
-1-

Introduction to Arrays

Bob Virgile

Robert Virgile Associates, Inc.

Overview

This paper explains the basics of defining and

using an array. The information and examples

will be useful to the programmer who is either

unfamiliar with or confused by arrays. The basics

are simple enough that most programmers can

begin to successfully use arrays immediately after

reading this paper.

This paper illustrates the most common ARRAY

statement syntax and usage. For all the details

you might ever want to know, see SAS®
Language: Reference, Version 6, First Edition,

pp. 160-171 and pp. 292-306.

What Is an Array?

An array means "a subset of the variables that

make up one observation of a SAS data set." A

sample data set might consist of 11 variables,

with 7 of those variables making up an array.

Variables within

SAS data set CITIES:

 STATE
 BIRDS }
 BEES } These

 FLOWERS } variables

 TREES } make up

 SKY } an Array.

 ABOVE }
 LOVE }
 INDEX
 CITY
 POP

By defining these seven variables as an array, the

program can process the variables easily and

economically. Usually the array helps when all its

variables will be processed in a similar fashion. In

the following example, all seven variables are

being processed in exactly the same fashion.

Therefore, this program is a prime candidate for

constructing and using an array:

 DATA NEW;
 SET CITIES;
 IF BIRDS = . THEN BIRDS = 0;
 IF BEES = . THEN BEES = 0;
 IF FLOWERS = . THEN FLOWERS = 0;
 IF TREES = . THEN TREES = 0;
 IF SKY = . THEN SKY = 0;
 IF ABOVE = . THEN ABOVE = 0;
 IF LOVE = . THEN LOVE = 0;

A revised program would place all seven variables

into an array and then process all variables within

the array:

 DATA NEW;
 SET CITIES;
 ARRAY LYRICS {7} BIRDS BEES FLOWERS
 TREES SKY ABOVE
LOVE;
 DO I = 1 TO 7;
 IF LYRICS{I} = .
 THEN LYRICS{I} = 0;
 END;

This revised program produces the same result

more economically. First, the program is three

lines shorter. Second, it becomes very clear that

the program processes exactly seven variables.

Therefore, it becomes easier to understand and

maintain the second program. (Note the

difference if the array contained 80 variables

instead of 7. The second program would still

contain six statements, although the ARRAY

statement would be longer. The first program,

however, would add 73 more statements.)

"Economical" does not mean the program

requires less CPU time. If anything, arrays

require slightly more CPU time. However, this is

a minor expense compared to the savings in the

length (and maintainability) of the program.

Basic Rules

The ARRAY statement defines which variables are

included in the array. The statement appears

within a DATA step and defines the array for the

duration of that DATA step. Array definitions do

not carry over from one DATA step to the next.

-2-

The same DATA step can contain many ARRAY

statements.

The word "element" is frequently used to refer to

a variable in an array. The previous array

contained seven elements. (Technically, one

variable could be two elements if the array

statement were to list that variable twice.)

A single array cannot contain both character and

numeric variables. This make sense since the

whole purpose of the array is to process many

variables in the same fashion. After all, how

much sense would this statement make:

 IF TREES = . THEN TREES = 0;

if TREES were a character variable?

Finally, arrays work with one observation at a

time. They never compare information in one

observation with information in another

observation. If your program must make such a

comparison, use other standard tools such as a

RETAIN statement, the LAG function, or BY

variables.

Syntax for the ARRAY Statement

The ARRAY statement supplies the following

information:

1. A name for the array.

2. The number of variables in the array.

3. A list of the variable names.

Variations exist. For example, the array

statement can omit the element names as long as

it specifies the number of elements. The

software then creates the element names by

appending numbers to the name of the array. If

the array were named TEST, for example, the

software would create the elements TEST1,

TEST2, TEST3, etc.

These are valid ARRAY statements:

 ARRAY ELEMENTS {5} ELEMENT1-ELEMENT5;
 ARRAY LYRICS {7} BIRDS BEES FLOWERS
 TREES SKY ABOVE
LOVE;

Use any valid SAS name as the name of the

array, but avoid:

1. The name of a variable in the SAS data

set. This is an error.

2. The name of a SAS function (such as

LENGTH, COMPRESS, or TRIM). This is

not an error, but it does disable that

function for the duration of the DATA

step.

Next, specify the number of variables in the array,

putting the number in curly brackets. The

ARRAY statements above used {5} and {7} to

indicate the number of elements. Parentheses (5)

or square brackets [5] are also permitted.

Due to laziness or other more complex factors,

the number of elements in the array may be

unknown. The asterisk can replace the actual

number in the ARRAY statement. The DIM

function then becomes very useful; it counts the

elements in an array. For example, in the

following program:

 DATA NEW;
 SET CITIES;
 ARRAY LYRICS {*} BIRDS BEES FLOWERS
 TREES SKY ABOVE
LOVE;
 SIZE = DIM(LYRICS);

the variable SIZE has a value of 7 because the

array LYRICS contains 7 elements.

Lastly, the ARRAY statement lists the names of

all variables that make up the array. The two

most common methods for listing variables are:

1. Naming each variable, as in the ARRAY

statement above.

2. Specifying a numbered list. For example,

ELEMENT1-ELEMENT5 means the five

variables ELEMENT1, ELEMENT2,

ELEMENT3, ELEMENT4, and ELEMENT5.

The SAS system supports other methods for

specifying a list of variable names. However,

these methods are complex and unnecessary

99% of the time. ARRAY statements can utilize

two additional features. First, the statement may

define a default length for new variables. If

ELEMENT1-ELEMENT5 are character variables,

-3-

and NEWVAR has never been defined, these two

sets of statements would both define NEWVAR

as character with a length of 12:

 ARRAY ADD1 {6} $ 12 ELEMENT1-ELEMENT5
 NEWVAR;

 LENGTH NEWVAR $ 12;
 ARRAY ADD1 {6} ELEMENT1-ELEMENT5
 NEWVAR;

Lastly, you may encounter implicitly subscripted

arrays. The syntax varies slightly:

 ARRAY LYRICS (_I_) BIRDS BEES FLOWERS
 TREES SKY ABOVE
LOVE;

Parentheses (not brackets) now contain a variable

name rather than a number or an asterisk. Slight

differences in syntax will arise when referring to

an element of an implicitly subscripted array. See

the next section of this paper for details.

Implicitly subscripted arrays are not recommended

style. Any program that uses them could also

use regular (explicitly subscripted) arrays just as

easily or more easily. (For that matter, any

program that uses arrays could be written without

arrays. However, it might become a much longer

program.) These arrays are described here so

that you will recognize them when you see them,

not to encourage you to use them.

Referring to an Array Element

Later statements in the DATA step refer to an

array element by referring to the array name

rather than the variable name. One previous

program used this technique:

 DATA NEW;
 SET CITIES;
 ARRAY LYRICS {7} BIRDS BEES FLOWERS
 TREES SKY ABOVE
LOVE;
 DO I = 1 TO 7;
 IF LYRICS{I}=. THEN LYRICS{I}=0;
 END;

LYRICS{I} refers to one variable in the array,

depending on the current value for the variable I.

When I=4, LYRICS{I} means the variable TREES

(the fourth element in the array). When I=7,

LYRICS{I} means the variable LOVE (the seventh

element in the array). Since LYRICS contains

seven variables, the statement:

 DO I = 1 TO 7;

processes each element in the array, one by one.

If the number of array elements were unknown,

the DIM function could count them. The

following program produces an identical result:

 DATA NEW;
 SET CITIES;
 ARRAY LYRICS {*} BIRDS BEES FLOWERS
 TREES SKY ABOVE
LOVE;
 DO I = 1 TO DIM(LYRICS);
 IF LYRICS{I}=. THEN LYRICS{I}=0;
 END;

Finally, implicitly subscripted arrays use only the

array name to refer to an element.

 DATA NEW;
 SET CITIES;
 ARRAY LYRICS (_I_) BIRDS BEES FLOWERS
 TREES SKY ABOVE
LOVE;
 DO _I_ = 1 TO 7;
 IF LYRICS=. THEN LYRICS=0;
 END;

or

 DO OVER LYRICS;
 IF LYRICS=. THEN LYRICS=0;
 END;

Herein lies the lone advantage of implicitly

subscripted arrays over explicitly subscripted

arrays. The DO OVER syntax (illegal with

implicitly subscripted arrays) conveniently

processes every element in the implicitly

subscripted array. Still, implicitly subscripted

arrays are not recommended. They are described

here so that you will recognize them when you

see them.

Usefulness of Arrays: A Sample Problem

In this sample problem, the SAS data set OLD

contains 20 character variables named LINE1

through LINE20. Each has a length of 50. These

variables contain text information and are

intended to be printed one beneath the next with

a statement like:

-4-

 PUT LINE1 / LINE2 / LINE3 / LINE4 /
 LINE5 / LINE6 / LINE7 / LINE8 /
 LINE9 / LINE10 / LINE11 /
 LINE12 / LINE13 / LINE14 /
 LINE15 / LINE16 / LINE17 /
 LINE18 / LINE19 / LINE20;

The three variables LINE10 through LINE12

always contain the following text:

LINE10 reads:

SUMMARY STATISTICS, ALL DIVISIONS

LINE11 reads:

(THESE ARE PRELIMINARY FIGURES ONLY.

LINE12 reads:

FINAL NUMBERS WILL ARRIVE SOON.)

Now another month has passed, the final

numbers are in, and the note in parentheses

(LINE11 and LINE12) no longer applies. With or

without arrays, a program should blank out the

note in parentheses. Without arrays, the program

would be:

 DATA NEW;
 SET OLD;
 LINE11=' ';
 LINE12=' ';

With arrays, the program would be:

 DATA NEW (DROP=I);
 SET OLD;
 ARRAY LINES {20} LINE1-LINE20;
 DO I=11 TO 12;
 LINES{I}=' ';
 END;

The second program is longer and more complex.

So why bother with arrays?

As the program's objective becomes more and

more complex, arrays can simplify the program

considerably. As an example, consider one

shortfall of the previous programs. When printing

the report, there would now be two blank lines in

the middle. A more complex objective would be

to remove the note, without leaving any blank

lines in the middle. Without arrays, the program

would be:

 DATA NEW;
 SET OLD;
 LINE11 = LINE13;
 LINE12 = LINE14;
 LINE13 = LINE15;
 LINE14 = LINE16;
 LINE15 = LINE17;
 LINE16 = LINE18;
 LINE17 = LINE19;
 LINE18 = LINE20;
 LINE19 = ' ';
 LINE20 = ' ';

Using arrays, the program becomes:

 DATA NEW (DROP=I);
 SET OLD;
 ARRAY LINES {20} LINE1-LINE20;
 DO I=11 TO 18;
 LINES{I} = LINES{I+2};
 END;
 DO I=19 TO 20;
 LINES{I}=' ';
 END;

-5-

This program is shorter and more flexible. If the

number of variables increases from 20 to 50, the

first program (without arrays) would have to add

30 lines. But this program (with arrays) would

remain virtually unchanged.

Let's add one more wrinkle to the original

problem. Suppose the three key lines don't

necessarily begin with LINE10. The text:

 SUMMARY STATISTICS, ALL DIVISIONS

appears anywhere from LINE5 through LINE15.

Now the program must first locate the text and

then change all subsequent variables. The

program with arrays takes 12 statements:

 DATA NEW (DROP=I START);
 SET OLD;
 ARRAY LINES {20} LINE1-LINE20;
 DO I=5 TO 15;
 IF LINES{I}=
 'SUMMARY STATISTICS, ALL DIVISIONS'
 THEN START=I+1;
 END;
 DO I=START TO 18;
 LINES{I}=LINES{I+2};
 END;
 DO I=19 TO 20;
 LINES{I}=' ';
 END;

The first DO group locates which of the variables

among LINE1-LINE15 contains the key text. The

program will change the values of all

"subsequent" variables. For example, if LINE8

contains the key text, then the program will

change the values of LINE9 through LINE20.

Therefore, the program notes (and assigns to the

variable START) the number of the first variable

to be changed. In this case, START would

receive a value of 9. The last two DO groups

work as before, modifying values of the variables.

The same program without arrays would take

about 80 lines! (Being extremely clever, you

could write this program in 30 lines without

arrays. But if you are that clever, you don't need

to be reading this paper. I will honor all written

requests for 30-line solutions.)

For the Future

In most applications which use arrays, arrays are

10% of the pie and other tools make up 90%.

Therefore, knowledge of arrays must be

combined with knowledge of other tools. DATA

step tools, especially different forms of the DO

statement, are most important.

Consider the sample application, for example. It

eliminated two lines, shifting a block of text "up"

by two lines. In practice, this program is likely

to be part of a more complex system that uses a

much greater variety of tools. A similar program

might "insert" blank lines by shifting a block of

text "down." A third program might change the

order of the variable values, equivalent to

"moving a paragraph." Finally, add macro

language statements to generate menus for

running these programs interactively. The menus

might allow users to make requests such as:

� For observation 5, insert 3 blank lines

after line 4.

� For observation 25, move lines 14

through 18 to after line 3.

To a small extent, a SAS-based system is now

operating as a word processing system! But

arrays constitute one of many tools needed to

accomplish this.

In your future programs, more complex uses for

arrays may come into play, including:

1. Creating arrays to hold sets of constants

instead of sets of variables.

2. Relating multiple arrays in one DATA step.

For example, based on the 80 variables

HEIGHT1 through HEIGHT80 and 80 more

variables WIDTH1 through WIDTH80,

compute 80 variables AREA1 through

AREA80 (AREA1 = HEIGHT1 * WIDTH1,

etc.).

3. Defining multidimensional arrays.

4. Reading or writing array elements with

INPUT or PUT statements.

These types of capabilities are invaluable for

solving certain problems. However, for most

problems, the introductory concepts and

techniques in this paper will be more than

sufficient.

-6-

The author welcomes questions, comments, and

requests for 30-line solutions. Feel free to call or

write:

Bob Virgile

Robert Virgile Associates, Inc.

3 Rock Street

Woburn, MA 01801

(781) 938-0307

SAS is a registered trademark of SAS Institute

Inc.

