
Dataset Manipulation with Screen Control Language (SCL)

Marge Scerbo, University of Maryland at Baltimore

Introdnction

SAS-AF Screen Control Language (SCL) can serve
a multitude of purposes from simple menu creation
to complex data analysis. SCL is not ouly powerful;
it is large and complex and at times quite difficult to
use. Although some syntax crosses between base
SAS and SCL, it is important to remember that SCL
is a separate entity and that in some areas, its actions
are different from base SAS code. Although datasets
can be edited using SAS /FSP, this paper will discuss
the area of dataset manipulation using SAS / AF
Screen Control Language. A basic understanding of
Version 6.06 AF screens and SCL is assumed.

Sample Dataset

The dataset Paper.Sample, used in the examples in
this paper, will contain information about universities
offering Informatics programs. The variables names
and formats in the dataset are:

UNIV $ 50
SCHOOL $ 50
PROGRAM $ 50
ADDRESS $ 50
CITY $ 15
STATE $ 2
COUNTRY $ 15
ZIP $ 10
CONTACT $ 25
AFFIL $ 10

Contents

Note that all the variables in this dataset are
character. There are certain SCL functions that are
either numeric or character type specific. Many of
these type-specific functions will have corresponding
functions for the opposite type. Because character
values are more complex to deal with in SCL, ouly
the character-based functions will be noted.

Sample Screens

The basic data entry screen used for adding or
updating observations in the sample dataset would
be:

236

University: &univ,-;-________ _
School: &school, ________ _
Program: &program, ________ _
Address: &address, _______ _
City: &city
State: &S '----:Zi"'·,...p: &zip __
Country: &country, __ _
Contact: &contact _____ _
Affiliation: &affII

Screen #1

The variables on this screen are self-descriptive
except for AFFIL which is the affiliation of the
program. This is a descriptive term with the list of
10 options, including Medical, Nursing, Graduate,
stored in List format. This variable's list attribute
will contain = AFFILIA, requiring a choice from that
list. Required fields include UNlV, SCHOOL,
PROGRAM, CITY, and AFFlL. The screen variable
&S has been given an alias of STATE, matching the
variable in the dataset.

The menu program attached to Screen #1 will allow
for three editing options: Add, Change and Delete.
On this first menu the University name will be
required for Choices 1, 2 or 3:

Main Edit Menu

1 -- Add
2 -- Change
3 -- Delete
9 -- Exit

Enter Your Choice: &

University: &univ ______ _

Screen #2

On this screen the single & field attribute alias is set
to CHOICE and is a required field. CHOICE has
been set to allow input of 1, 2, 3 or 9 in the attribute
list. These screens (#1 and #2) will serve as the two
entry screens for the system described in the paper.

Background Notes

When fIrst encountering AF SCL in an attempt to
manipulate the data stored in a SAS dataset, the
initial inclination is to use SUBMIT blocks to
perform many of the tasks. But since most systems
in the end are user-based systems where speed and
efficiency playa key role, SUBMIT blocks might not
prove satisfactory. Within a SUBMIT block, basic
SAS code is stored and executed. This requires
additional compilation and memory use. Rather,
SCL provides a group of functions for manipulation
of SAS datasets. These functions can accomplish
many of the tasks undertaken in a DATA step. SCL
code can be compiled and then tested using TESTAF
within PROC BUILD screens; SUBMIT blocks
require use of the AF command from the editor
command line of Display Manager or in a batch
program external to Display Manager. Clearly in the
development of a system when much of the testing
can be done within the menu or program entries,
programmer efficiency is increased.

When first approaching dataset manipulation, it is
important to understand the different data structures
involved. There are three types of SCL variables:
window (screen), nonwindow and system. If a
program has an associated application screen, as in
the screens shown above, this screen will contain
fields where variable values can be displayed. SCL
communicates with the application window through
these variables. Nonwindow variables are not
associated with a fIeld in a screen but are merely
used within that individual program. System variables
provide special types of information which can be
used as checks within the program. For instance,
STATUS is a system variable which reports the

;;urrent status of the application. This system
variable can be reset within the program thus
allowing for control within the application. These
variable types do not include SAS dataset variables;
they remain a separate entity.

When running SCL, data storage areas are also
important. There may be two separate types of data
buffers in use during an SCL session. When a
dataset has been opened, dataset variable values can
be moved with SCL code into a data buffer called the
Dataset Data Vector or DDV. A separate DDV will
be associated with each open dataset. Screen control
variable values are stored in a data buffer called the
SCL Data Vector or SD V. Ordinarily there is no
communication between these two buffers so SCL
code is needed to bridge the vectors when
manipulating a dataset from window applications.

237

Dataset Manipulation

Before reading from or writing to the dataset in any
way, SAS requires that the dataset be opened. The
SCL OPEN function returns a unique dataset
identifier which is then used when performing many
other operations. The code is as follows:

dataset-id = OPEN(dataset-name,mode);

Dataset·id is a numeric variable which stores this
unique identiller. When the identiller is equal to 0
or below, the dataset was not successfully opened. If
the dataset is a hard-coded value, this value will
appear in quotes, while if the dataset name is input
into a screen variable, then the variable need not be
in quotes. The mode is the mode in which the
dataset is opened. Valid modes used for dataset
manipulation are I for input mode (read ouly), which
is the default, and U for update (read-write).
Although many datas'<.ts can be opened at the same
time, it is best to open the minimum number of
datasets, since each opened dataset requires memory
and each open dataset will access its own DDV.
Since several datasets can be opened at the same
time, make sure that each dataset has been assigned
a unique identiller. The dataset need not be opened
with each new program. The identiller can be passed
from one program to the next. Throughout the
following examples, dataset identiller will be stored in
the variable name, DSIO.

Once the dataset has been opened, some of the
normal dataset functions can take place. For
instance, the CUROBS function will return the
relative observation number:

obsno = CUROBS(dsid);

When operations are complete on a dataset, the
CLOSE function will remove the dataset from
memory and discontinue access. The syntax of the
function is:

rc = CLOSE(dsid);

where rc is a system result code. If the dataset has
been successfully closed, this code should be set to O.
Any errors will canse the code to be equal to some
other number and coding should be written
accordingly.

Assuming the OPEN operation was successful, before
any dataset manipulation occurs, the data must be
moved between the DDV to the SDV. The easiest

method to use is the SET command. By SETting a
dataset once in a program, data is automatically
moved between these two vectors. Dataset variables
are matched by name and type to the SCL variables.
Although a dataset can remain open from one
program to another, each program must SET the
dataset. While there are other functions which serve
a similar purpose, the SET function is the easiest and
most comprehensive. As a rule the SET command
should immediately follow the OPEN command. The
syntax of the SET command is:

CALL SET(dsid);

Parameter Passing

When the user chooses to add an observation, the
first option on the Main Menu, a university name will
be entered and passed to the ADD program. This
field value can be passed in two ways, through CALL
DISPLAY and ENTRY or CALL SYMPUT and
SYMGET.

CALL DISPLAY is used to move from one AF
window to another. This command can also pass
parameters to the CALLed program. The
parameters may include a variable name or a static
value. At the receiving end, the called program will
include an ENTRY statement prior to the INIT
section. This statement must include an argument
list which matches the CALLing arguments, including
a variable name, a $ if a character variable is to be
received, and/or the length of the value. The actual
variable names do not have to be the same. In the
sample case, the variable passed is named UNIV by
both the CALLing and receiving programs.

CALLing program (MainMenu.Program):
CALL DISPLA Y(,Add.Program',univ);

Receiving Program (Add.Program):
ENTRY univ $;

To use the macro function SYMPUT in the term
section of the CALLing program, the value input into
the screen variable UNIV will be stored in a macro
variable. These variables can have the same name or
different names. In this case, the names will be the
same so the code would be:

CALL SYMPUT('UNIV',univ);

This will create a macro variable with the same
variable name and value as the screen variable. The
Menu program will move to the ADD program by
using the command:

238

CALL DISPLA Y('Add.Program');

In the ADD Program INIT section, a SYMGET
function will read this macro variable:

univ = SYMGET('univ');

Since this function has been placed in the INIT
section, when the ADD screen appears, the
University name entered on the menu will appear.

The CALL DISPLAY/ENTRY option is preferable
when passing from one screen to another. CALL
SYMPUT /SYMGET is useful when the same
variable is passed to several screens.

Choice 1: Adding an Observation

To add an observation to an opened dataset, use the
APPEND command. This function adds an
observation using the values stored in the DDV. The
code is:

rc = APPEND(dsid);

Again, the result -code will be set to 0 if the append
was successful. Remember that if the dataset
variable names are different from the screen variable
names, reset the dataset variables to the screen
values.

Using these statements and assuming that the
university name and the dataset-id are passed into the
program from MainMenu.Program with a CALL
D ISPLA Y function, bare-bones code for the
Add.Program module would be:

ENTRY univ $ dsid 8;
INIT:

-Initialize screen variables;
RETURN;

MAIN:
-Validate screen values;
*If error, return;

RETURN;

TERM:
CALL SET(dsid);
rc = APPEND(dsid);

RETURN;

Add Option

Selecting an Observation

Before discussing deletion of an observation, it' is
important to study the selection of a specific
observation to delete. The delete (DELOBS)
function merely deletes the last read observation.
Rarely would deletion occur on 'any' observation in
the dataset. Most often, the observation to be
deleted must be selected from the dataset.
Therefore, the specific observation must be chosen.
IT the observation number of the reco;"d to be deleted
is known, then a FETCHOBS statement can be used.
FETCHOBS reads the observation specified by the
relative observation number from a SAS dataset into
the Dataset Data Vector. Again, prior to using this
command, the dataset must be opened and set. The
code might be:

rc = FETCHOBS(dsid,obs-number);

If the operation is performed without error, the
result-code is set to O. If end-of-fIle is reached, then
the code is -1, and if an error occurred, the code is
not equal to 0 or -1.

The FETCH function reads the next non-deleted
observation from the SAS dataset into the DDV.
Place this function in a loop that reads some number
of observations and deletes them or that reads to end
of fIle and deletes all those observations. For
example:

dsid = OPEN(,Paper.Sample','U');
CALL SET(dsid);
rc = FETCHOBS(dsid,lO);
rc = DELOBS(dsid);
DO WHILE (FETCH(dsid) A= -1);

rc = DELOBS(dsid);
END;
rc = CLOSE(dsid);

In the above example the dataset will be opened and
observation number 10 will be fetched and deleted.
Then all observations nntil end of fIle, as denoted by
a return code of -1, will be deleted.

Since the observation number is not always known,
there must be ways of identifying an observation by
variable values. If the observation contains a unique
value for a variable, then two functions can be used
to identify that observation. The VARNUM function
returns the number of a variable within the dataset.
So the code:

varnum = VARNUM(dsid,variablename);

239

will return the number of the variable. If the variable
name cannot be found, the varnum will be set to O.

The VARNUM function can be used in association
with the LOCATEC function. This function is a
character-type specific function; LOCA TEN is the
numeric-type counterpart. LOCA TEC will search the
dataset for an observation containing a value of a
particular variable. This function requires several
arguments; the dataset id, the variable number and
the value must all be specified. Additional arguments
including sort information can be included. The code
specifications are:

rc = LOCATEC(dsid,varnum,value);

If a match is found, data from that observation is
moved to the DDV. The result code will be set to
greater than 0 if the observation has been found.

In the sample dataSllt, to delete the observation
where the university name is 'UNIVERSITY OF
MARIELAND', the code might be:

dsid = OPEN('Paper.Sample','U');
CALL SET(dsid);
vnum = V ARNUM(dsid,'univ');
rc = LOCATEC(dsid,vnum,

'UNIVERSITY OF MARIELAND');
rc = DELOBS(dsid);
rc = CLOSE(dsid);

Functions can be collapsed to one line as in:

rc = LOCATEC(dsid,VARNUM(dsid,'univ'),
'UNIVERSITY OF MARIELAND');

To restate the functions which allow for selection of
an observation from a dataset which has been opened
and set previously:

FETCHOBS -- selects by observation number
FETCH -- selects next available observation
VARNUM -- returns number of a variable
LOCA TEC -- locates an observation by variable

value

Choice 2: Deleting an Observation

To delete an observation, the steps are similar to the
APPEND function, substituting a DELOBS statement
for the APPEND statement. The syntax of the
DELOBS function is:

rc = DELOBS(dsid);

This sample dataset does not have unique identifiers
in that one university may in fact have several schools
offering informatics programs. Therefore, all
observations which include the chosen university
name must be deleted, so the Delete.Program might
appear as:

ENTRY univ $ dsid 8;
INIT:
RETURN;

MAIN:
RETURN;

TERM:
CALL SET(dsid);
vnum ~ VARNUM(dsid,'univ);
DO WIflLE

(LOCA TEC(dsid,vnum,univ) > 0);
rc ~ DELOBS(dsid);

END;
RETURN;

Delete Option

Advanced Selection Criteria

As stated above, the dataset Paper.Sample in
actuality could contain entries which had duplicate
University names. Searching for a particular entry
was made more efficient by storing all university
values as upper case, thus eliminating the need for
case-sensitive search. Still, searches posed a sticky
problem.

Since all entries with a particular university name
were to be deleted, the V ARNUMjLOCATEC
functions dealt with this situation satisfactorily. This
was not the case when a particular observation was to
be updated. Two matches were necessary to choose
a specific observation for update: university and
school.

The WHERE clause proves to be most useful in
these situations. A WHERE clause is a set of
conditions which observations within the dataset must
meet to be processed. The result code will be set to
o if the WHERE operation was successful. The basic
syntax of a WHERE clause is as follows:

rc ~ WHERE(dsid,clause1, ...);

and the basic syntax to clear any existing WHERE
clauses is:

240

rc ~ WHERE(dsid);

Additional WHERE clauses imposed without an
AND or ALSO statement will overwrite any previous
conditions. The basic WHERE syntax seems simple
enough, but when the variables are character string
variables, special care must be taken. Screen
variables values should not be enclosed in quotes, but
WHERE clauses must be enclosed in quotes, so the
syntax to subset the sample dataset by a value stored
in the UNIV variable would appear as:

rc ~ WHERE(dsid,'UNIV ~ '''I I univ I I"");

whereUNIV refers to the dataset variable and univ
refers to the screen variable.

Add to this clause another set of conditions:

rc ~ WHERE(dsid,'UNIV ~ "'Ilunivll'" AND
SCHOOL ~ "' II schoolll "");

It is important to note tbat careful testing of the
actual operation of each WHERE clause is
imperative. At times the clause might compile yet be
in error either syntactically or logically. Check the
result code of this option often during the testing
phase.

When a WHERE clause is in effect, take care in
using regular dataset functions. For example the
NaBS function will normally return the number of
observations in the dataset. This function will
continue to return the total number of undeleted
observations in the dataset, not the number available
after the WHERE condition has been imposed.

The A TTRN function does allow for a useful option
for dealing with WHERE conditions. The ANY
attribute of this function will return a numeric value
which is set to -1 if no observations or variables exist
in the dataset, 0 if the dataset has no observations,
and 1 if the dataset has both observations and
variables. To use this function:

attrib-value ~ ATTRN(dsid,'ANY');

In the sample system, an intermediate program was
developed which allowed for input of a school name
to be checked for existence in the dataset. If the
option to add new university/school was chosen, the
school could not already exist in the dataset.
Conversely, if the option chosen were to update an
existing observation, the school should be found in
the dataset. The module's screen and program are:

Enter the School: &school, ______ _

For University: &univ _______ _

Screen #3

ENTRY univ flag $ dsid 8;
INlT:
RETURN;

MAIN:
RETURN;

TERM:
CALL SET(dsid);
re = WHERE(dsid,'UNIV = "I I univ I I"

AND SCHOOL = "1 I school I I'''');
rcl = ATTRN(dsid,'ANY');

IF flag = 'A' THEN DO;
IF rcl = I THEN DO;

*error processing and return;
END;
ELSE DO;

CALL DISPLA Y('Add.Program'
univ,school,dsid);

END;
END;

IF flag = 'C' THEN DO;
IF rc1 = 0 THEN DO;

*error processing and return;
END;
ELSE DO;

CALL DISPLA Y('Update.Program'
univ,school,dsid);

END;
END;

RETURN;

School Choice

As shown, the School.Program will receive 3
parameters from the Main Program: university name
(univ), a flag designating the choice of Add or
Change (flag) and the dataset id (dsid). If all validity
checks prove correct as tested by the A TIRN
function using the ANY attribute, the program will
pass three parameters (univ, school, dsid) to the
appropriate application windows.

241

Choice 3: Updating an Observation

The UPDATE function writes values from the DDV
to the current observation of the dataset. The basic
syntax of the UPDATE function is:

rc = UPDATE(dsid);

As with other operations, a result code of 0 denotes
a successful update.

Updating an observation reqnires that the observation
in question can be located. In the sample dataset
which has been opened and set, the code to update
an observation where the university name is
'UNIVERSITY OF MARYLAND' and the city
should be changed from 'Batlimore' to 'Baltimore'
might be:

vnum = VARNUM(dsid,'univ');
rc = LOCATEC(BSID,vnum,

'UNIVERSITY OF MARYLAND');
city = 'Baltimore';
rc = UPDATE(dsid);

It is important to track the value of the variables.
When the observation is read, the value of CITY is
'Batlimore'. Since the correct value is read from a
screen into a screen variable of the same name, the
value should be stored in a nonwindow variable.
After the LOCA TEC function occurs, CITY will be
reset to this hold variable value. Different variable
names can be used for the screen and dataset
variables, but then in the INIT section, the screen
variable must be set to the value of the dataset
variable. The core code for the U pdate.Program is:

ENTRY univ school $ dsid 8;
INIT:

CALL SET(dsid);
rc = LOCATEC(dsid,VARNUM(dsid,

'univ'),univ);
RETURN;

MAIN:
'Data Validation checks;
·If error, return;

RETURN;

TERM;
rc = UPDATE(dsid);

RETURN;

Update Option

The LOCA TEC function is used in the INIT section
to select the observation and pass the values to the
screen variables. Since the dataset has already been
subset to the correct university and school in the
CALLing program, School.Program, the correct
observation will be displayed.

Main.Program Code

The MainMenu module appears as:

INIT:
dsid = OPEN('PAPER.SAMPLE','U');
CALL SET(dsid);

RETURN;

MAIN:
IF choice A= 9 THEN DO;

IF univ = BLANK THEN DO;
*error ~essages and return;

END;

'undo WHERE clauses;
rc = WHERE (dsid);
vnum = V ARNUM(dsid,'univ');
rc = WCATEC(dsid,vnum,univ);

IF choice > 1 AND rc < = 0 THEN DO;
*error--university isn't found;

END;

IF choice = 1 THEN flag = 'A';
IF choice = 2 THEN flag = 'C';

SELECT(choice);
WHEN(l) CALL DISPLAY

(,SchooI.Program',univ,flag,dsid);
WHEN(2) CALL DISPLAY

(,SchooI.Program',univ,flag,dsid);
WHEN(3) CALL DISPLAY

(,Delete.Program',univ,dsid);
OTHERWISE RETURN;

END;

END;
RETURN;

TERM:
IF choice = 9 THEN DO;

rc = CWSE(dsid);
RETURN;

END;
RETURN;

Main Menu Code
242

In the sample system, the university name must exist
for the Change or Delete options. Validity checking
will occur when the nser has input the choice and the
university name. As discussed earlier, the
School.Program module will contain further validity
checks. The SELECT statement is used to CALL
menu items. This statement allows for ease of
adding additional options to the menu. The TERM
section of this program is used to fmally CWSE the
dataset and exit the system. As is apparent in this
code, the Add module would need amendment in
order to receive the school value.

Data Vectors Revisited

With several SCL dataset functions defmed, further
description of the vectors should be useful. Again,
the two data buffers involved are the DDV (Dataset
Data Vector) and the SDV (SCL Data Vector). This
diagram shows the movement of data values between
these vectors and into screens or open datasets:

A---> C--->
Open Dataset DDV SDV

<---B <--C

0--->
Screen

<---E

After the dataset has been properly opened, the
following actions (A through E) are accomplished by:

A FETCH, FETCHOBS, LOCATEC
B APPEND, UPDATE
C SET
o REFRESH, RETURN
E ENTER, END, CANCEL

In studying this diagram, it is apparent that no single
simple manipulation function occurs with a single
command. If one command is missing or misplaced,
the system does not work.

Debngging Hints

Return codes are used throughout Screen Control
Language code. In most cases, codes of 0, > 0 and -1
are returned. There are times errors occur and
further defInition of the code is needed. This is ever
the case when using the WHERE clause which will
seemingly compile without error but will create
inaccurate or invalid subsetting of the dataset. Use
the system function, SYSMSG, to return a text to the
return code specified. Use this function in
conjunction with a PUT statement, and the error
message will appear in the message window. For
example:

rc = WHERE(dsid,'UNIV = "'I lunivl I"");
message = SYSMSGO;
PUT 'message' message;

This piece of code is extremely useful in debugging
SCL code. Remember to remove this code before
implementation.

Conclusion

This paper still ouly scratches the surface of dataset
manipulation with screen control language. None of
the above programs are complete. They lack validity
and error checks, key responses, etc. But these
programs do begin to acquaint you with the power of
SCL. Screen Control Language has options for
almost any instance, but locating the correct syntax
can be an arduous road. In addition, errors that are
not apparent during compile may occur during
execution. Tracking these mystical beasts may cause
nightmares. But in the midst of your frustration,
remember it can be done!

SAS™ is a registered trademark of SAS Institute,
Inc., Cary, NC

References: SAS Screen Control Language, Release
6.06 Edition, SAS Institute, Inc., Cary, NC.

If you have questions or comments:
Marge Scerbo
University of Maryland at Baltimore
Information Services
.100 N. Greene St., Room 211
Baltimore, MD 21201

Phone: (410)328-8424

Email: MSCERBO@UMAB.UMD.EDU

243

