Introduction to Arrays

Bob Virgile
Robert Virgile Associates, Inc.

Overview

This paper explains the basics of defining and
using an array. The information and examples
will be useful to the programmer who is either
unfamiliar with or confused by arrays. The basics
are simple enough that most programmers can
begin to successfully use arrays immediately after
reading this paper.

This paper illustrates the most common ARRAY
statement syntax and usage. For all the details
you might ever want to know, see SAS®
Language: Reference, Version 6, First Edition,
pp. 160-171 and pp. 292-306.

What Is an Array?

An array means "a subset of the variables that
make up one observation of a SAS data set.” A
sample data set might consist of 11 variables,
with 7 of those variables making up an array.

Variables within
SAS data set CITIES:

STATE
BIRDS }

BEES }
FLOWERS }
TREES }
SKY }

These

variables
make up
an Array.

By defining these seven variables as an array, the
program can process the variables easily and
economically. Usually the array helps when all its
variables will be processed in a similar fashion. In
the following example, all seven variables are
being processed in exactly the same fashion.
Therefore, this program is a prime candidate for
constructing and using an array:

DATA NEW,;

SET CITIES;

IF BIRDS =.THEN BIRDS =0;
IFBEES =.THENBEES =0;

IF FLOWERS = . THEN FLOWERS = 0;
IF TREES =.THEN TREES =0;

IF SKY =.THEN SKY =0;

IF ABOVE =.THEN ABOVE =0;
IFLOVE =.THENLOVE =0;

A revised program would place all seven variables
into an array and then process all variables within
the array:

DATA NEW;
SET CITIES;
ARRAY LYRICS {7} BIRDS BEES FLOWERS
TREES SKY ABOVE
LOVE;
DOI=1TO7;
IF LYRICS{l} =.
THEN LYRICS{} = 0
END;

This revised program produces the same result
more economically. First, the program is three
lines shorter. Second, it becomes very clear that
the program processes exactly seven variables.
Therefore, it becomes easier to understand and
maintain the second program. (Note the
difference if the array contained 80 variables
instead of 7. The second program would still
contain six statements, although the ARRAY
statement would be longer. The first program,
however, would add 73 more statements.)

"Economical” does not mean the program
requires less CPU time. If anything, arrays
require slightly more CPU time. However, this is
a minor expense compared to the savings in the
length (and maintainability) of the program.

Basic Rules

The ARRAY statement defines which variables are
included in the array. The statement appears
within a DATA step and defines the array for the
duration of that DATA step. Array definitions do
not carry over from one DATA step to the next.

The same DATA step can contain many ARRAY
statements.

The word "element” is frequently used to refer to

a variable in an array. The previous array
contained seven elements. (Technically, one
variable could be two elements if the array

statement were to list that variable twice.)

A single array cannot contain both character and
numeric variables. This make sense since the
whole purpose of the array is to process many
variables in the same fashion. After all, how
much sense would this statement make:

IF TREES =. THEN TREES = 0;
if TREES were a character variable?

Finally, arrays work with one observation at a
time. They never compare information in one
observation with information in another
observation. If your program must make such a
comparison, use other standard tools such as a
RETAIN statement, the LAG function, or BY
variables.

Syntax for the ARRAY Statement

The ARRAY statement supplies the following
information:

1. A name for the array.
2. The number of variables in the array.
3. A list of the variable names.

Variations exist. For example, the array
statement can omit the element names as long as
it specifies the number of elements. The
software then creates the element names by
appending numbers to the name of the array. If
the array were named TEST, for example, the
software would create the elements TESTI1,
TEST2, TESTS, etc.

These are valid ARRAY statements:

ARRAY ELEMENTS {5} ELEMENT1-ELEMENTS;
ARRAY LYRICS {7} BIRDS BEES FLOWERS
TREES SKY ABOVE
LOVE;

Use any valid SAS name as the name of the
array, but avoid:

1. The name of a variable in the SAS data
set. This is an error.

2. The name of a SAS function (such as
LENGTH, COMPRESS, or TRIM). This is
not an error, but it does disable that
function for the duration of the DATA
step.

Next, specify the number of variables in the array,
putting the number in curly brackets. The
ARRAY statements above used {5} and {7} to
indicate the number of elements. Parentheses (5)
or square brackets [5] are also permitted.

Due to laziness or other more complex factors,
the number of elements in the array may be
unknown. The asterisk can replace the actual
number in the ARRAY statement. The DIM
function then becomes very useful; it counts the
elements in an array. For example, in the
following program:

DATA NEW,;
SET CITIES;
ARRAY LYRICS {*} BIRDS BEES FLOWERS
TREES SKY ABOVE
LOVE;
SIZE = DIM(LYRICS);

the variable SIZE has a value of 7 because the
array LYRICS contains 7 elements.

Lastly, the ARRAY statement lists the names of
all variables that make up the array. The two
most common methods for listing variables are:

1. Naming each variable, as in the ARRAY
statement above.

2. Specifying a numbered list. For example,
ELEMENT1-ELEMENTS means the five
variables ELEMENT1, ELEMENT2,
ELEMENT3, ELEMENT4, and ELEMENTb.

The SAS system supports other methods for
specifying a list of variable names. However,
these methods are complex and unnecessary
99% of the time. ARRAY statements can utilize
two additional features. First, the statement may
define a default length for new variables. If
ELEMENT1-ELEMENTS are character variables,

and NEWVAR has never been defined, these two
sets of statements would both define NEWVAR
as character with a length of 12:

ARRAY ADDL1 {6} $ 12 ELEMENT1-ELEMENT5
NEWVAR;

LENGTH NEWVAR $ 12;
ARRAY ADD1 {6} ELEMENT1-ELEMENT5
NEWVAR;

Lastly, you may encounter implicitly subscripted
arrays. The syntax varies slightly:

ARRAY LYRICS (_I_) BIRDS BEES FLOWERS
TREES SKY ABOVE
LOVE;

Parentheses (not brackets) now contain a variable
name rather than a number or an asterisk. Slight
differences in syntax will arise when referring to
an element of an implicitly subscripted array. See
the next section of this paper for details.

Implicitly subscripted arrays are not recommended
style. Any program that uses them could also
use regular (explicitly subscripted) arrays just as
easily or more easily. (For that matter, any
program that uses arrays could be written without
arrays. However, it might become a much longer
program.) These arrays are described here so
that you will recognize them when you see them,
not to encourage you to use them.

Referring to an Array Element

Later statements in the DATA step refer to an
array element by referring to the array name
rather than the variable name. One previous
program used this technique:

DATA NEW,;

SET CITIES;

ARRAY LYRICS {7} BIRDS BEES FLOWERS
TREES SKY ABOVE

LOVE;
DOI=1TO7;
IF LYRICS{l}=. THEN LYRICS{[}=0;
END;

LYRICS{l} refers to one variable in the array,
depending on the current value for the variable I.
When 1=4, LYRICS{I} means the variable TREES
(the fourth element in the array). When =7,
LYRICS{l} means the variable LOVE (the seventh

element in the array). Since LYRICS contains
seven variables, the statement:

DOI=1TO7;
processes each element in the array, one by one.

If the number of array elements were unknown,
the DIM function could count them. The
following program produces an identical result:

DATA NEW;

SET CITIES;

ARRAY LYRICS {*} BIRDS BEES FLOWERS

TREES SKY ABOVE

LOVE;

DO | = 1 TO DIM(LYRICS);

IF LYRICS{l}=. THEN LYRICS{[}=0;
END;

Finally, implicitly subscripted arrays use only the
array name to refer to an element.

DATA NEW,;

SET CITIES;

ARRAY LYRICS (_|_) BIRDS BEES FLOWERS
TREES SKY ABOVE

LOVE;
DO | =1TO7;
IFLYRICS=. THEN LYRICS=O0;
END;
or

DO OVER LYRICS;
IF LYRICS=. THEN LYRICS=0;

END;

Herein lies the lone advantage of implicitly
subscripted arrays over explicitly subscripted
arrays. The DO OVER syntax (illegal with
implicitly subscripted arrays) conveniently
processes every element in the implicitly

subscripted array. Still, implicitly subscripted
arrays are not recommended. They are described
here so that you will recognize them when you
see them.

Usefulness of Arrays: A Sample Problem

In this sample problem, the SAS data set OLD
contains 20 character variables named LINE1
through LINE20. Each has a length of 50. These
variables contain text information and are
intended to be printed one beneath the next with
a statement like:

PUT LINE1/LINE2 /LINE3 / LINE4 /
LINE5 /LINE6 / LINE7 / LINE8 /
LINE9 /LINE1O/LINE11/
LINE12 / LINE13/LINE14 /
LINE15/ LINE16 / LINE17 /
LINE18 / LINE19 / LINE20;

The three variables LINE10 through LINE12
always contain the following text:

LINE10 reads:

SUMMARY STATISTICS, ALL DIVISIONS
LINE11 reads:

(THESE ARE PRELIMINARY FIGURES ONLY.
LINE12 reads:

FINAL NUMBERS WILL ARRIVE SOON.)

Now another month has passed, the final
numbers are in, and the note in parentheses
(LINE11 and LINE12) no longer applies. With or
without arrays, a program should blank out the
note in parentheses. Without arrays, the program
would be:

DATA NEW,;
SET OLD;
LINE11="",
LINE12="",

With arrays, the program would be:

DATA NEW (DROP=I);
SET OLD;
ARRAY LINES {20} LINE1-LINE20;
DO =11 TO 12;
LINES{l}="";
END;

The second program is longer and more complex.
So why bother with arrays?

As the program's objective becomes more and
more complex, arrays can simplify the program
considerably. As an example, consider one
shortfall of the previous programs. When printing
the report, there would now be two blank lines in
the middle. A more complex objective would be
to remove the note, without leaving any blank
lines in the middle. Without arrays, the program
would be:

DATA NEW,;

SET OLD;
LINE11 = LINE1S;
LINE12 = LINE14;
LINE13 = LINE1S;
LINE14 = LINE16;
LINE15 = LINE17;
LINE16 = LINE18;
LINE17 = LINE19;
LINE18 = LINEZ20;
LINE19 ="",
LINE20="",

Using arrays, the program becomes:

DATA NEW (DROP=I);
SET OLD;
ARRAY LINES {20} LINE1-LINE20;
DO =11 TO 18;
LINES{I} = LINES{I+2};
END;

DO 1=19 TO 20;
LINES{)=""
END:

This program is shorter and more flexible. If the
number of variables increases from 20 to 50, the
first program (without arrays) would have to add
30 lines. But this program (with arrays) would
remain virtually unchanged.

Let's add one more wrinkle to the original
problem. Suppose the three key lines don't
necessarily begin with LINE10. The text:

SUMMARY STATISTICS, ALL DIVISIONS

appears anywhere from LINE5 through LINE15.
Now the program must first locate the text and
then change all subsequent variables. The
program with arrays takes 12 statements:

DATA NEW (DROP=I START);
SET OLD;
ARRAY LINES {20} LINE1-LINE20;
DO I=5 TO 15;
IF LINES{l}=
'SUMMARY STATISTICS, ALL DIVISIONS'
THEN START=I+1;
END;
DO I=START TO 18;
LINES{}=LINES{I+2};
END;
DO 1=19 TO 20;
LINES{l}="";
END;

The first DO group locates which of the variables
among LINE1-LINE15 contains the key text. The
program will change the wvalues of all
"subsequent” variables. For example, if LINE8
contains the key text, then the program will
change the values of LINESQ through LINE20.

Therefore, the program notes (and assigns to the
variable START) the number of the first variable
to be changed. In this case, START would
receive a value of 9. The last two DO groups
work as before, modifying values of the variables.

The same program without arrays would take
about 80 lines! (Being extremely clever, you
could write this program in 30 lines without
arrays. But if you are that clever, you don't need
to be reading this paper. | will honor all written
requests for 30-line solutions.)

For the Future

In most applications which use arrays, arrays are
10% of the pie and other tools make up 90%.
Therefore, knowledge of arrays must be
combined with knowledge of other tools. DATA

step tools, especially different forms of the DO
statement, are most important.

Consider the sample application, for example. It
eliminated two lines, shifting a block of text "up”
by two lines. In practice, this program is likely
to be part of a more complex system that uses a
much greater variety of tools. A similar program
might "insert" blank lines by shifting a block of
text "down." A third program might change the
order of the variable values, equivalent to
"moving a paragraph.” Finally, add macro
language statements to generate menus for
running these programs interactively. The menus
might allow users to make requests such as:

¢ For observation 5, insert 3 blank lines

after line 4.
¢ For observation 25, move lines 14
through 18 to after line 3.

To a small extent, a SAS-based system is now
operating as a word processing system! But
arrays constitute one of many tools needed to
accomplish this.

In your future programs, more complex uses for
arrays may come into play, including:

1. Creating arrays to hold sets of constants
instead of sets of variables.

2. Relating multiple arrays in one DATA step.
For example, based on the 80 variables
HEIGHT1 through HEIGHT80 and 80 more
variables WIDTH1 through WIDTH80,
compute 80 variables AREA1 through
AREA80 (AREA1 = HEIGHT1 * WIDTH1,
etc.).

3. Defining multidimensional arrays.

4. Reading or writing array elements with
INPUT or PUT statements.

These types of capabilities are invaluable for

solving certain problems. However, for most
problems, the introductory concepts and
techniques in this paper will be more than
sufficient.

The author welcomes questions, comments, and
requests for 30-line solutions. Feel free to call or
write:

Bob Virgile

Robert Virgile Associates, Inc.
3 Rock Street

Woburn, MA 01801

(781) 938-0307

SAS is a registered trademark of SAS Institute
Inc.

