Doing More with SAS® Arrays

Rahul G. Pillay, Colchis Capital, San Francisco, CA

Have you used SAS® Arrays to perform repetitive calculations or create multiple variables? Maybe you find
yourself understanding a bit about SAS® Arrays but would like to do more. This paper will help us explore
Arrays a bit further. Do you need to transpose data and do additional data manipulations and calculations
in the process? Have you considered the possibilities of using two-dimensional Arrays? We will explore
examples of transposing and manipulating data, performing complex calculations and briefly explore two-
dimensional Arrays.

Introduction

SAS® Arrays are a group of variables grouped together for the duration of a Data step. We pass by Arrays
every time we go to the grocery store. There are a group of cars parked in parking spots outside — the lanes
organized in rows are Arrays of cars. The isles with the produce can have an Array of vegetables and an
array of fruits. SAS® allows us to reference a group of like variables by creating and manipulating them in
Arrays. An example would be to move all the vegetables from Aisle 1 to Aisle 7. Ideally you can define an
Array that contains all the vegetables in Aisle 1 and move them to Aisle 7 be referencing to the defined
Array.

There are several very good papers on SAS® Arrays. For a quick introduction | would recommend reading
Ron Cody’s SAS® Functions by Example and searching for keyword Arrays. There are many papers that
authors wrote for several conferences including Quick Tips on Powerful Use of SAS®® Arrays, a paper |
wrote for WUSS 2014.

Arrays are a set of variables grouped together for the duration of a Data step — these could be the
vegetables we described above. If you were to temporarily display our vegetables or SAS® variables in each
column of a spreadsheet they would look like Table 1a. Any combination of the vegetables, specifically the
columns in our spreadsheet can be referenced in a SAS® Array.

Table 1a shows five columns from a ‘spreadsheet of variables’. This is an example of an array of
vegetables.

vegetable1 vegetable2 vegetable3 vegetable4 vegetable5
Good Celery Ripe lemon Good Cucumber Small tomato
Bad celery Green lemon Bad Cucumber Rotten potato Large tomato

Table1a. Spreadsheet with 5 columns

We can group multiple columns (or vegetables) temporarily in an Array and reference them with an Array
statement at any point during the Data step. For example, let’s extract the second word from every
vegetable listed by creating a new variable called vegetable_new. If we performed this calculatio4n using ‘If
then’ statements, we would need to repeat the same calculation for each variable as shown in Example 1a
below.

Example 1a

data exla; /*sample data set*/

set Tblla;
vegetable newl = scan(vegetablel,2); /*creating vegetable newl*/
vegetable new2 = scan(vegetablez,2); /*creating vegetable new2*/
vegetable newb = scan(vegetable5,2); /*creating vegetable new5*/

run;

In essence we are trying to accomplish the task visually shown in Table 1b where we have five additional
variables with new vegetable names.

Table 1b displays 5 new columns with variables vegetable_new1, vegetable_new2, and so forth.

vegetable1 | vegetable2 | vegetable3 | vegetable4 | vegetable5 | vegetable_new1 | vegetable_new2

Good Ripe lemon | Good Small Celery lemon Cucumber tomato

Celery Cucumber tomato

Bad celery Green Bad Rotten Large Celery Lemon Cucumber | Potato | tomato
lemon Cucumber potato tomato

Table1b. Sreadsheet with 10 columns listing 5 new columns

An alternative to performing Example 1a would be to use an Array statement in a DO LOOP. We know that
Table 1a lists a group of variables that can be referenced with an Array statement. All we need is another
Array statement to reference the additional group of variables (new vegetable variables) needed to be
created as shown in Table 1b. Consider Example 1b.

Example 1b
data Exlb;
set tblla;
array vegetablearray old {5} $ vegetablel - vegetable5;
/*using array for old vegetablees*/
array vegetablearray new {5} $ vegetable newl - vegetable new5; /
/*creating new variables*/
do i=1 to 5;
vegetablearray new {i} = scan(vegetablearray old {i},2);
/*vegetable new = scan(vegetable old,2)*/
end;
run;

You can imagine how effective this can be especially when dealing with hundreds of variables. In example
1b we discussed a consecutive list of elements (vegetable1 — vegetable5, vegetable_new1 —
vegetable_new>5) but this isn’t necessary for all Array statements. The array below ‘Array_example’ lists a
random set of elements.

r refers to the first element, a to the second, h to the third and so forth.

Example: ARRAY Array example {5} r a h u 1;

SYNTAX

An array is defined with an ARRAY statement.

ARRAY array name {n} <$> <length> array-elements <initial values>;

array name: avalid SAS® name that is not a variable name in the date set.

{n} :number of elements in the array

<$> : indicates if the elements within the array are character or numeric. For character elements include
the ($) sign in the syntax. If the dollar sign is not included, the array is assumed to be numeric.

<length> : acommon length for the array elements.

<initial values>: any initial values to be assigned to each array element.

Arrays only exist for the duration of a data step so it is necessary to define arrays before referencing them in
any Data step. Array statements cannot be used in DROP or KEEP statements.

An Array can either contain all numeric elements or all character variables but not both. A quick and easy
way to reference all character, numeric or all the variables would be to use the following syntax:

_numeric all numeric variables will be used in the data step.
Example: ARRAY Array example {5} numeric ;

_character all character variables will be used in the data step.
Example: ARRAY Array example {5} character ;

_all all the variables will be used if they are the same type.
Example: ARRAY Array example {5} all ;

It is not necessary to list the elements of an Array while creating new variables. The array below will create
the variables Array examplel, Array example2 and Array example3.

Example: ARRAY Array example {3};

Since the dollar symbol ($) is missing and the Array statement specifically states that the array has three
elements SAS® automatically assigns these numeric variables a name.

We don’t have to specifically specify the number of variables in an array. The star (*) symbol will tell SAS®
to determine the number of elements in as Array. This can be useful in instances where you aren’t sure of
the number of variables being specified for the array in any given data set.

Example: ARRAY Array example {*} character ;

Transposing Data

Now let's do more with SAS® Arrays. Sometimes datasets are not necessarily in the shape or form that they
need to be to carry out the analyses needed. A tall dataset may need to be wide or a wide dataset may need
to be tall, observations may need to be variables or variables may need to be observations. In this section
we will explore how to transpose data using SAS® Arrays. Many SAS® users prefer to use PROC
TRANSPOSE rather than SAS® Arrays which can offer simpler syntax but Arrays can offer solutions to
more complex problems such and transposing and manipulating data. Some examples are as follows: -

* Arrays can be handy when naming variables whereas PROC TRANSPOSE requires the use of
special options such as id, prefix or suffix.

* Arrays can be used for many other purposes such as manipulating variables, performing table
lookups, creating new variables. If you want more options in restructuring your data Arrays can be
extremely helpful.

Table 2a details the loan payments of members by each month for first quarter. Our goal is to transform this
dataset so that we have 1 observation per member and each payment as a variable. Please note that this
dataset is already sorted by member, which is critical for all the examples descried in this paper to work
properly. You may have to do this for your use case as well.

Member Month Payment
1 Jan $233.44
1 Feb $235.44
1 Mar $239.87
2 Jan $411.88
2 Feb $411.88
2 Mar $425.88
3

Table 2a. Sorted Table with data for Example 2

Example 2a:

Proc transpose data=tbl2a out=ex2a (drop= name);
By member; var Payment;

Prefix = Month;

Run;

As mentioned earlier PROC TRANSPOSE offers simpler syntax when only transposing is needed. The
Prefix= options tells SAS® to start naming the transposed columns with a Prefix of Month — the columns will
be labeled Month1, Month2, etc. The default in SAS® labels them as COL1, COL2, etc.

With arrays you can achieve this by example 2b:

Example 2b:
data ex2b (drop=i day payment); /*create dataset y - drop unwanted variables*/
set x; by member; /*since we want to make sure that we obtain 1

obs per member*/

array monthlypayment{3} Jan Feb Mar;
/*Create a numeric Array with 3 variables -
Jan, Feb, Mar*/

if first.member then i1 = 1; /*initialize i for every first occurrence of
member*/
monthlypayment{i} = payment; /*create column for each
payment*/
if last.member then output; /*output when last occurrence of
member*/
i+1; /*increase I value for next

iteration */
retain Jan Feb Mar;
run;

It is obvious that the DATA step requires more syntax and a better understanding of how SAS® transposes
the data. One major issue to note in this example is that each member has the same number of payments
made for each month or that there are no missing values. Unfortunately this is not the case when working
with datasets at work. There are ways to deal with this scenario using the DATA step but PROC
TRANSPOSE would make it simpler. In the following examples we will discover ways in which we can
handle datasets that we are more familiar with; where payments are missing or each member may not have
the same number of observations.

Consider Table 2b where Member 4 doesn’'t have a Feb payment and March payment is missing. Will the
Array work in this case?

Member Month Payment
1 Jan $233.44
1 Feb $235.44
1 Mar $239.87
2 Jan $411.88
2 Feb .

2 Mar $425.88
3 Jan $599.09
3 Feb $599.09
3 Mar $549.09
4 Jan $12.64
4 Mar

Table2b. Table showing missing Payments and observations for Members 2 and 4.

Before we answer that consider Table 2c where we visualize the result dataset:

Member Jan Feb Mar Total
1 $233.44 $235.44 $239.87 $708.75
2 $411.88 . $425.88 $837.76
3 $599.09 $599.09 $549.09 $1747.27
4 $12.64 . . $12.64

Table2c. The goal of our results for Example 2.

Unfortunately if we used the code described in Example 4b we wont quite achieve our goal because The
March payment for Member 4 is still the retained amount from Member 3. The output for this is displayed
below. Note that the March payment for Member 4 comes from Member 3.

Table 2d. shows the SAS® Output if Example 4b was used to transpose Table 2c.
¥y | ¥3 Filter and Sort B Query Builder | Data » Describe = Graph ~ Analyze

) member () Jan Ji) Feb S Mar
o Tl 23344 23544 22987
2 2 41183 42588
3 3 599 09 599 08 549 09
' F 1264 54909

l

Table 2d. The incorrect results when using Example 2b (Member 4 March payment) with missing
observations or variables.

There are a few ways to handle this but one clever way would be to know what the maximum number of
observations that exist across all the members in the dataset. This way we can arrange our logic to account
for any number of observations for each existing member in our dataset and create a DO LOOP specific to
each member. This means that Members 1, 2 and 3will loop 3 times while Member 4 only loops once. Lets
work step by step. First we will figure out the number of observations for each member in our dataset via

PROC FREQ.

Example 2c Part1:

Proc Freq Data=tbl2a order=freq; /*order table by frequency*/
tables member / noprint out=temp; /*create dataset without print*/

run;

Table 2e. shows the SAS® Output of Example 2c.

%) | @3 hierand Sort Bl Yuery Buider | Uata + UDescrnibe ~
) member (3) COUNT |3) PERCENT

1 i 3 27272727273

2 2 3 27272721273

3 | 3 3 27272727273

4 4 2 18181818182

Table 2e. Results of Example 2c Part 1.

Table 2e shows the temporary dataset called TEMP ordered by descending Counts of observations. Option
order=freq helps us achieve this easily so that we can create a macro variable form the first observation

of TEMP dataset.

Example 2c Part2:
Proc Sqgl;
Select Count into: n /*Create macro variable for maximum

count*/
from temp;
quit;

Example 2c Part2 helps us create the macro variable n with the use of the into: statementin PROC
SQL. This variable is the maximum Count for number of transactions per member from our original dataset.
In this case &n will resolve to 3.

data ex2c (drop=i payment month) ;
array monthlypayment{é&n} /*Create Array monthly payment*/
do 1 =1 to &n until (last.member);
/*do loop for a maximum of 3 or until the last occurrence of Member*/

set tbl2a ; /*set statement within do loop*/

by member; /*set by member*/
monthlypayment{i} = payment; /*create column for each payment*/
total = sum(total,payment); /*calculate total of payments*/

if last.member then output; /*1 observation per member*/

end;

run;

The Array statement in Example 2c is much simpler than what we have discussed before. In this case we
let SAS® create the new variables for us by determining the number of variables specified when &n
resolves to 3. This would look something like monthlypaymentl, monthlypayment2, and
monthlypayment3. In the firstinstance when i=1 our SET statement will grab the first member (A SET
statement within a DO LOOP helps perform the calculations and other logic while the last observation is
reached avoiding the need for retain statements) and Monthlypaymentl = $233.44. The sum function
statement helps us initialize and calculate the total variable that we wanted to calculate for all the payments
made by a particular member. Since this is not the last observation for Member 1 we return to the top of the
loop and reiterate with i1=2. This keeps happening as we create new columns for monthly payments and
adding them to the total variable until we get to the last payment for each of the members — the output we
want. The key difference that this DO LOOP provides versus Example 2b is when we get to Member 4.
When i=2 the until (last.member) helps us finalize the iteration versus rerunning for i=3. This way
we won’t have any prior values retained from prior members in the data vector when creating the output.
The DO LOOP ends and gives us the results we want:

Table 2f. Final Results for Example 2c.

\) ?‘ FIime S172 U Lﬁ QU(!" ounuT Ve ¥ vy v Uldpl‘ v ru\.uy;r hd :lpk"l v I IV ‘f_‘
(3) member 1) monthlypayment LE’,- monthlypayment? f.’_i{‘: monthlypayment3 | total

1 i 23344 235 .44 23987 708.75

2 2 41188 42528 837.76

3 | 3 593 09 599 09 549 09 1747 27

4 | 4 1264 1264

Table 2f. The correct results for Example 2c.

Another clever way to handle missing variables would be to create a multi-dimensional Array holding each of
the Month and Payment for that month. In this case we would only need a 2 dimensional Array since we
have 2 variables to consider: Member and Payment. As the number of variables increases — so does the
Array dimensions. A two-dimensional Array can be identified as ARRAY NAME (4,3} where 4 =4 rows
and 3 = 3 columns.

In Example 3 we will transpose Table 2f above to what our original dataset looked like in Table 2b.

data ex3 (keep=Memberl monthlypaymentl monthlypayment2 monthlypayment3);
set tbl2f end=last; /*create indicator for end of dataset*/
array monthlypayment{3} monthlypaymentl montlypayment2 monthlypayment3;
/*array to hold payments*/

array all{4,3} temporary ; /*2 dimensional array with 4 rows and 3
columns*/
array member new{4} /*array for members*/
i+ 1;
do j =1 to dim(member new);
all{i,j} = monthlypayment[]]; /*creating payment columns
within loop for each member*/
end;
if last then do; /*creating final dataset when end of
dataset is reached*/
do j =1 to dim(monthlypayment) ;
do i =1 to 4;
member new[i] = alll[i,j];
end;
end;

output;

end;
run;

Example 3 looks complicated but can be powerful once understood. The key here is to create an array that
can hold all the variables that we want transposed and then assigning them to their corresponding members
in the final step. array monthlypayment{3} creates an array with monthly payments. array
all{4,3} _temporary creates atemporary 2X3 Array with 4 rows and 3 columns. This is for 4
members and at most 3 payments. array member new is an array that will help us assign the 4 members
to their corresponding payments. When i=1 we start a do loop which will iterate until it ends. When j=1 the
Array all{1l,1} = $233.44,When j=2 Array all1{1,2} = $235.44 andwhen j=3 Array a1l {1, 3}
= $239.87. This iteration continues for 1=2, 3 and 4 until we have an array that looks like Table 3a in the
program data vector (PDV).

Table 3a shows the all Array from Example 3.

1 $233.44 $235.44 $239.87
2 $411.88 . $425.88
3 $599.09 $599.09 $549.09
4 $12.64

Table 3a showing the Array All in the PDV.

After the final iteration the if last then do statement helps us trigger the final logic since we are at the
end of the dataset. Anew do loop, do 7 = 1 to dim(monthlypayment), helps s create a do loop for
each of the payments in the all array which the nested do loop, do i = 1 to 4; member new[i] =
all[i,j] helps assign each of the Members to their corresponding payments resulting in the final dataset.

Conclusion

We learned how SAS Arrays can handle simple manipulations, like referencing a set of variables and
renaming them to complex transformations, like transposing datasets and calculating totals. There are other
ways to handle similar tasks but a clear understanding of how Arrays work will help add another technique to
your SAS® knowledge. After all SAS® programmers are constantly trying to find a better and more efficient
way of solving problems and SAS® Arrays helps us do just that in our DATA step.

References

Burlew, Michele M. SAS® Macro Programming Made Easy.2nd ed. Cary, NC: SAS® Institute, 2006.
Print.

Carpenter, Art. Carpenter's Complete Guide to the SAS® Macro Language. 2nd ed. Cary, NC: SAS®
Institute, 2004. Print.

Cody, Ronald P. Learning SAS® by Example a Programmer's Guide. Cary, N.C.: SAS® Institute, 2007.
Print.

Cody, Ronald P. SAS® Functions by Example. 2nd ed. Cary, N.C.: SAS® Institute, 2010. Print.

Acknowledgements

| wish to express my sincere thanks to Jon Cooper for all his support, encouragement and
guidance in writing this paper, Karen Ran Bi, Melissa Cliatt and Kevin McGlynn for their training and
mentorship in credit, and Robert and Edward Conrads for adding countless value into my work and career.

Contact Information:

Name: Rahul G. Pillay

Enterprise: Colchis Capital Management
Address: 1 Maritime Plaza # 1975

City, State ZIP: San Francisco, CA

Work Phone: (415) 400-8612

E-mail: rahul@colchiscapital.com

Web: http://www.colchiscapital.com/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

