status is 
attached to job. When the job is finished, it is assigned the status 
of "completed". It is not taken out, though, for theoretically , it 
could be restarted. 

An actual run has been included to show the programming involved 
in adding and updating the JRIS data set. In addition, the run shows 
the statements necessary to prepare two listings - (1) by programmer, 
and (2) by investigator. 

There are other things that 
listings. Frequencies of 
departme·nt, by machine, and 
evaluation and scheduling. 
investigator is most helpful in 
been done for a given person. 

are of interest besides these 
requests handled by programmer, 
by language are quite useful 

Also, an alphabetical listinq 
determining whether past jobs 

two 
by 

for 
by 

have 

Using SAS for JRIS has been a pleasant experience over the periOd 
of a year and a half that it is evolved. When changes were necessary 
to the system it was easy to live with. This is true when you notice 
only about 30 SAS statements are required in the basic program. Also, 
new and inventive ways to display the data have happened naturally. 
It is hard to imagine an alternative to SAS that could have done a 
simpler and more satisfactory job. 



I 
I 
~~-

NON-STATISTICAL USES OF SAS 

II EXEC SAS 
IISAS.FILE DD DSN=JRIS,UNIT=DISKA,DISP=OLD, 
II DCB=LRECL=2222 
IISAS,SYSIN DD * 
DATA UPDATE: INPUT 
REQ NO *1 1 -4 INVEST $ *1 5 -16 
17-'78 
DEPT $ U 29-36 PROG NAM $U 37-66 
67-74 
DATE DUE $ #2 1 -8 STAT *2 9 -9 
10-2'[ 
AUTHOR B $ #2 22-33 MACHINE $ *2 34-36 

PII.OJECT $ U 

DATE IN $ U 

AUTHOR A $ *2 
LANGUAGE $ 12 

37-40 -
MCRC ACC $ #2 41-47 STATUS ~ *2 4B-62: 
IF STAT = 1 THEN STATUS = 'WAITING', 
IF STAT = 2 THEN STATUS = 'NOT BEGUN'; 
IF"STAT = 3 THEN STATUS = 'PRE-CODING' ; 
IF STAT = 4 THEN STATUS = 'CODING' ; 
IF STAT = 5 THEN STATUS = 'DATA ENTRY'; 
IF STAT = 6 THEN STATUS = 'DEBUGGING' ; 
IF STAT = 7 THEN STATUS = 'USER CHECKOUT'; 
IF STAT = 8 THEN STATUS = 'PRODUCTION' ; 
IF STAT = 9 THEN STATUS = 'CONTINUING' ; 
IF STAT = 0 THEN STATUS = 'COMPLETED' : 
IF NO STAT THEN STATUS = , , . , 
CARDS; 
2152 

1 
2177 

2 
2179 

o 
2180DIAL, J. REHAB STRAT.RHAB.SCISAS CORRELATIONS 
01/15/76 
01/1B/767HOUSTON B. IBMSAS 470-080 . .. . .. .......... .. .... . 
PROC SORT; BY REQ NO; 
DATA NEWF; MERGE-FILE UPDATE; BY REQ NO; 
TITLE 'APPLICATIONS SECTION: JOBS AS OF JANUARY 13, 1976 
DATA FILE: SET NEWF; 

, . , 

PROC PRINT: 
DATA SUB; SET NEWF, 
IF STAT> 1 OIl. NO STAT; 
PROC SORT; BY AUTHOR A; 
PRQC PRINT DOUBLE; BY AUTHOR A; ID REO_NO, 
vAIl. DATE DUE MeRC ACC INVEST FROG NAM STATUS LANGUAGE; 
TITLE 'BREAKDOWN OF ACTIVE JOBS BY PROGRAMMER - JANUARY 
PRQC SORT; BY INVEST; 
PROC PRINT DOUBLE; ID REQ NO, 
VAIl. MCRC ACC INVEST DEPT PROG NAM AUTHOR A STATUS; 
TITLE 'LISTING OF ACTIVE JOBS-BY INVESTIGATOR - JANUAII.Y 
1* 

13, 1976 

13, 1976 

, . , 

, . 
• 



245 

NON-STATISTICAL USES OF SAS 

A Report Procedure 

The sequence of topics has lead to this last one, the design of a 
report procedure. Here is a list of capabilities, lacking in existing 
procedures that would be nice for PROC REPORT to have: 

(1) There would be greater control on column headings - As it now 
stands the variable name must be the column heading. It would be nice 
to have greater control on this: (a) The column heading is supplied 
by the user and is not necessarily the variable name. (b) It is no 
longer limited to B alpha-numeric characters. (c) The column heading 
can be more than one word. (d) Two lines can be employed to write the 
column heading. 

(2) The user would have control over the format of the variables as 
they printed on the report. 

(3) A specified subset of the numeric variables could be totaled. 
These variables would be arranged from major to minor, and a total 
line would be printed when a "break" was encountered among anyone of 
them. Grand totals could also be kept. 

(4) Special features could be included: 
date, (c) user specified page Size, 
breaks could be printed only when there 

(a) P9ge numbers, 
and (4) variables 

was a chang-e. 

(b) current 
that caused 

There are many other attributes that a REPORT procedure could 
have. For this reason it would probably be better if such a procedure 
be "home grown", meeting the needs of the local shop. But for the 
sake of discussion, how would one approach writing such a procedure ? 
Here are a few thoughts on how I would approach it: 

(1) How would the procedure be invoked ? 

It.would look like a PROC PRINT except for the addition of a CLASSES 
procedure information statement. 

PROC REPORT FORMAT= 11: OR UJ DOUBLE 1 
VARIABLES I ABC D E F I 
CLASSES A B 
BY I A B 1 

The FORMAT option allows one to specify either Composed or User format 
for the printing of column headings and the body of the report. 
Composed format would be the default. The parameter DOUBLE has the 
same effect as it does in PROC PRINT, double spacing. Also, like 
PRINT, VARIABLES would specify the order that .data would be printed 
across the page. CLASSES should list the numeric variables totals 
will be kept on. The BY statement identifies the variables that cause 
control breaks, from.major to minor. It is assumed that the SAS data 
set is sorted by the BY variables. 

(2) How is such a procedure written so that it can be incorporated 
into SAS? 

!. 



246 

NON-STATISTICAL USES OF SAS 

. The SAS programmer's guide, not to be confused with the white User's 
Guide, describes how one may go about programming the procedure. The 
programmer can read how he can retrieve from the PROe statement 
information supplied through the options and parameters. The 
procedure itself can be written in anyone of the languages FORTRAN, 
PL/I, OR COBOL. There are several commonly used routines, giving easy 
access to the SAS data set and information about the variables. 

(3) How does one handle the format of the report? 

First, if it is user-supplied, one can take advantage of the PARMCARnS 
statement. This would allow one to read in the format to correspond 
to the o.rdering specified by the VARIABLES statement. The composed 
format would be a lot harder to take care of in programming. It would 
not be necessary to incorporate into REPORT, but it would be a nice 
addition. 

(4) What about the column headings? 

They, too, could be entered through the PARMCARDS statement. If the 
user does not supply them, then there are ways of getting the VARIABLE 
name to be the column heading. 


