SUGI 30 Applications Development

Paper 027-30

CALL EXECUTE: A Powerful Data Management Tool

Denis Michel, Johnson & Johnson Pharmaceutical Research and Development, L.L.C.

ABSTRACT

There are often data management challenges that require automation of code generation as the optimal solution.
The SAS® System is rich in tools that provide for automated code generation, including the macro facility and the
CALL EXECUTE routine. After using CALL EXECUTE to solve some specific tasks, the routine becomes an
indispensable tool to the programmer for solving general problems.

This paper describes how to use CALL EXECUTE, presents some caveats about the use of the routine, and
provides programs that perform specific data management tasks by using CALL EXECUTE to generate SAS
statements.

INTRODUCTION

The CALL EXECUTE routine resolves an argument and executes the resolved value at the next step boundary. The
syntax is simple:

CALL EXECUTE (argumnent);

There are three types of arguments that can be used. First, the value of argument can be a text string enclosed in
guotes, as in the following examples.

CALL EXECUTE (‘proc print data=sugi 30.denog; run;’);
CALL EXECUTE (‘' %rint (dsn=sugi 30.denog) ');

Note that the call to the %print macro is enclosed in single quotes. This is important because CALL EXECUTE
resolves arguments enclosed in single quotes during program execution. Arguments within double quotes resolve
while the data step is being constructed, which will often cause syntax errors.

Second, argument can be the name of a SAS data step character variable containing SAS statements. In this case,
we do not enclose the argument in quotes. For example, data set sugi30.prtsamp may contain a character
variable prtcode with many values as partially shown below.

Obs prtcode

1 proc print data=sugi30.ae; run;
2 proc print data=sugi30.demog; run;
3

We could execute all of the SAS statements contained in variable prtcode in every observation by using the
following code.

data _null_;
set sugi 30. prt sanp;
call execute (prtcode);
run;

The third type of argument is a character expression that is resolved by the DATA step to macro text or SAS
statements. This type of argument allows us to generate SAS code within data steps. This is powerful and flexible,

SUGI 30 Applications Development

and allows us to solve data management tasks with straightforward, understandable programs. Here is a simple
example. We want to print the first 50 observations of all data sets in a SAS data library. The program below uses
CALL EXECUTE to generate the SAS code needed.

***Read SAS data sets in library;
proc sql;
create table _dsets_ as
sel ect memane
fromdictionary.tabl es
where |ibnane=' SUG 30';
quit;

***Print the first 50 observations of the data sets;
***|nclude titles identifying data set - watch your quotes!!!;
data _null_;
set _dsets_;
call execute
(
"proc print data=sugi 30.' ||
trim(memane) ||
'(obs=50); title '""First 50 observations of data set ' ||
trim(nmemane) || """ run;’
)

run;

We read the data set names in data library SUGI30 using PROC SQL dictionary tables to create temporary data set
DSETS. Inthis case, we are using a single CALL EXECUTE routine to generate the PROC PRINT and TITLE
statements, as well as the RUN statement. We could have used separate CALL EXECUTE statements because
the routine is very flexible. CALL EXECUTE simply sends the generated code to the SAS input stack for execution
after the data step executes.

We use the concatenate operator to combine character strings with the data set names read from _DSETS_
during the execution of the data step (data _NULL_ step). All single quotes are used in this code. Since we quote
the text strings sent to CALL EXECUTE, we use two single quotes after the title statement to resolve to one single
quote sent for SAS execution. After concatenating the data set name from variable MEMNAME, we use three single
quotes. The first quote is to quote the text string for CALL EXECUTE and the next two single quotes resolve to one
single quote ending the title statement for execution by SAS. With OPTIONS SOURCE, the SAS log would contain
the following lines.

NOTE: CALL EXECUTE generated |ine.
proc print data=sugi 30. AE(obs=50); title 'First 50 observations of data set AE ; run;

proc print data=sugi 30. DEMOG 0obs=50); title 'First 50 observations of data set DEMXG ;
run;

CAVEATS

Like most powerful tools, CALL EXECUTE has features that require understanding for proper usage. Some of the
known caveats are presented here in an effort to learn from previous mistakes and avoid tedious program
debugging and frustration.

SUGI 30 Applications Development

MACRO TIMING

The most common problem causing SAS errors and unexpected results involves the timing of macro references
and SAS statements. It is important to know that macro references within CALL EXECUTE are executed
immediately, but SAS language statements within CALL EXECUTE do not execute until after the data step
containing CALL EXECUTE is executed. SAS statements generated by macros also execute after the data step has
executed. That is why you cannot use CALL EXECUTE to invoke a macro that contains references to macro
variables created by CALL SYMPUT in that macro. One of our examples later will use both CALL SYMPUT and
CALL EXECUTE properly.

QUOTING

Since the arguments passed to CALL EXECUTE are usually quoted, we have to use care when generating code.
Single quotes are used to prevent macro references from executing immediately. When generating TITLE and
LABEL statements, we have to ensure we do not have unbalanced quotes.

/* PL/I STYLE COMMENTS MUST BEGIN AND END IN THE SAME CALL EXECUTE */

CALL EXECUTE is very flexible. The routine allows you to submit partial SAS statements to the input stack. The
following code works (but is not a good practice).

data _null_;
call execute('data ');
call execute('test; x=');
call execute('l; output; run; proc');
call execute(' print; run;");
run;

The exception is for PL/I style comments (/* */), which must be in the same CALL EXECUTE statement. The
following code generates a SAS error.

data _null_;
call execute('/* Start comment');
call execute(' Mre coment text.');
call execute(' end coment */');
run;

CALL EXECUTE MAY TRUNCATE OR REPEAT GENERATED CODE IN RELEASE 8.2

A documented problem exists in SAS release 8.2. Using CALL EXE CUTE to build large amounts of code
(generally more than a thousand lines of generated code) may cause the code that is generated to be
truncated or unexpectedly repeated. A Technical Support hot fix for Release 8.2 TSLEVEL TS2MO for this
issue is available. See SAS documentation SN-005243. The problem is resolved in SAS release 9.
EXAMPLES

Specific data management tasks will be solved using CALL EXECUTE. It will be evident that utility macros
containing the routine can be written to solve various challenges.

1. FILTER ALL DATASETS BASED ON VALUES IN ONE DATASET

In this example of a table lookup, we will filter a SAS data library containing many datasets with information about

SUGI 30 Applications Development

unique study subjects (variable USUBJID). Our task is to filter the data from permanent data library SUGI30 to
WORK library datasets including subjects that have any serious adverse events, contained in dataset AE, variable
AESER, with values of “Y”.

*** Select the subjects with serious adverse events;

*** Generate a control input dataset for PROC FORVAT;

proc sort data=sugi 30. ae(keep=usubjid aeser)
out=cntlin(renane=(usubjid=start))

nodupkey;
where aeser="Y';
by usubjid;

run;
*** Control input dataset requires variables fntnane and | abel ;
data cntlin;
set cntlin;
retain frntnane ‘ $SAE_SEL’ | abel *‘ SAE_YES ;
run;
*** CGenerate format $SAE_SEL;
proc format cntlin=cntlin;
run;

*** Read datasets w th subject data;
proc sql;
create table _dsets_ as
sel ect memane
fromdictionary. col ums
where |ibnane=" SUd 30" and nane=' USUBJI D ;
quit;

*** Now use CALL EXECUTE to subset all datasets;

data _null_;
set _dsets_;
cal |l execute(
‘data *
|| trim memane)
| *; set sugi30."
|| trim memane)
| “; where put(usubjid, $SAE SEL.) = ‘’SAE_YES'’ ; run; '
)
run;

The table lookup is performed using the FORMAT procedure and PUT function, which is more efficient than using
sort and merge. The CALL EXECUTE routine is used in the execution of the filtering code. The SAS log would show
the generated code.

NOTE: CALL EXECUTE generated |ine.

data AE; set sugi 30. AE; where put(usubjid, $SAE SEL.) = 'SAE YES ; run;

data CONMED; set sugi 30. CONVED;, where put (usubjid, $SAE SEL.) = 'SAE_YES ; run;
data DEMOG set sugi 30. DEMOG where put (usubjid, $SAE SEL.) = 'SAE_YES ; run;

dat a EXPOSURE; set sugi 30. EXPCSURE; where put(usubjid, $SAE SEL.) = 'SAE_YES ; run;

This example uses all single quotes. We use two single quotes around SAE_YES to resolve to a single quote.
Alternatively, we could have used double quotes in the CALL EXECUTE argument as follows, to generate the same
SAS code. Here is the revised line.

SUGI 30 Applications Development

[| “; where put(usubjid, $SAE SEL.) = ‘SAE_YES ; run; “

Note that the program code above can be modified for different table lookups. In the example, we read unique
subject numbers that have serious adverse events. For example, if 10 subjects have 20 serious adverse events,
and these 10 subjects have atotal of 100 adverse events (20 serious and 80 non-serious), the output dataset has
all 100 observations. Similarly, we have output datasets for these 10 subjects containing all data available in all
datasets. We can print the datasets, export them to MS Excel, or perform any other requirement. This is powerful
stuff!

2. COMPARE DATASETS ACROSS DATA LIBRARIES

In cases where we have two versions of a data library, we need an automated way of comparing datasets to
ensure that there are no unexpected changes. We may work on a data migration, where we need to compare the
data across data library locations, or we may receive a new data library for a project that was previously “final” and
“locked”. We may also change a macro that outputs data and want to see the results of the change. The following
macro compares two data libraries (&old and &new) and reports differences.

%racr o nctonp(ol d=,

news) ;
title3 "Ad data library=&l d ==== New data |i brary=&new';
***Read SAS data sets in both libraries;

proc sql;
***Datasets only in old data library;
create table _onlyold as
sel ect memane
fromdictionary.tabl es
wher e |ibnane=%upcase(" &ol d")
and memane i n(
sel ect memane
fromdictionary.tabl es
wher e |ibnane=%upcase(" &new")

K

***Datasets only in new data library;
create table _onlynew as
sel ect memane
fromdictionary.tabl es
wher e |ibnane=%upcase(" &new")
and memane i n(
sel ect memane
fromdictionary.tabl es
wher e |ibnane=%upcase(" &ol d")

K

****Dat asets in conmmon to conpare;
create table _dsets_ as
sel ect memane

fromdictionary.tabl es

wher e |ibnane=%upcase(" &ol d")

and memane i n(

sel ect memane
fromdictionary.tabl es

SUGI 30 Applications Development

wher e |ibnane=%upcase(" &ew")
)
quit;

titled4 'Datasets in Ad not in New ;
proc print data=_onlyold;

run;

titled4 'Datasets in Newnot in dd';
proc print data=_onl ynew,

run;

titled;

***Conpar e each data set;

data _null_;

set _dsets_;
call execute
(

"proc conpare data=&old.." ||
trimmemane) ||
" conpare= &new.." ||
trim(mermane) || “ ;run;”
)
run;
%rend ntonp;

If we define libnames BEFORE and AFTER, and use the following macro call, the output will show the differences
across the data libraries, first printing datasets that are not in both data libraries.

%rconp(ol d=bef or e,
new=after);

The datasets in common are then compared with the code generated by CALL EXECUTE.

NOTE: CALL EXECUTE generated |ine.
proc conpare data=before. AE conpare= after. AE ;run;
proc conpare dat a=bef ore. DEMOG conpare= after. DEMOG ; run;

3. GENERATE AND VALIDATE SAS TRANSPORT FILES

Customers often request that all SAS datasets in a data library be provided as SAS transport files that can be
browsed with SAS Viewer. This macro generates SAS transport files, and optionally validates the files by
comparing them to the original datasets.

%***-
)

% ** IMXCOPY.SAS - Copy SAS data library to transport files;
o** SUG 30 April 2005;

% ** Specify: libref : SAS data library reference;
O ** xr ef : Directory location for xport files;
O ** Validate : Yes (default) or No validation of output;

%** NOTE: A |libname statenent nust have previously defined the |ibref;
% ** Exanpl e %xcopy(libref=rawdata, xref=h:\sugi 30\xptraw);

%***-
)

SUGI 30 Applications Development

%racro nxcopy (libref=, xref= validate=Yes);

% **Case insensitive;

%et |ibref=%upcase(& ibref);

% et xref=0pcase(&xref);

% et val i dat e=%upcase(&validate);

%**CGet the data set nanes;
proc sql;
create table _dsets_ as
sel ect mermane
fromdictionary.tabl es
where |ibnane="& ibref";
quit;

%**Wite the transport files;

data _null_;

set _dsets_;

cal |l execute(
“libname " || trin(nemane) || " xport ' "
[| "&ref . \" || trim(nmemane) || ".XPT; "
|| "proc copy in=&@ibref out="
|| trimmermane) || "; select "
[| trim(mermane) || "; run; "

)

run;

% **Val i dati on
%**Read transport files to work library and conpare to input files;
%f &validate "= NO % hen %lo;
data _null_;

set _dsets_;

call execute(

"proc copy in=

|| memmane || " out=work; run; "
|| "proc conpare data=&ibref.."
|| trim(memrmane) || " conpare=work."
I

trim(mermane) || "; run;"

)
run;
%end; % **Validation;
%rend nxcopy;
In the macro above, we use double quotes for the text in CALL EXECUTE routine that contain single quotes in the
generated LIBNAME statements. If we define libname SUGI30, and use the following macro call, all SAS data sets

in data library SUGI30 are copied to transport files in the folder h:\sugi and the transport files are validated.

% copy (! i bref=sugi 30,
xref=h:\sugi);

The SAS log shows the generation of the transport files, as in the sample below.

NOTE: CALL EXECUTE generated |ine.

SUGI 30 Applications Development

|'i bname AE xport ' H\SUQ\AE XPT ;
proc copy in=SUd 30 out= AE;

sel ect AE;

run;

The SAS log also displays the validation of the transport files, accomplished by copying the transport files to
temporary data sets and comparing to the original data sets.

NOTE: CALL EXECUTE generated |ine.

proc copy in= AE out=work;

run;

proc conpare data=SUd 30. AE conpar e=wor k. AE;
run;

The SAS output should be checked to ensure that PROC COMPARE found no differences.

4. APPLY ATTRIBUTES FROM METADATA

There are cases when SAS datasets are provided without some of the required attributes, which are stored in
separate locations. In this example, there is a separate metadata file containing dataset labels and variable
labels. The metadata dataset METADATA.ITEMLBL contains variables TBLNAME (dataset name), TBLLABEL
(dataset label), VARNAME (variable name) and VARLABEL (variable label) and looks like the following partial print.

Dat aset: METADATA. | TEMLBL

tbl name tbl | abel varname varl abel

AE Adverse Events STUDYID Study ID

AE Adverse Events USUBJI D Uni que subject nunber
AE Adverse Events AESEQ AE Sequence Nunber
AE Adverse Events AETERM Reported Term

CONVED Concomi tant Meds STUDYID Study ID

CONMED Concomitant Meds USUBJID Uni que subject nunber

CONMED Concomitant Meds CMSEQ Conned Sequence Nunber

CONMED Concomitant Meds OCMREPRT Were Any Meds Reported Admini stered

DEMOG Denogr aphi cs STUDYID Study ID
DEMOG Denogr aphi cs USUBJI D Uni que subj ect nunber
DEMOG Denogr aphi cs BIRTHDT Date of Birth

Our task is to apply these dataset labels and variable labels to the datasets in SAS data library SUGI30. Here is the
code.

data _null_;
set netadata.iten bl end=eof;
by tbl nane;

***Cenerate the datasets procedure code once at the beginning of the dataset;
if _n_=1then call execute('proc datasets |ibrary=sugi 30 mentype=data nolist;"');

***Appl y dataset |abels once per dataset;
if first.tbl nane
then call execute('nodify ' || trinm(tbl nane)
|| ' (label ="'

SUGI 30 Applications Development

[| trin(tbllabel)

("
)

***Apply vari abl e | abel s;

cal |l execute('label '

|| trinm(varnarme) || ' ="'
|| trin(varlabel) || "";"'

);

***CGenerate the QU T statenment to term nate PROC DATASETS once;
*** at the end of the dataset;

if eof then call execute('quit;');

run;

The generated SAS code follows.

NOTE: CALL EXECUTE generated line.

proc datasets |ibrary=sugi 30 nentype=data noli st;
nodi fy AE (label = "Adverse Events");

| abel STUDYID = "Study |ID';

| abel USUBJI D = "Uni que subject nunber";

| abel AESEQ = "AE Sequence Nunber";

| abel AETERM = "Reported Ternf;

nodi fy CONVED (| abel = "Concom tant Meds");

| abel STUDYID = "Study |ID';

| abel USUBJI D = "Uni que subject nunber”;

| abel COVBEQ = "Conned Sequence Nunber";

| abel COVREPRT = "Were Any Meds Reported Adm nistered”;

nodi fy DEMOG (| abel = "Denographics");

| abel STUDYID = "Study |ID';

| abel USUBJI D = "Uni que subject nunber”;
| abel BIRTHDT = "Date of Birth";

quit;

We generated the PROC DATASETS statement once at the beginning of the metadata dataset. For each dataset,
we wrote a modify statement to label the dataset. Then we generated label statements for every variable. At the end
of the metadata file, we generated a QUIT statement to end PROC DATASETS.

In this example, single quotes are used to enclose the arguments passed to the input stack by CALL EXECUTE.
The labels use double quotes. This prevents mismatched quotes from being generated if a dataset or variable
label includes a single quote. For example, if a variable INVRESP has the label “Investigator’'s assessment of
response”, the code above would work fine, generating the line below.

| abel | NVRESP = "Investigator’'s assessment of response”;

5. PRINT DATA BY KEY VARIABLES

In clinical research, we sometimes need to print data by subject, instead of by dataset. Quality control audit listings
are printed by subject, so that the data for each subject can be compared to the case report forms from which they
were entered. Subject profiles are generated in cases where reviewers want to see data by subject, instead of by
dataset. Here is an example of printing all data by subject for a random audit sample size of the square root of the

SUGI 30 Applications Development

subject population plus one. We require a dataset that contains all subjects (DEMOG) and we’ll select a random
sample and print the datasets by subject.

* k%

*** QCAUDI T. SAS - Sel ect random sanple and print data by uni que subject |D
***SUA 30 Apr2005;

* k%

proc sql;
***Get SAS data sets in library that have patient infornation;
create table _dsets_ as
sel ect distinct memane
fromdictionary. col ums
where |ibnane=' SUd 30" and nane=' USUBJI D
order by memane;

***Al'| subjects are in DEMOG dat aset ;
create table _allsub_ as
sel ect distinct usubjid
f rom sugi 30. denog
order by usubjid;
quit;

*** Assi gn a random nunber to each subject;

data _allsub_;

set _allsub_ end=eof;

***Use the current date as the seed and assign random nunber;

_ranuni =ranuni (t oday());

if eof then do;
***Store total nunber of subjects as a gl obal nmacro vari abl e;
call symput('totsubj', left(trin((put(_n_, 8.)))));
***Sanple size is SQRT(_n_) +1 and ensure sanple size is not > total size;
sanpsi ze=mn(ceil (sqrt(_n_) +1), _n));
call synput('sanpsize', left(trim (put(sanpsize, 8.)))));

end;

run;

%pout >Total nunber of subjects is =====> &t otsubj;
%pout =>Random sanpl e size i s =====> &sanpsi ze;

***Subset the random sanpl g;
proc sort data=_all sub_ out=_random;
by _ranuni;
run;
data _random ;
set _random (obs=&sanpsi ze);
run;
***Resort by subject;
proc sort data=_random ;
by usubji d;
run;
title3 "Al subjects';
proc print data=_allsub_;
run;
title3 ' Random sanpl e subj ects'

10

SUGI 30 Applications Development

proc print data=_random;
run;
titles;

***J obal macro variables with all unique subject nunbers to Ilist;

data _null_;

set _random;

i +1;

call symput('sn' || left(put(i,4.)), trim(usubjid));
run;

***QC |isting macro;

%racro _qc;

%lo i=1 % o0 &sanpsi ze;

%**Start each subject at page 1;
opti ons pageno=1;

data _null_;
set _dsets_;
by memane;
***Tit] es;

call execute

(

"title3 "Subject ID &&sn& Dataset: '||
trim(memmane) ||'"; run;'

);

***Print the datasets;
call execute
(
"proc print data=sugi 30."' ||
trim(memane) ||
where usubjid = "&sn& "; run;’

run;
%end;
%rend _qc;

***Call the macro to print the listings;
% qc

We used CALL EXECUTE inside a macro loop to title and print data by subject. The code works because the
macro variable containing the sample size (&sampsize) and macro variables containing subject identifiers (&sn1,
&sn2, &sn3, etc.) are global macro variables generated previously in open code using CALL SYMPUT. A sample of
the generated code in the SAS log follows.

NOTE: CALL EXECUTE generated |ine.

title3 "Subject ID SUd -30-001-800007 Dataset: AE"

proc print data=sugi 30. AE;

where usubjid = "SUd - 30-001- 800007";

run;

title3 "Subject ID SUd -30-001-800007 Dataset: CONMED';

11

SUGI 30 Applications Development

run;

proc print data=sugi 30. CONVED,

where usubjid = "SUQ - 30- 001- 800007";
run;

In case we have a data set with long text variables that require PROC REPORT instead of PROC PRINT, we can
easily modify the macro to accommodate the data. For example, a dataset COMMENTS has a long variable
CTTERM (length=$200), which would be truncated if printed with PROC PRINT. We modify the print section of the
code above as follows.

***Print the datasets;
i f mermane”=" COWMENTS then call execute
(
"proc print data=sugi 30."' ||
trim memane) ||
"; where usubjid = "&&sSn& "; run;’
)
el se call execute
(
'proc report data=sugi 30." ||
nmemare | |
"; where usubjid = "&&sn& ";"' ||
‘colum usubjid donmain ctseq ctterm’ ||
‘define ctterm/ left w dth=100 flow run;’

)

With the code above, all datasets other than COMMENTS are printed using PROC PRINT and the COMMENTS
dataset is printed with PROC REPORT. Other modifications can be made due to the flexibility of the CALL
EXECUTE routine.

CONCLUSION

The CALL EXECUTE routine is a powerful tool, which, when used properly, can solve a multitude of data
management tasks. Other techniques can be used to solve these problems, but CALL EXECUTE is often easier to
use and modify. Writing SAS code to external files, then using %INCLUDE is an alternative. Another technique is
the use of CALL SYMPUT to generate a series of macro variables, which requires macros with aminimum of
double ampersands. Different tools can be used to solve the same problems. It is up to the SAS programmer to
determine the appropriate tool. CALL EXECUTE and the macro facility provide the flexibility and ease of use to
make them worth considering when the next task challenges you.

REFERENCES
SAS Institute Inc., SAS Macro Language: Reference Version 8, Cary NC: SAS Institute Inc., 1999.

Croonen, Nancy and Theuwissen, Henri, “Table Lookup: Techniques Beyond the Obvious”, Proceedings of the
Twenty-Seventh Annual SAS Users Group International Conference, 2002.

Vergile, Bob, “Magic with CALL EXECUTE”, Proceedings of the Twenty-Second Annual SAS Users Group
International Conference, 1997.

Whitlock, H. lan, “CALL EXECUTE: How and Why”, Proceedings of the Twenty-Second Annual SAS Users Group
International Conference, 1997.

Whitlock, H. lan, “CALL EXECUTE Versus CALL SYMPUT”, Proceedings of the Seventh Annual NorthEast SAS
Users Group Conference, 1994.

SUGI 30 Applications Development

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Denis Michel
Johnson & Johnson Pharmaceutical Research and Development, L.L.C.

1125 Trenton-Harbourton Road
PO Box 200

Titusville, NJ 08560

Email: dmichel@prdus.jnj.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13

	SUGI 30 Proceedings Table of Contents

