Tips about Using Data Step Option Point access

Jingren Shi, Syntel Inc., Troy, Michigan
Shiling Zhang, Wayne State University, Detroit, Michigan

Abstract

This paper discusses how to use SAS data step
option POINT = in data manipulation among
observations. For example, how to access
observations directly from within a data set to get the
useful information or how to generate a random
sample from a data set. It is not uncommon for an
inexperienced SAS programmer taking several steps
to manipulation a data set into a desired format when
it can be done in a single step. All examples used
here are based on questions posted on comp.soft-
sys.sas or sas-l.

Terminology and Definition

SAS data step option POINT = variable-name reads
SAS data sets using random (direct) access by
observation number. With the POINT= option, one
names a temporary variable whose value is the
number of the observation one wants the SET
statement to read. Because the POINT = option
reads only those observations specified in the option,
the SAS system cannot read an end-of-file indicator
as it would if the file were being read sequentially.
Therefore one must include a STOP statement to
stop processing the data step s

Program data vector(PDV) @ ___. Area of memory
where the SAS system builds your data set, one
observation at a time. When the program executes,
data values are read from the input buffer or created
by SAS language statements and assigned to the
appropriate variables in the program data vector.
From here the variables are written to the SAS data
set as a single observation.

SAS processes observations sequentially. Point
access option is very useful when one wants to re-
shape or manipulate a data set out of sequence. It
reads observations directly according to the
observation number or point. Hence any
unnecessary information is not read into the PDV
and the performance may be improved.

Here is a typical example of using SAS data step
option POINT =.

Data out;
Dol=1,3,5
Set dsn point=I;
Output;
End;

Stop;
Run;

Note the data step only reads observation 1, 3, 5
from the input data set and writes them to the output
data set.

Case 1l

Using SAS data step option POINT = to subset a
data set is very efficient when one knows which
observations he wants.

Here is an example.

51 datatl;

52 dox=1to le6;
53 output;

54 end;

55 run;

NOTE: The data set WORK.T1 has 1000000
observations and 1 variables.
NOTE: The DATA statement used 4.0 seconds.

56

57 datat2; 1)
58 doi=1,3)5;

59 set t1 point=i;

60 output;
61 end;

62 stop;

63 run;

NOTE: The data set WORK.T2 has 3 observations
and 1 variables.
NOTE: The DATA statement used 0.22 seconds.

64

65 datat2; 12)
66 settl;

67 if _n_in (1 35) then output;
68 run;

NOTE: The data set WORK.T2 has 3 observations
and 1 variables.
NOTE: The DATA statement used 4.5 seconds.

The log file shows that @ is 20 times faster than @
when it subsets a data set having one variable with 1
million observations.

Case 2

Question: The last observation in a data set has the
summary data. How do | output just the LAST
observation?

© using the END option on the SET statement.

data summary;
set rawtests end = eof;
if eof then output;
run;

@® using point access option.

data summary;
set rawtests point = nobs nobs = nobs;
output;
stop;
run;

© reads all observations into PDV and writes the last
one into summary.

@® only reads and writes the last one from an input
data set and an output data set.

@ is more efficient than ©.

Another example is how to access the minimum or
maximum value of a variable if a data set is sorted
by the variable.

If values of a variable are sorted, then the first and
the last values are minimum and maximum
respectively. Hence it is very efficient to retrieve data
with the point access option

data out; 1]
doi=1, n; e
set dsn point=i nobs=n;
output;
end;
stop;
run;

© Output data step has two observations.
@ it reads and writes only two observations.

Case 3

Question: One sorts a data set in a wrong direction.
How can one re-sort the data without using PROC
SORT?

In this case, one can use the point access option to
access the data from bottom to top. The approach
should be better than using PROC SORT.

data c_ord;
do _i=nobs to 1 by -1,
set w_ord nobs=nobs point=_i;

output;
end;
stop;
run;

Case 4

Question: Can anyone give me some suggestions of
a systematic sample selection.

A systematic sample selection involves a random
selection of a starting point and a given range to
determine the location of the next sample. A good
approach is to use the point access option.

*start point range and value of a step;
%let srange=20;
%let step=20;

data sample(drop= start);
start=ceil(&srange *ranuni(-1)); 1)
do _j_=start to nobs by &step;
set pop nobs=nobs point=_j_;
output;
end;
stop;
run;

© randomly selects a starting point.
Case 5

Question; Can anyone give me some suggestions as
to the proper code for a random sample selection.
For instance, | randomly select 10 observations out
of a data set that contains 36 observations with no
replacement.

This type of question is frequently posted at
comp.soft-sys.sas or sas-I.

A usual solution will be,

1) creating a data set that contains a variable, say,
ran_x with 36 observations of random values,

2) merging the data set with a sampling data set;

3) sorting it by the ran_x and output the first 10.

This approach involves several steps. It is quite
inefficient. One could do it in a single data step with
the data step point access. The code is simple and
the logic is easy to understand if one has a little
knowledge about conditional probability concept.
Here is an example to illustrate the idea.

There are three boys and three identical balls except
in color. One ball is red and the rest are green. Every
boy prefers red one. In order to be fair to everyone
they decide to do a random draw from an opaque
bag. The rule is that everyone can draw only once

with one ball.

© Three boys draw simultaneously.
® Three boys draw sequentially with no
replacement.

O and @ are equivalent, i.e., everyone has exactly %
in probability to have the red ball in both approaches.

Here is a naive proof. There is a millionth second
difference in picking up a ball when three boys draw
‘simultaneously’. Hence the ‘simultaneously’
becomes the ‘sequentially’.

The mathematical proof is simple too. Under the
sequential approach, the first boy has the red ball

with 3 chance and no red ball with % chance. The

second boy has the red one depending upon the
result of what the first boy has. If the first boy has the

red ball, the second boy has the red ball in O

probability. Otherwise he has red one with %

probability. The probability for the second boy having
the red ballis 3 x 0+ 2 x 1 = §. The probability for

the third boy having the red ballis 1- 5 - 5 = 3.

Because SAS processes observations sequentially,
the above outlined proof can be deemed an
implementation of approach @.

The following codes is based on approach @.

data out(drop = size n);
size = 10;
n=nobs;
do i =1to nobs;
if ranuni(-1) le (' size/n) then do;
set dsn point = i hobs=nobs;
output;
size = size-1;
if size=0 then stop;
end ;
n=n-1;
end;
run;

Case 6

Question: One wants to roll over samples to do
some rolling regressions. For example, a data set
has 60 observations. One wants to do regressions
using 1-30 obs, 2-31 obs, 3-32 aobs,..., 31-60 obs.

One can use point= access reshape the data easily
and clearly first, then one can use a 'by statement' in
regression to get all 31 regressions.

*Create a testing data set;
data t1;
do x=1 to 60;
y=2+3*x+rannor(0);
output;
end;
run;

*reshape the data set such that;
*each group has 30 consecutive observations;
data t2;
do flag=1 to 31,
do i = flag to flag+29;
set t1 point=i;
output;
end;
end;
stop;
run;

proc reg data=t2;
model y=Xx;
by flag;

quit;

run;

Case 7

Question: How do you do LEAD (as opposed to a
lag) in SAS. For example;

data temp;

set test01,;

xxx = leadl(yyy);
run;

SAS does not have a lead function. Can one emulate
the lead function in this example? The answer is
positive. Here is a solution of using point access
option. The solution is provided by Paul Dorfman on
sas-l.

data t1;
retain x X'y 'y'nm 0;
length x y z $8;
dol=1to lel;
z=compress(‘'z'||l);
output;
end;
run;

%let leadn=2;
%let leadvar=l;
%let dsn=t1;

data out;
set &dsn nobs=nobs;
i = n_+&leadn;
if (nobs<_i) then lead_&leadvar =.;

else set t1(keep=&Ileadvar
rename= (&leadvar=lead_&Ileadvar))
point=_i ; @
run;

O It accesses the next value of a given variable as
its current value.

Case 8

Question: How do you take a product summation
without the square terms? i.e.

n

Y % 0%

i,j=Li#j

N[

Using data step point access point is very efficient to
handle the problem. Note the looping times will
reduce to almost a half if one uses the fact that

X, 1 X is symmetric.

*Ccreate a testing data set;
data t1;
do x=1,3,5,7;
output;
end;
run;

data t2(keep=y);
doi=1ton; (1)
do point=i to n;
set t1 point=point nobs=n;
if point=i then z=x;
else y + z*x; e
end;
end;
output;
stop;
run;

© Note the looping index i is from 1 to the number of
observations and index point is from i to the number

of observations because X; [X; is symmetric.

@ It adds up the cross product X, U X; .

Case 9

Question: One has a very large uncompressed SAS
data set. The file is created in production weekly and
contains almost 35 million observations and 20
variables. The file is sorted by a 16-digit numeric key
variable. The marketing department periodically
receives a small list of non-duplicate accounts,
somewhere from several tens to several hundred
thousand. One has to select only those records from

the large file whose accounts coincide with the
accounts contained in the small one.

Now we use,

PROC SORT DATA=small OUT=osmall;
BY keyvar;
RUN;

DATA VYTJIAG;
MERGE large(IN=K) osmall(IN=L);
BY keyvar;
IF KAND L;

RUN;

It works fine, as the large file has already been
sorted in production, but takes a very long time. |
wonder if anyone in the group could indicate a
method which could do it much faster. Please note:
The large file is not indexed, and one can only read
it. All suggestions would be greatly appreciated.

In this case the transaction data set is very SMALL
and the base data set is very BIG, and more
important, it is sorted.

If one knows the range of the key variable in the
transaction data set, then one can limit observations
from base data set by applying FIRSTOBS and OBS
options, something like,

DATA VYTJIAG;
MERGE large(firstobs=&start obs=&end IN=K)
osmall(IN=L);
BY keyvar;
IF KAND L;
RUN;

So the problem boils down to 'how to find the range
of the key variable in the transaction data set. A
solution is to partition or mark the base data set into
hundreds of blocks. By using point access, one may
easily find a small range, but big enough to cover the
values of the key variable in the transaction data set.

%let bnum=1e8;
%let snum=1e4;
%let parts=500;

data t1;
retain x1-x20 O;
doid = 1 to &bnum;
output;
end;
run; (1]

data t2;
retain y1-y20 0;

start = max(int(&snum*ranuni(0)),1);
do until (cnt > &snum) ;
cnt+1;
start + ceil(10*ranuni(0));
id = start;
output;
end,;
drop cnt start;
run; (2]

data _null_;
do point=1, nobs;
set t2 point=point nobs=nobs; cnt+1;
call symput (compress('pt'||cnt),id);
end;
stop;
run; ©

data null_;
i=1;
do until (i>&bnum);
set t1 point=i;
if id < &ptl then call symput
(‘start’,;max(int(i-&bnum/&parts),1));
if id > &pt2 then do;
call symput (‘end',i);
stop;
end;
i+int(&bnum/&parts);
end;
stop;
run; (4]

%put >>>>>>>>>>&ptl &pt2 &start &end;

data t3;
merge t1(firstobs=&start obs=&end in=a) t2(in=b);
by id;
if a and b;

run;

O creates the base data set

@ creates the transaction data set

© calculates the range of transaction data set
® finds the range in large data set.

If the value range of the key variable in the
transaction data set is hundredth of that of the base
data set, the above approach should run very fast.
However, if the values of the key variables are
uniformly distributed on the range of key variable in
base data set, the binary search would be preferred.
One can find more details in "Professional SAS
Programming Secrets"?,

Conclusion

POINT = access is very useful option. It is more
important to know when one should consider using
point access option.

1) When one wants to subset a data set and knows
which observations are needed in data manipulation.
For example, case 1, case 2, and case 4.

2) If program logic is clearer with point access
option, one should consider using it.
For example, case 3, case 5, case 6, and case 8.

3) Program performance can be improved. For
example, case 3, case 7 and case 9.

However, the point access option has its limitations.
The point access is slower that the sequential
access in a reading process. It cannot work with

a) SAS data views

b) Compressed SAS data sets

c) The index of a SAS data set

d) A by statement

e) A where= data set option or where statement

When one use it properly, not only will program
performance be improved, but program logic is clear
as well.

[1] SASY Language: Reference Version 6, First Edition, Cary,
NC: SAS" Institute Inc., 1990, p485.

[2] SAS” Language: Reference Version 6, First Edition, Cary,
NC: SAS Institute Inc., 1990, p16.

[3] Professional SAS Programming Secrets,1991 by Rick Aster &
Rhena Seidman, Published by the McGraw-Hill Companies, Inc.
p415-423.

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries. " indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Authors:
Jingren Shi
Syntel Inc.
jshiz@ford.com

Shiling Zhang

The Department of Mathematics
Wayne State University
shiling@math.wayne.edu

