Arrays by example
Diana Suhr, University of Northern Colorado, Greeley, CO

ABSTRACT

Get ready to master array syntax and discover how data step arrays promote efficient programming techniques.
Learn how to use implicit/explicit array statements, simple and multidimensional arrays, and arrays for input
statements, initializing values, recoding, and calculations. Expand on array syntax with _NUMERIC_,
CHARACTER, _TEMPORARY_, DO, and %LET. The power of array statements will be illustrated with simple to
complex examples.

Array Definitions

According to the Merriam Webster Dictionary Online, an array is a regular and imposing grouping or arrangement.
SAS Online Docs, defines an array as a set of variables put into a temporary group for the duration of the DATA step,
a set of elements you plan to process as a group (SAS®9.1.2 OnlineDoc, 2004).

An array-name
e identifies the array
is a name you choose
distinguishes it from other arrays in the same DATA step
is different from a SAS function name
is not a variable.

An array statement
o defines a set of variables (all numeric or all character) as elements of an array
e is a convenient way of temporarily identifying a group of variables
e exists for the duration of the DATA step
e is not a data structure.

An array subscript

= describes the number of elements in the array
describes the arrangement of elements in the array
specifies a lower and upper bound for array dimensions
is designated with an asterisk, number, or range of numbers
is enclosed in braces { }, brackets [], or parentheses ().

Array elements
e must be all numeric or all character
e allow you to reference variables in the data step
e can be assigned initial values directly in the array statement.

IMPLICIT ARRAY
An implicit array
e Is“quick & dirty”
e does not contain an explicit specification for the number of elements
o references elements by evaluating the current value of an index variable associated with the array.
e s defined with
= anarray name
= anindex variable (one you supply or a default)
= alist of names (variables or other implicit arrays)
e does not contain an explicit reference to the number of elements in the array
e is often referenced with DO, DO OVER, DO WHILE, or DO UNTIL..

SAS implicit array syntax is
ARRAY array-name <(index variable)> <$> <length> array-elements <(initial values)>;

IMPLICIT ARRAY Examples
Recoding Values
To recode missing values, use IF...THEN statements or an implicit array.

if gl = 0 then gl = .;

if g2 = 0 then g2 = .;

if g3 = 0 then g3 = .;

... OR array mis gl-gl00;

if g98 = 0 then g98 = .; do over mis;

if g99 = 0 then g99 = .; if mis = 0 then mis=.;
if gl00 = 0 then gl00 = .; end;

DEMO: Recoding Values
You have entered a value of zero (0) for no response or a missing value. Include zero in a frequency table. Exclude
zero when calculating an average.
data rawsub;
infile datalines;
input ql-ql0;

set rawsub;
array mis gl1-ql0;
do over mis;
if mis=0 then mis=_;
end;
proc print data=rawsub;
proc print data=rawsubl;
proc freq data=rawsub;
tables ql-qg4;
proc freq data=rawsubl;
tables ql-94;
proc means data=rawsub;
var ql-qi0;
proc means data=rawsubl;
var ql-qi0;
run;

Reversing Values
To reverse values for variables on a scale of 1 to 5, use the following statements.
array rev x1-x20;
do over rev;
rev = 6 - rev;
end;

In the above example, if the value of the variable is
1,thenrev=6-1=5
2,thenrev=6-2=4
3,thenrev=6-3=3
4,thenrev=6-4=2
5,thenrev=6-5=1

To reverse selected variables on a 1-5 scale, try this code
array rev x1 x5 x6 x1l1 x14 x18;
do over rev;
rev = 6 - rev;
end;

To reverse values on a
1-7 scale, use a rev=8-rev statement.
1-4 scale, use a rev=5-rev statement
0-4 scale use a rev= 4-rev statement.
-3,-2,-1,0,1, 2, 3scale, use arev = -1 * rev statement.

Try substituting the values 0, 1, 2, 3, 4 into the rev=4-rev statement to verify that the values will be reversed on a 0-4
scale.

You may be asking, “why reverse values?”. Questions on a scale may be worded in a positive or negative direction.
For example, “Mathematics is difficult for me” and “Solving math problems is easy for me” are worded differently. A
respondent could disagree with one statement and agree with the other statement so you want scales in the same
direction.

DEMO: Recoding and Reversing Values
data rawsub;
infile datalines;
input ql-qil0;
array mis ql-qi10;
array rev rl-rl0;
do over mis;
iT mis=0 then mis=.;
rev=6-mis;

end;
datalines;
1034502345
2305120451
3450234012
4512045103
4023401230

proc print data=rawsub;

data rawsub2;
infile datalines;
input ql-ql0;
array ges ql-qgi0;
array rev rl-ri0;
do over ges;
rev=5-qges;

end;
datalines;
1034502345
2305120451
3450234012
4512045103
4023401230

proc print data=rawsub2;
run;

EXPLICIT ARRAY
An explicit array
e specifies the number of elements in the array
e could denote bounds on a multidimensional array
e is more powerful and flexible than an implicit array.
e Is defined with
= anarray name
= asubscript indicating the number of elements in the array
= adescription of the elements.

SAS explicit array syntax is
ARRAY array-name{subscript} <$> <length> array-elements <(initial values)>;

EXPLICIT ARRAY Examples
array sales(4) dept month year amount;

This array statement tells the SAS system
e to make a group named “sales” for the duration of the DATA step
e the array has 4 elements: dept month year amount
e to assign each variable an additional variable name using the position in the array. The additional variable
name includes an array reference.

The array sales contains 4 elements, dept is assigned the array reference sales(1), month is assigned sales(2), year
is assigned sales(3), and amount is assigned sales(4). After defining the array in the DATA step, variables can be
referenced with their original variable names or array references. In this example, dept and sales(1) are equivalent.

The array subscript could be indicated explicitly as (4) or the SAS System will determine the number of elements in
the array. List the variables and use (*) as the subscript.
array sales(4) dept month year amount;

OR array sales(*) dept month year amount;

In the following example, SAS determines the array has 12 elements and finds the sum.
array sales(*) amtl-amtl2;
annual_sales = sum(of amt (*));

Defining Arrays
Variable list names
o reference previously defined variables in the same DATA step
are _CHARACTER_, NUMERIC_, or _ALL_
use CHARACTER _ for character values
use _NUMERIC_ for numeric values
or _ALL_ for all numeric or character values, depending on how the variables were previously defined.

data rawsub;

input (d1-d7) ($3.) sl1-s7;
array days (*) _CHARACTER_;
array sales(*) _NUMERIC_,;

In the DATA step rawsub, d1-d7 are defined as character variables and s1-s7 as numeric variables. The array days
reads previously defined character variables while the array sales reads previously defined numeric variables. The
SAS system determines the size of the array when the * is used as the array subscript.

Be aware of data step variables and make sure you are using the variables you intend to process with the array
statements. Add a statement to calculate total sales, and the array sales has 8 elements rather than 7.
data rawsub;
input (d1-d7) ($3.) sl-s7;
totsales=sum(of sl1--s7);
array days (*) _CHARACTER_;
array sales(*) _NUMERIC_,;

DEMO: Defining Arrays

data rawsub;

input (d1-d7) ($) sl-s7;

array days (*) _CHARACTER_;

array sales(*) _NUMERIC_;
file print;
put / “day" - " “daily” - " “weekly";
subtot=0;

dol =1 to 7;
subtot= subtot + sales(l);
put days(l) * * sales(l) comma6. * " subtot comma6.;
end;
cards;
mon tue wed thu fri sat sun 1005 1267 943 1110 2930 3098 2056
mon tue wed thu fri sat sun 1126 1314 885 1020 2432 2987 2945

proc print data=rawsub;

data rawsubl;
set rawsub;
totsales=sum(of s1--s7);
array days (*) _CHARACTER_;
array sales(*) _NUMERIC_;

file print;

do J =1 to 8;

put sales(Jd) " " 00;

end;

put;
proc print data=rawsubl;
run;

DIM function
With an iterative DO statement, the DIM function returns the number of elements in a one-dimensional array. The
DIM function could be used to avoid changing the upper bound in a DO loop each time the number of elements in the
array changes.
data rawsub;

input s1-s30;

array sales(*) sl1-s30;

do J = 1 to dim(sales);

if sales(J) > 20000 then output;
end;

DEMO: DIM Function
data rawsub;
input (d1-d7) ($) s1-s7;
array days (*) _CHARACTER_;
array sales(*) _NUMERIC_;
file print;
put / “day® * * "daily"
subtot=0;
do I = 1 to dim(sales);
subtot= subtot + sales(l);
put days(l) * * sales(l) comma6. * * subtot comma6.;
end;
cards;
mon tue wed thu fri sat sun 1005 1267 943 1110 2930 3098 2056
mon tue wed thu fri sat sun 1126 1314 885 1020 2432 2987 2945

“"weekly*;

proc print data=rawsub;
data rawsubl;
set rawsub;
totsales=sum(of s1--s7);
array days (*) _CHARACTER_;
array sales(*) _NUMERIC_;
file print;
do J = 1 to dim(sales);
put sales(Jd) " " @0;
end;
put;
proc print data=rawsubl;

Setting Initial Values
Array elements could be Initialized to numeric values. In the array scr initial values are s1=20, s2=40, s3=50, and
s4=70.

array scr(4) sl s2 s3 s4 (20 40 50 70);

Array elements could be initialized to character values. Array char initial values are c1="x’, c2="y’, c3="7".
array char(3) $ cl c2 c3 (‘x','y’',"'z");

Assigning Variable Names
The array test creates an array with 4 elements named test1, test2, test3, test4.
array test (4);

DEMO: Initial Values and Assigning Variable Names
data rawsub;
array scr(4) sl s2 s3 s4 (20 40 50 70);
array chr(3) $ cl1 c2 ¢c3 ("x","y","z");
array test(4);
proc print data=rawsub;
run;

data rawsub2;
array scr(4) sl s2 s3 s4 (20 40 50 70);
array chr(3) $ cl1 c2 c3 ("x","y","z");
array test(4)(17, 32, 44, 59);

proc print data=rawsub2;

run;

Using %Let in Array Processing
To use the same array in more than one DATA step, use a MACRO variable, %LET. The MACRO variable stores the
variable names you want to use.
%LET dlist = d1-d7;
data dayl;
input (d1-d7) ($3.) sl-s7;
array days(*) &dlist;
data day2;
array days(*) &dlist;

Counting Responses
Arrays could be used to count responses.
data rawsub;
input id rl1-rio;
count = 0O;
array resp $ rl-rio;
do over resp;
if resp eq “YES” then count=count+1;
end;

Selecting Responses
Arrays could be used to select observations for data checking.
data rawsub;
input id d1-d120;
array resp dl1-d120;
do over resp;
if resp It O or resp gt 100 then output;
end;
proc sort data=rawsub;
by id;
data chkfl;
set rawsub;
by id;
if last.id;
proc print data=chkfl;

DO Processing
Arrays are often processed with iterative DO loops, DO J = ..., DO WHILE, or DO UNTIL. Examples are
doJ =1 to 10;
do M =1 to 90 by 3;
do until sales gt 20000;
do K = 1 to 30 while (charge < 500);

A step or “by” in the DO loop allows customized processing.
DATA ALL;
INPUT M1-M10;
ARRAY ALM(10) M1-M10;
ARRAY ALD(10) D1-D10;
ARRAY ALT(10) T1-T10;
**double every other variable;
DO I =1 TO 10 BY 2;
ALD(I) = ALM(I) * 2;
END;
**triple every third variable;
DO J = 1 TO 10 BY 3;
ALT(J) = ALM@Q) * 3;
END;

DEMO: DO Processing and Generating Random Numbers

Arrays can be used to generate 100 random numbers, round the random numbers to integers, and print a table, with

the following code.
data rawsub;
array ala(100) rl1-r100;
do I =1 to 100;
ala(l) = round((ranuni(0) * 100), 1);
end;
format rl1-r100 z3.;
file print;
do I =1 to 100 by 10;
put ala(l) " " ala(l+1l) " "
ala(1+2) * " ala(1+3) " *
ala(1+4) = * ala(l+5) * =
ala(1+6) * " ala(1+7) = *
ala(1+8) * * ala(1+9) = *°;
end;
run;

Temporary Arrays
If elements of an array are only needed during the duration of the DATA step, a temporary array can be used.
Temporary array elements
e do not have names
do not appear in the output data set
are referred to by the array name and subscript
are automatically retained
are not reset to missing at the beginning of each DATA step iteration

Items on a test may be scored using a _TEMPORARY _ array.
data rawsub;
input rl-r20;
array key(20) TEMPORARY_ (1 4352244351134225 34 2);*key;

array resp(20) rl-r20; **responses;
array scr(20) s1-s20; **score (O=incorrect, 1=correct);
do J=1 to 20;
scr(J)=0; **initialize, set array values to zero;
end;

do K =1 to 50;
if key(K)=resp(K) then scr(K)=1;
end;
rawscr=sum(of sl1--s50);
proc print data=rawsub;

Multi-Dimensional Arrays
A set of variables can be specified as a one- or two--dimensional array with
array yr (60:99) y60-y99; OR array yrs (6:9,0:9) y60-y99;

The array resp is a two-dimensional array with 2 rows and 5 columns. The rightmost dimension represents columns.
Moving right to left, the next dimension represents rows. Each position farther left represents a higher dimension. In
this example, there are 10 elements in the array (2*5) which might represent clinical trials for 2 groups measured at 5
different times.

array resp(2,5) rlcl-rlc5 r2cl-r2c5;

The elements are arranged in the table as follows
rlcl rlcz rlc3 rlc4 rlch
r2cl r2cz r2c3 r2c4 r2ch

A two-dimensional array statement lists row and column dimensions. SAS assigns variables to array locations by
filling rows in order across columns. For example,
array yrs(2,5) x1-10; or array yrs(1:2, 1:5) x1-x10;

assigns x1 to yrs(1,1), x2 to yrs(1,2), x3 to yrs(1,3), x4 to yrs(1,4), and x5 to yrs(1,5) in row 1 and columns 1-5. In row
2, x6-x10 are assigned to columns 1-5. The lower bound of the array dimension is conveniently set to 1 and does not
have to be specified.

DEMO: Multidimentional Arrays
data rawsub;
array yr(2,5) x1-x10 (1,2,3,4,5,1,2,3,4,5);
array yrs(1:2, 1:5) yl-y10 (11,12,13,14,15,21,22,23,24,25);
file print;
do I =1 to 2;
do J =1 to 5;
put "I=" 1 "J=" J "yr=" yr(1,J3) "yrs=" yrs(1,J);
end;
put;
end;
do J
do 1
put
end;
put;
end;
proc print data=rawsub;
run;

to 5;
to 2;
=" 01 "J="J “yr=" yr(1,J3) "yrs=" yrs(l1,J);

1
1
"1

Input Statements
Array names can be used in the input statement.
data names;
infile rawin delimiter=‘*';
length deptl-dept75 snl-sn75 $10 descl-desc75 $40;
array ala(75) $ deptl-dept75; **deptname;

array alb(75) $ snl-sn2; **short deptname;
array alc(75) codel-code75; **product code;

array ald(75) $ descl-desc75; **product description;
array ale(75) amtl-amt75; **product cost;

do i =1 to 75;
input #i ala(i) $ alb(i) $ alc(i) ald(i) $ ale(i);
end;

Transforming Data Structure
Arrays can be used to reshape variables into observations.
data testfl;
array pc(5) pcl-pc5;
set rawfl;
do i =1 to 5;
physchar = pc(i);
output;
end;
drop pcl-pc5;

Arrays can be used to create a list of means and sort them by magnitude, transforming several variables into one.
proc means data = rawsub;
var rl-rilo0;
output out=newmn
mean=m1-m10 n=nl1l-n1l0 std=s1-s10;
data mnfl;
set newmn;
array alm(10) ml1-mi10;
array als(10) s1-s10;
array aln(10) n1-n10;
do i=1 to 10;
mn=alm(i);
sd=als(i);
num=aln(i);
ques=i;
output;
end;
keep mn ques num sd;
proc sort data = mnfl;
by mn;
proc print data = mnfl;
var ques mn sd num;

CONCLUSION

You have learned, with examples and demos, how DATA step arrays promote efficient programming techniques. You
know how to use implicit, explicit, simple, and multidimensional arrays as well as _NUMERIC_, CHARACTER_,
ALL, _TEMPORARY_, DO, DIM, and %LET. You have learned techniques to make your programming effortless
and efficient. Arrays by example you have experienced the power and flexibility within your control with SAS.

REFERENCES
Merriam-Webster, Incorporated. (2004), Merriam-Webster Online Dictionary, Merriam-Webster, Incorporated
(http://www.m-w.com/).

SAS Institute, Inc. (1980), SAS® Applications Guide, 1980 Edition, Cary, NC: SAS Institute, Inc.
SAS Institute, Inc. (1990), SAS® Language, Version 6, Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1999), SAS® OnlineDoc, Version 8, Cary, NC: SAS Institute, Inc. (http://v8doc.sas.com/sashtml/).

SAS Institute, Inc. (2004), SAS®9.1.2 OnlineDoc, Cary, NC: SAS Institute, Inc.
(http://support.sas.com/documentation/onlinedoc/sas9doc.html).

SAS Institute, Inc. (1989), SAS® Language and Procedures, Version 6, First Edition, Cary, NC: SAS Institute, Inc.

Virgile, Robert. (1996), An Array of Challenges: Test Your SAS Skills, Cary, NC: SAS Institute, Inc.

http://www.m-w.com/cgi-bin/dictionary
http://v8doc.sas.com/sashtml/
http://support.sas.com/documentation/onlinedoc/sas9doc.html

ABOUT THE AUTHOR

Diana Suhr is a Statistical Analyst in the Office of Institutional Research at the University of Northern Colorado. She
holds a Ph.D. in Educational Psychology with an Emphasis in Research, Measurement, and Statistics. She has been
a SAS programmer since 1984.

CONTACT INFORMATION

Diana Suhr, Statistical Analyst
Institutional Research

University of Northern Colorado
Greeley, CO 80639

970-351-2193, diana.suhr@unco.edu

SAS and all other SAS Institute product or service hames are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ®indicates USA registration.

10

mailto:diana.suhr@unco.edu

	ABSTRACT
	Recoding Values
	DIM function
	Using %Let in Array Processing
	Selecting Responses
	DO Processing
	Arrays are often processed with iterative DO loops, DO J = …, DO WHILE, or DO UNTIL. Examples are

	Transforming Data Structure

	REFERENCES
	ABOUT THE AUTHOR
	CONTACT INFORMATION

