
Paper 62-26

Eight PROC FORMAT Gems
Jack Shoemaker, Accordant Health Services, Greensboro, NC

ABSTRACT
The SAS system shares many features with other programming
languages and reporting packages. The programming logic found in
the ubiquitous data step provides the mechanisms for assignment,
iteration, and logical branching which rest at the core of any procedural
language. Analytic data displays, like the humble frequency cross-
tabulation produced by various procedures - PROC FREQ, PROC
MEANS, PROC REPORT may be replicated with varying degrees of
success using any number of other products. PROC FORMAT is
another matter. Somewhat like an enumerated data type; somewhat
like a normalized and indexed reference table; it really has no exact
analog in these other products and packages. There’s a lot you can
do with PROC FORMAT. And, there’s a lot to know about PROC
FORMAT. The aim of this paper is to provide insight on at least eight
gems found in PROC FORMAT.

1. IT’S JUST A SAS® CATALOG
Broadly speaking, the SAS® system divides the world into two types of
data objects: the data set and the catalog. Of course, the data step
creates data sets. Many procedures have OUT= directives which also
create data sets. Virtually everything else ends up in a catalog, for
example, stored SCL code, and saved graphics output. The user-
defined formats created by PROC FORMAT are no exception.

You refer to data sets with what is called a two-level name. For
example, SASAVE.SESUG refers to a data set called SESUG in a
library called SASAVE. Library names refer to aggregate storage
locations in the file systems for your particular operating system. The
association of library name to aggregate storage location is done
through the LIBNAME statement. For example, the following
statement would create a library called SASAVE.

libname sasave ‘/usr/data/sasave’;

For modern operating systems like Unix, VMS, and Windows which
support tree-structure directories, the aggregate storage locations are
just directories or folders. Under older operating systems, like MVS,
the aggregate storage locations refer to (confusingly) OS data sets
which have been pre-allocated through magical incantations known as
JCL. If you have never heard of the terms MVS, JCL, or DD, consider
yourself fortunate to be so young.

Unlike data sets which contain only one object – the data set, catalogs
may contain many items known as members. To refer to a catalog
member, you use a four-level name. For example,
SASAVE.SUGI.EXAMPLE.FORMATC refers to a catalog member
called EXAMPLE in the catalog called SUGI in the library called
SASAVE. The final node of this four-level name, FORMATC, means
that EXAMPLE is a user-define character format.

If you are using one of the operating systems listed above which
support tree-structured directories, you can browse the directory
contents and see the actual file names which correspond to the data
set and catalog listed above. For example, if you are running version
8 of the SAS® system under Windows NT, then the data set would
have this name:

SUGI.sas7bdat

While the catalog would appear as:

SUGI.sas7bcat

The default format catalog is LIBRARY.FORMATS. That is,
a catalog called FORMATS in the library called LIBRARY.
The library called LIBRARY should be created by the
person, or group, who administers SAS® at your site. The
installation process does not create this library. However,
somewhat paradoxically, SAS® searches for a library called
LIBRARY for many of it’s default operations, like locating
user-defined formats. The definition for the library called
LIBRARY usually occurs in your AUTOEXEC.SAS file which
you should find in the SAS® root directory which contains
the SAS® executable file, sas.exe.

You can use PROC CATALOG to list the contents of a
format catalog or any other SAS® catalog for that matter.
For example, the following code fragment will display a list of
all the members of the default catalog,
LIBRARY.FORMATS:

proc catalog c = library.formats;
contents stat;
run;

The output will look something like this:

Name Type Description

1 AGE FORMAT
2 PHONE FORMAT
3 AGE FORMATC
4 MYDATE INFMT

The actual display will be wider than what’s shown here
which has been truncated to fit within the margins of this
paper. Note that there are three different member types:
FORMAT, FORMATC, and INFMT. The FORMAT member
type specifies a numeric or picture format. The FORMATC
format specifies a character format. And the INFMT
member type specifies an informat which is used to read
rather than display data.

In version 8, the description attribute is left blank. In earlier
versions, the description attribute contains some details
about the format. In any event, you should use the
description attribute to provide short documentation about
the user-defined format. The name-space for user-defined
formats still remains just eight characters which means that
your format names will look pretty dense, like variable
names and such in the pre-version 7 days. The description
attribute provides a simple way to compensate for this
lingering restriction.

The following code fragment uses PROC CATALOG to
modify the description attribute of two members of the
temporary catalog WORK.FORMATS.

proc catalog c = work.formats;
modify
age.format(description = 'Age Map');

modify
age.formatc(description = 'Age

Decoder');
run;

If your SAS® system administrators have acted in a
responsible fashion, you will not be allowed to modify the

Beginning Tutorials

2

common LIBRARY.FORMATS catalog. So, the example above uses
the temporary format catalog called WORK.FORMATS which is
created in the temporary WORK library. Just as data sets created in
the WORK library disappear at the end of your SAS® session, a
format catalog created in the WORK library will also disappear.
Notwithstanding, for the purposes of illustration and discussion the
remainder of this paper will use the temporary WORK library.

The resulting contents display would look like this:

Name Type Description

1 AGE FORMAT Age Map
2 PHONE FORMAT
3 AGE FORMATC Age Decoder
4 MYDATE INFMT

2. YOU CAN EXAMINE THE FORMAT CONTENTS
The preceding example shows how to list the members of a format
catalog. You can also look at the contents of a particular user-defined
format. One technique is to use the FMTLIB= option of PROC
FORMAT. For example, the following code fragment will display the
contents of the user-defined format called AGE.

proc format
library = work.formats fmtlib;
select age.;
run;

A truncated version of the output of this code might look like this:

| FORMAT NAME: AGE LENGTH:
MIN LENGTH: 1 MAX LENGTH: 40 D
START
----------------+----------------+----
0
20< 30
30<HIGH

The FMTLIB display shows the start and end values of the format
range as well as the resulting label. In this example, the label is a
single digit – 1, 2, or 3 – which presumably needs to be de-coded with
a subsequent format definition. The less-than symbols (<) after 20
and 30 in the start column indicate that those values are not in the
specified range. This matters for variables which take on continuous
values. The label 1 is associated will all values between 0 and 20
including the end-point values 0 and 20. The label 2 is associated with
all values between 20 and 30 not including the exact value of 20 which
is in the first range. Similarly, the label 3 does not include the exact
value 30, but does all other values above 30. This may represent
more control over your data than you need. Notwithstanding, it’s nice
to know that you have this control should you need it.

3. YOU CAN UNLOAD A USER-DEFINED FORMAT
INTO A SAS® DATA SET

The FMTLIB= option on PROC FORMAT provides a mechanism for
displaying the contents of a user-defined format as regular SAS®
output. You can also unload the contents of a user-defined format into
a SAS® data set using the CNTLOUT= option on PROC FORMAT.
For example, the following code fragment will create a data set called
CNTLOUT from the all the user-defined formats stored in the catalog
called WORK.FORMATS.

proc format library = work.formats
cntlout = cntlout;
run;

The resulting SAS® data set will contain the following twenty
columns.

Variable Type Label
--
-
DATATYPE Char Date/time/datetime?
DECSEP Char Decimal separator
DEFAULT Num Default length
DIG3SEP Char Three-digit separator
EEXCL Char End exclusion
END Char Ending value for format
FILL Char Fill character
FMTNAME Char Format name
FUZZ Num Fuzz value
HLO Char Additional information
LABEL Char Format value label
LANGUAGE Char Language for date
strings
LENGTH Num Format length
MAX Num Maximum length
MIN Num Minimum length
MULT Num Multiplier
NOEDIT Num Is picture string
noedit?
PREFIX Char Prefix characters
SEXCL Char Start exclusion
START Char Starting value for
format
TYPE Char Type of format

If that seems like a lot of columns, it is. Most are there to
provide the extra levels of control which are needed in
specific circumstances. In fact there are only three required
columns: FMTNAME, START, and LABEL. In addition to
theses required columns it is good habit to include the TYPE
column which explicitly tells PROC FORMAT that you are
building a numeric or character format. Of course if your
format is to include ranges, you will need to include an END
column as well as the START column. Finally, the HIGH,
LOW, and OTHER keywords are coded in the HLO column.
In summary, the six commonly useful columns are listed
below:

Variable Type Label
--
-
FMTNAME Char Format name
TYPE Char Type of format
START Char Starting value for
format
END Char Ending value for format
LABEL Char Format value label
HLO Char Additional information

Here’s what the CNTLOUT data set for the AGE format
looks like:

FMTNAME TYPE START END LABEL HLO

AGE N 0 20 1
AGE N 20 30 2
AGE N 30 HIGH 3 H

4. THE PUT() FUNCTION MAKES A USER-
DEFINED FORMAT ACT LIKE A TABLE LOOK
UP
You can use user-defined formats to display or write-out
coded values in raw data. For example, the values of ‘M’

Beginning Tutorials

3

and ‘F’ could become ‘Male’ and ‘Female’ if displayed using a user-
defined format called $SEX. In a sense, the user-defined format
called $SEX. is just a two-column lookup table with ‘M’ and ‘F’ as the
key values and ‘Male’ and ‘Female’ as the looked-up return values.
You can use user-defined formats in just this fashion in a data step by
using the PUT() function. Following along our example, if you wish to
create a new data-step variable called ‘description’ from an existing
data-step variable called ‘sex’ using a user-defined format called
$SEX., you could use a piece of code like this:

description = put(sex, $sex.);

This technique allows you to re-write if-then-else trees and replace
then with a single line of code. For example, assume that you have a
set of discount factors stored in a user-defined format called $DISC.

proc format;
value $disc
‘ABC’ = 0.20
‘DEF’ = 0.25
‘XYZ’ = 0.00
other = 0.00;

You could replace code that looks like this:

if vendor = ‘ABC’ then discount = 0.20;
else if vendor = ‘DEF’ then discount = 0.25;
else if vendor = ‘XYZ’ then discount = 0.00;

With a single statement that looks like this:

discount = put(vendor, $disc.);

This technique also has the added advantage of separating the data –
the table of discount factors – from the code. If you need to add or
change the discount values for your vendors, you simply change that
data outside of the data step and leave your existing data-step code
alone.

One word of caution: the PUT() function always returns a character
string. So, if you mean to use the return value as a number you must
take some action to cause SAS® to convert the character string to a
number. For example:

length discount 8;
discount = put(vendor, $disc.);

or

net = gross * (1 - put(vendor, $disc.));

That is, either explicitly declare the return variable as a number. Or,
perform some sort of arithmetic on the result inside the assignment
statement.

A simpler example still is to create an user-defined informat instead of
a format and use the input() function instead of the put() function. For
example:

proc format;
invalue disc
‘ABC’ = 0.20
‘DEF’ = 0.25
‘XYZ’ = 0.00
other = 0.00;

discount = input(vendor, disc.);

This final technique has the added advantage of not producing and
conversion messages in the SAS log. You may consider these

messages harmless when you expect to see them. On the
other hand, if you consider any conversion message in the
SAS log to be a sign of sloppy or suspect programming, you
should use a user-defined informat in conjunction with the
input() function.

5. YOU CAN LOAD A USER-DEFINED
FORMAT FROM DATA SET OR TABLE
You may also create a user-defined format from an existing
data set or data-base table. Imagine your vendor discount
table have hundreds or thousands of entries. Manually
coding this many entries would be both error-prone and
time-consuming. Fortunately PROC FORMAT provides an
analog to the CNTLOUT= option called CNTLIN= which
loads a user-defined format from a data set. The only
requirement is that the field names on the data set specified
by the CNTLIN= option must conform to the list of field
names listed in part 4 above.

For example, consider an existing data set called
DISCOUNT with two columns called VENDOR and
DISCOUNT. You could build a suitable CNTLIN= data set
from the DISCOUNT data set as follows:

data cntlin(
keep = fmtname type hlo start label);
retain fmtname ‘disc’ type ‘C’;
set discount end = lastrec;
start = vendor; label = put(discount,

6.2);
output;
if lastrec then do;
hlo = ‘O’; label = ‘0.00’;
output;

end;
run;

Note that the CNTLIN data set has only five columns.
Actually, only three are required – FMTNAME, START, and
LABEL. As a matter of good habit, including the TYPE
column with values of ‘C’ for character and ‘N’ for numeric is
strongly advised. Also, since our example includes the use
of the HIGH keyword, we must include the HLO column as
well.

The following code fragment will create the user-defined
format called $DISC. In the temporary format catalog in the
WORK library.

proc format cntlin = cntlin; run;

If you wish to store this format to a permanent library, like
LIBRARY, you need to include the LIBRARY= option as
well. For example,

proc format
cntlin = cntlin library = library; run;

Building user-defined formats using CNTLIN data sets also
allows you to build self-modifying formats. For example,
consider the need to build a format with values of ‘This
Month’ for the current month, ‘Last Month’ for the previous
month, and ‘Really Old’ for dates prior to that. Obviously as
time marches on, you need to update the dates associated
with these ranges. Here’s how you could accomplish this
feat using a CNTLIN data set with three observations.

data cntlin(
keep = fmtname type hlo start end label

);
retain fmtname ‘MyDate’ type ‘N’;

Beginning Tutorials

4

length label $ 10;
rundate = today();
start = intnx(‘month’, rundate, 0);
end = intnx(‘month’, rundate, 0, ‘E’);
label = ‘This Month’;
output;
start = intnx(‘month’, rundate, -1);
end = intnx(‘month’, rundate, -1, ‘E’);
label = ‘Last Month’;
output;
hlo = ‘O’;
label = ‘Really Old’;
output;
stop;
run;

6. YOU CAN USE PICTURE CLAUSES DRESS-UP
NUMERIC COLUMNS
PROC FORMAT provides a special type of numeric format to place
punctuation inside quasi-numeric data like phone numbers and social
security numbers. It works by defining a mask into which the digits of
a number are written. Picture clauses only work on numeric values.
The following code fragment creates a user-define picture format
called PHONE which displays phone numbers with a set of
parenthesis around the are code and a dash between the exchange
and number.

proc format;
picture phone
low - high = '(999)999-9999‘
(prefix = '(');

Now consider the following set of phone numbers

data phones;
infile cards; input phone;
cards;

3363153714
8009595605
3153820
;
run;

Using PROC PRINT to display these values using the PHONE. Picture
format yields the following results.

PHONE

(336)315-3714
(800)959-5605
(000)315-3820

7. YOU CAN CONCATENATE USER-DEFINED
FORMATS TO PRODUCE HYBRID FORMATS
You can also define user-defined formats which combine, or use, other
user-defined formats or SAS®-supplied formats. A common situation
when this need arises occurs when handling date values which contain
missing values. Suppose you have a column which contains a SAS®
serial date most of the time. At other times it contains one of two
special missing values .N or .Z. You would like to display .N and .Z
with some notation, but otherwise use the SAS® DATE9. format to
display the date values. The following code fragment will create a
user-defined format called OTDATE which does just that.

proc format;
value otdate

.Z = 'Some Zs'

.N = 'Some 9s'
other = [date9.];

The trick is to encapsulate the embedded format in square
brackets. On operating systems which do not support this
character, you may replace ‘[‘ with ‘(|’ and ‘]’ with ‘|)’.

You can do the same thing when reading data. For
example, assume that a date field in raw data either
contains eight zeroes, eight nines, or a properly-formated
date in YYYYMMDD format. Rather than read the field as a
character string and convert it as necessary, you can create
a user-defined informat to do the work for you. For example,
the following code fragment will create a user-defined format
called INDATE which reads the date field as described
above.

proc format;
invalue indate

'00000000' = .Z
'99999999' = .N
other = [yymmdd8.];

To see how this all works together, consider the following
short SAS® program which uses both the INDATE informat
as well as the OTDATE format.

data sugme;
infile cards;
input aDate indate8.;
cards;

00000000
99999999
20000605
;
run;

proc print data = sugme;
format aDate otdate.;

The results look like this:

aDate

Some Zs
Some 9s
05JUN2000

8. YOU CAN PRODUCE FORMATS WHICH
DEFINE MULTI-VALUE LABELS
The final topic for this paper is multi-value labels. That is,
how to handle situations where you want to use a user-
defined format to associate more than one attribute with a
given key value. For example, in our vendor example
above, we might have a region and salesperson associated
with each vendor as well as a discount amount.

There are two choices: create a separate user-defined
format for each attribute, or create label which stores both
attributes using some unique character to distinguish one
attribute from the other.

Consider the following VENDOR data set

data vendor;
infile cards;
input vendor $ region $ salesp $;
cards;

ABC NE Alice
DEF MW Molly
XYZ SE Linda
;
run;

Beginning Tutorials

5

The following code fragment will create a CNTLIN= data set which will
create two separate user-defined formats – one for the region and one
for the salesperson.

data cntlin(keep = fmtname type start label);
retain type ‘C’;
set vendor;
start = vendor;
fmtname = ‘region’; label = region; output;
fmtname = ‘salesp’; label = salesp; output;
run;

proc sort data = cntlin; by fmtname; run;

proc format cntlin = cntlin; run;

We could have created two separate CNTLIN data sets and fed them
to PROC FORMAT one at a time. Instead we created a CNTLIN data
set which contains two output rows for each row of input from the
VENDOR data set. When using the later technique the PROC SORT
is crucial. Using it ensures that all the region definitions come first
followed by all the salesperson definitions.

Alternatively, you could create a label which concatenates the region
and salesperson values with a delimiting character like ‘#’. For
example,

data cntlin(keep = fmtname type start label);
retain fmtname ‘vinfo’ type ‘C’;
set vendor;
start = vendor;
label = region || ‘#’ || salesp;
run;

proc format cntlin = cntlin; run;

The $VINFO format is not very useful as a display format. It is
designed for use inside a data step in conjunction with the PUT()
function. For example, the following data-step code fragment will
create two data-step variables called REGION and SALESP from
VENDOR using the user-defined format $VINFO.

length region $ 2 salesp $ 5 vinfo $ 8;
vinfo = put(vendor, $vinfo.);
region = scan(vinfo, 1, ‘#’);
salesp = scan(vinfo, 2, ‘#’);

Choice of the delimiting character is crucial when using this technique.
The character you chouse as a delimiter must never appear as in
either of the tokens inside the concatenated label.

CONCLUSION
This paper has surveyed eight aspects of PROC FORMAT that should
be in every SAS® programmers toolbox. It is not an exhaustive list of
all that can be done with PROC FORMAT; nor are these even the
eight most important things to know about PROC FORMAT. If you
already use PROC FORMAT extensively, this paper may have
provided you with one or two new ways to tackle a problem. If you
haven’t begun to use PROC FORMAT yet in your day-to-day
programming, this paper should provide some good examples on how
to get started.

CONTACT INFORMATION
The author encourages your comments and questions.

Jack Shoemaker
 Accordant Health Services
 Suite 300, 4900 Koger Boulevard
 Greensboro, NC 27407

 336 315 3715 (voice and FAX)
 shoe@std.com

Beginning Tutorials

	SUGI 26 Title Page

