Macroitis - A Virus or a Drug
Margaret K. Schrempf
G.D. Searle and Company

Abstract

In early May 1994, the disease which had been
infiltrating SAS® programs for more than a decade
was finally identified. Named Macroitis, the disease
was classified, with results of preliminary research
being presented at SUGI 19 in Dallas.

Since the discovery and initial analysis, the original
research team has not only identified a possible cure
but is now welt advanced in'Phase U clinical trials.
In addition, guidelines are being drawn up to help the
afflicted achieve the appropriate balance of good
macro coding while avoiding Macroitis.

This paper will deal with the results obtained from
the clinical trials. It will also propose a drug free
therapy designed to avoid the disease altogether.
Including coding standards and wvalidation
methodologies, the therapy also deals with the
adverse effects of Macro Deprivation Syndrome
(MDS).

This new approach has been shown to slow {and in
some cases) eradicate Macroitis altogether, while
improving ceding practices in 100% of trial subjects.

Introduction

Macre coding is a good way to eliminate repetitive
coding, however when macros are developed in a
"black box™ or when good coding practices are not
followed, Macroitis begins to take hold. It is the
purpose of this paper to establish Macro coding
guidelines, macro grading scales and validation
procedures for macros. Ways in which current
macro libraries can be modified to use coding
standards will also be illustrated.

Identification of Macroitis

In order to correct or prevent the disease we must
first learn how to identify some of the signs or
symptoms of MACROITIS. OQur clinical trials have
involved subjects over an eleven year period and
have been able to identify and isolate the behavior
exhibited by pregrammers infected with Macroitis.

Remember, even though it is possible to identify
macroitis, the programmer who is infected must first
admit that she/he exhibits some of the symptoms.

Macroitis Symptoms

1) Grinning at the monitor.

2] Every 3rd or 4th sentence is "I've got a
macro that will do that!*

74

3/ Substringing 8 macro at least 3 times to
obtain another macro.

4) Creating a macro to check other macros.

5) Strange ritual beliefs that untouched macros
get better over time.

6/ Cannot write a sentence or a report without
a%oré&.

Macro grading_scale

In order to identify the kind of macros that your
organization is currently using, our Clinical trails have
developed a simple macro grading scaie to quantify
the problem. We have found that most macros fall
into three grades, Poor or obnoxious, Fair, and
Exceilent.

Excellent Macros are macros that a novice to
experienced SAS® programmer can use without
asking any questions. These are macros that are
internally documented and do not contain any magic
or black box processing. Macros that fit in this
grade are those that simplify programming tasks, as
in the following examples.

Report generation

MACRO’s can save immense programming time and
typing effort by simplifying tasks. For example, if
you had to produce a report for 50 different study
protocols each displaying race and sex, it would
make sense to create a macro to autornate the task.

Consistency

Each pharmaceutical or other type of company has
adopted a specific way format to display information
such as a customer number or patient number. it
would make SENSE to have a macro available to use
for reporting this information on a continual basis..
This wiil ensure that the patient or customer number
is always handled in the same manner.

Calcuiations

Other - logical uses are conversions for units of
measure. Temperature conversions from Celsius to
Fahrenheit or Fahrenheit to Celsius, pounds to
kilograms, or inches to centimeters. A macro to
effect these convertions makes SENSE because it
insures that the conversions are being done
EXACTLY the same way every time and that there is
no room for programmer creativity.

Fair graded macros are those which can be run by
SAS® programmers that have at least 3 years of

experience and where some gquestions must still be
asked of the author of the macro. These macros
begin to show the early signs of the Macroitis virus
but can be hetped through Macro deprivation therapy
techniques. :

Some identifiable symptomns of these macros are:

1.) No internal documentation within the macro.

2.) Passing unknown or undefined parameters.

3.} Passing over 50 parameters to one macro.

4.} Creation of a data set within the macro
which will never be used again in the
program.

5.) Commented code which no longer works.

6.) A block of code which is commented out.
that was obviously put there for special
processing.

7.} Macros that do not use “"normal”™ naming
conventions.

Poor or Obnoxious macros are the plague of SAS®
programmers and usually can only be run by the
author of the macro. These are also the types of
macros that will require a company to hire a macro
specialist to de-macroize, when the author has left.
They can, however, be classified and therefore can
be dealt with when encountered. These
classifications are as follows:

1.} Unreadable macros.

2.) Macros that hide the process taking place in
the program.

3) Macros that obscure the process taking
place in the program.

4.) Macros that create logicals(True -False) and
do not use them.

5.) Macros that “save”™ CPU time.

6.) - Macros that call macros, that call macres,
that call macros, that call macros, that call
macros.

7. Macros that were originally part of a macro

system, that are no longer used but still
reside in the macro library.

Macro standards

There is no excuse out there in SAS® {and to not
have some kind of documentation in place for any
macros that your business uses. Macro code need
not provide job security for programmers or
consultants. QOur clinical studies have uncovered
several instances where poorly documented macro
code has resulted in several manths of rework,

This kind of rogue macre coder takes no prisoners,
relies on a lack of supervision, and leaves the
company with a guarantee of a return trip, all
expenses paid. However we have discovered that
macro documentation is the first fine of defense in
controlling what is now called "BAMBO" macro
code.

Macro documentation is simple to put into place and
is an essential starting point in this battle. Clinical
trials have proved that sometimes a simple Header
starts the documentation process.

[T T e ey T T DD P FTTTTTITT I

%* Program Name; REORDER .SAS Date: 01/1/91
%* Author: Jane Doc

[I8
ws *

%" Description: This macro will roorder and kecp only the -
% designaled variables in the outpet file -
L4 .
% * Parameters: L
% DSIN - data sct pame 10 be reordercd. If none 1s used =
%" then the _last_ data set created is used. *
% DSOUT - dats set name of the cutput dats set if none is
% uscd then the _last data set name created will be used ™
% ORDSTR - String of variable names in the order hed
%" required for the output data set. ’ .
%. .-,
%= Validator Name: Alex Smith Date: 01731/91 =
~ %* Validation Protocol Number: CP-91-0005 -
L Rbebiel] 'Revisim H’_ism samy H
%* Author Name: Tom Jefferson Datc: 06/1/9%4 =

%* Validator Name: John Adams
% * Validation Protocol Number: CP-95-0176
%™ Description: Upgrade for use on UNIX platform .

Figore 1~ Bocumentaton Header ;

*
Date: 06/30/94 *;

Documentation Header)
The documentation header should contain both
general information, and comments that are specific
to the macro. General information contains the:
Name of program
Author
Date

The first section of specific information should start
with the description or the purpose of the macro.
For example, in Figure 1 the purpose of the reorder
macro is to regrder and only keep the variables
designated in the output file.

The second section of specific information should
contain the parameters of the macro. Questions that
should be answered here are:
1.} How is the macro used?

As part of a data step?

As part of a proc?

Does it just subset?

Can it run as a separate step?

2.} Are there any default parameters?
Uses last data set created?
Uses a data set within a library?
Are there variables created with default
values?
Are there special data set names used?
Are there any SAS® options or macro
options being used? '

3.) What are the input parameters?
Are there parameters that the user must
supply?
In what order should the user supply them?

Will the macro supply the parameters?
Can the user override the parameters?

4.) What are the output parameters?
Does the macro create an output data set?
Will the macro create variables that can be
used within 2 current data step?
What are the variable names?

The third section of the documentation header should
contain the validation information for the macro. The
date, validator’'s name, and the Validation Protocot
Number should appear in the header. Macro
Validation will be discussed later.

The last section of the documentation header should
contain any revision history of the macro. Each time
a change has been made in a macro, it should be
noted. in Figure 1, the macro was changed to run
on a Unix platform. Any significant change in a
macro should require that a revalidation of the macro
take place. This will ensure that the macro performs
as it originally did. Information that should be
required is as follows. :

1.) Name of the programmer making the change.
2.) Date of the change.
3.} Complete description of what change took place.
' If any parameters change, they should be
noted at this point.
4.) Name of the Validator and the validation date.
5.) Validation Protocol Number if any.

Documentation within program code

There should be no difference between writing a
program in SAS® and writing a macro in SAS®, The
amount of documentation that is required for a
program should also be reguired for a SAS® macro.
The argument of too many comments in a program
unfortunately has left us with far too few comiments.
A way to guide comment use can be fashioned in
this manner.

Each step or process should be documented. This
kind of style also permits a more modular approach
to programming. Commenting each step or process
also will allow the programmer to make sure that the
macro is performing 2 specific task. In some cases
the programmer or manager may want to split out
the process performed into two or more macros. For
example, if the macro will be selecting randomization
for a specific protocol the comment could read:

%I'b'l'l.l'f'flI'i'l{llfiill‘“..lli!'."

Selectrandomization file and subset data for
the protoco! number contained in &PROT

%ltl-liIQIGQGolllioiiiioillilflfili!!il.
I

Comments can also be a source of information for
where and when a particular calculation has been
decided upon. An age calculation is pretty common,
but can, in some cases, be complicated. The
following comment clears up any questions regarding

76

this calcutation.

%lillll."iill.il”IIIII'.‘Q*.II.""Q'

Patient age is defined as the int{Date of
Birth - Date of First Dosel/365.25 ger
Standardization Commitiee 4/12/88,

%'l.l*.-'I'Illllll'il.I.....Ii'l.i...'.li.
.

So here we have the first solid result from the clinical
study: Commenting macro code within the program
code is one way to start to get Macroitis under
control. The macro mysteries start to fade away
once the process of the macro is explained.

Macro Coding Standards

Macro coding standards should be part of any SAS®
coding guidelines already in place in your business or
institution. While some still consider SAS® code as
AD-HOC or one-off programming, there still is a
place for structured programming that will not
“cramp"” the style of your programmers.

Macro Coding standards should contain all of the
same elements that general SAS® coding guidelines
have. Some principles that should be contained in
coding guidelines are as follows.

Indentation of code
All SAS® coding should follow some indentation
standard within the structure of the program. There
is nothing worse than trying to determine the flow of
a program that is difficult to read. These are simple
standards to set in place and that will provide the
first steps in controlling Macroitis.
1.) Each DATA or PROC should end with a run.
PROC PRINT DATA =DATAIN.LABS;

VAR SUBJECT TESTNAME TESTVAL;
RUN;
2. All statements after a DATA or PROC
should be indented by 3 to 5 spaces.
PROC PRINT DATA=DATAIN.LABS;

ID SUBJECT;

VAR TESTNAME TESTVAL;
RUN;
3. All blocks of IF-THEN-DO statements should
have the END statement line up with the IF,
IF SEX ="FEMALE" THEN
DO;

IF PRGTEST ="P* THEN RABBIT ="DOA";

ELSE RABBIT="A0K"
END;
4.} No more than one SAS® statement per line.
Realistic or reserved data set names
Output data set names should reflect the data
contained in it. Data set names should not reflect
pets, children, spouses, or other names. FIDO may
be a loyal dog, however, as an cutput data set name

it certainly leaves something to be desired in its
description.

If your macro library will create data sets to be used
in programs, then your coding standards should
provide a list of “reserved” names so that
programmers will not use them in their program. For
example, if a macro subsets a Drug Code Dictionary
for specific drugs listed in the macro, then the output
data set is called DRUGCODE. This name now
becomes a reserved name and should not be used in
other programs or in other places in the calling
program’ where it refers to a different data set.

Megdular Programming

This is something that we all learn about, but most
forget to practice. Coding Guidelines can be used to
“force" medular programming within your business
and institution. Indeed macros that are written to
perform a particular function fit easily into modular
programming design. Some of the programs that
could fit the design of modular programming are
programs that print the standard headers and
footers, specific calculations, or read master files.
These can be brought into any program and easily
modified. There are many uses for macros, but we
must make sure that they have been well written and
documented.

Macro deprivation therapy

Our clinicat trials have shown that sometimes the
only way to regain control of macro coding is to
institute Macro Deprivation Therapy(MDTI. Our
approach with this therapy is first to require that all
macros used in programs, or systems be validated.
This guarantees that the macros used are fully
documented and have gone through a series of
validation steps. MDT also ensures that the macros
are used in a limited manner and that macros
generated by consultants are controlled and
managed.

Part of MDT teaches macro sense to the afflicted.
Macros shouid only be used when it makes sense to
use them.

’

1) it must make SENSE to "macro it”".

2.} The MACRO should bring consistent resuits
and save time.

3.} The MACRO should actually do something.

4.} The MACRO must be maintainable by more
than 1 person.

5.) The MACRO should provide an explanation
of all parameters.

6.} - The MACRO should provide a clear and
concise summary of what it does.

7.} The- MACRO should be able to be used

77

several times.

8.) The MACRO must adhere to programming
standards.

9.} The MACRO must be planned with an
obtainable result,

10.) The maximum amount of parameters must
be set.
11.) All MACROS should ‘have a § day waiting

period. If the programmer can st_iH
understand why he/she wrote it, then it can
be used. ’

Item 11 seem humorous and sounds like something
that you would expect from the Surgeon General.
Humorous as it may seem, it is a way to require
justification. As programmers, we get so involved
with the task at hand, that we no longer, see any
other way to resolve a programming problem, except
by macroizing it. Sometimes this works.
Sometimes, though, it exacerbates the problem,
requiring a programmer to justify the use of a macro
simply provides the programmer with another way to
resolve the problem. It has been our experience that
after allowing time for this thought process at least
80% of the solutions are non-macro. It also benefits
the programmer to look at other options within the
SAS® language.

Macro validation protocols

There are several books which are available on the
topics of system and program validation which were
invaluable to our clinical study team during their
research, These results determined that validation
must contain at least three core components.

Programmer Validation

The first step in any validation process is the use of
a validation check list. The programmer should have
a checklist of items that the program must have
before it moves into the next step in the validation

process. Some of the checklist items are listed

below,

1.) Are theré any warning messages in the log?

2. Are there any unintialized variables in the
log?

3. Does the pregram use the standard header?

4,) Is the program written according to

programming guidelines?

8.} Is there sufficient documentation throughout
the program?

Although just a sample, these are critical elements in
a programmer checklist. The second component is

the peer review panel which should convene after
the programmer is satisfied with the code.

Peer review

A peer review panel contains only programmers.
Under no circumstances shouid this panel contain
supervisory personnel, especially the supervisor of
the programmer submitting the program. A Peer
Review Panel is not intended to be the vehicle for a
programmer’s evaluation. That should take place
under other circumstances

The panel should contain a variety of programming
experience, from the most experienced to the novice.
Such an approach allows a diverse look at the
program. The programmer should provide the panel
with the program, program log, and output if
necessary at least three to five days before the panel
convenes. This will allow an appropriate amount of
time for the panel to review and prepare questions
on the code.

When the panel convenes the programmer should
present an.overview of the program. The panel
should then ask any questions regarding the program
including its overall function, documentation, and use
of the appropriate PROCS and DATA STEPS. This
shoutd not be an inquisition but a learning experience
for ali parties. After the panel has examined the
program they will be able to report one of three
conclusions.

1.) The program can proceed to validation
testing without change.

2.) The program can proceed to validation
testing with one to three minor change
{usually in documentation).

3 The program may not proceed. It must be
modified per the Peer Review Panel
requests, and returned to the panel.

The Peer Review Panel signs a document with their
findings, and turns it in to the supervisor. The Peer
Review Panel findings are final and binding.

Validation Test Plan
The last step in program or macro validation is the
validation test plan. The test plan validates the
program performance, the accuracy and consistency
- of correctness of the requested program functions,
and that the output generated {if any) is consistent
with departmental or company standards. This
should not be confused with programming testing
during program development. The validation test
pian provides formal testing of the code according to
defined specifications, and is not the ad-hoc
programmer testing procedure.

Most companies or institutions should have a
Validation Protocol available that will assist in writing
a validation-test plan. 1In addition the test plan

78

should be drawn from the design specifications of
the program. Those items which should be
addressed in such a plan include:

1.) How does the program handie missing data?

2) “Are there error messages that will notify the
user of a problem?

3.) ‘Will the error messages stop the program
from processing.

4.) - Can anyone other than the author use the
program?

There are more specific items in the design
specifications which should be addressed within the
test plan.

After the test plan is written and completed, a
person other than the author of the program, should
do the testing. This will assure that anyone on.the
programming staff will be able to run the program.
Finally once the program-is tested, it should be
placed in a program or macro library that can be
used by everyone.

Conclusigns .

This paper provided the identification of the signs
and symptoms of Macroitis. It has also provided the
tools needed to control macros, such as Macro
Depravation Therapy. It has aiso provided some
guidelines to follow for better SAS® coding practices.
Documentation and wvalidation are tools that our
industry has used for many years. It is time that we
integrated those tools with SAS® programming. As
figure 2 illustrates, it is time to take control of
macro coding skills instead of it controlling us. ltis

Figure 2

possibie 10 ensure good programming guideiines
within your business by adopting just a few of the
processes discussed. For our part, we adopted
many of these practices in our clinical study and we
know they work!

Acknowledgments)

I would like to thank Billy G, Goat Il for his editorial
acumen, Donna Lucas-Mudd for her attention to
compaosition and structure, Lynn Thome-Polingo and
Joanne Laffer for their technical expertise.

