NESUG 2010 Programming Beyond the Basics

Using Recursion to Trace Lineages in the SAS® ODS Styles.Default Template
Perry Watts, Independent Consultant, Elkins Park, PA

ABSTRACT

As a first step towards learning how to generate customized tables in ODS, it is recommended that the Styles.Default
template be written out to the SAS LOG. What greets you in 9.1.3 SAS is a 700-line listing of default values for
attributes that are building blocks for 150+ style elements. That the template listing is overwhelming is an unders-
tatement. You still don’t have a clue about how style templates generally work in ODS, but you realize that a compre-
hensive guide can only be found in the output you are looking at.

To translate the ODS Styles.Default template into something useful, inheritance has to be fully expressed. Whole
lineages of style elements can then be traced and presented alongside their associated attributes. With the newly
formatted guide, you can easily learn what is available when ODS-generated tables require a new appearance.

Inheritance falls out when recursion is applied to the Styles.Default template. In this paper, recursion is introduced by
showing brief code examples written in macro and PROC SQL. Next, the DATA step that processes Styles.Default
recursively is reviewed in detail. Final output is produced in ODS with an HTML destination. Usage of the new guide
is deferred to a follow-up paper.

PROBLEM DEFINITION

There is no way to organize the Styles.Default template by lineage. Instead, members of any given lineage are widely
scattered throughout the template. For example in Figure 1, lines 164 to 479 from the template must be scanned to
locate the five ancestors for the HEADEREMPHASISFIXED style element. The only structural rule that can be
counted upon is that ancestors precede their descendents in the Styles.Default template.

Figure 1. A partial listing of the ODS Styles.Default template is presented in linear order. Lines 1 to 163 define styles that have
no ancestors. Examples include FONTS, GRAPHFONTS and COLOR_LIST. CONTAINER also has no ancestors (the FROM
clause is missing) but all styles of interest in this paper inherit directly or indirectly from CONTAINER. Inheritance below is
traced by arrows. The highlighted lineage is complete, since HEADEREMPHASISFIXED has no descendents.

164 style Container

165 "Abstrac¥®,_ Controls all container oriented elements.”™ /
166 font = Fonts("DocFont™)

167 foreground =“colors("docfg")

168 background = colors("docbg®);

4i4 style Celld from

415 "Abstract. Is general cells.";

450 style HeadersAndFooters from

451 "Abstract. Controls table headers and footers.™ /
452 font = fonts("HeadingFont™)

453 foreground = colokxs("headerfg”)

454 background = colors{ headerbg®);

465

466

472

473

474

475

476 font = fonts("EmphasisFont™)

477 style HeaderEmphasisFixed from HeaderEmphasis|

478 "Controls emphasized table header cells. Fixed font." /
479 font = fonts("FixedEmphasisFont™);

The reason why lineage listing is so difficult to implement is that each style element definition appears only once in
the Styles.Default template. What is needed is a judicious use of redundancy. In Figure 2, CONTAINER appears four
times as it should; once for each lineage that uses it. Recursive processing can be adjusted so that redundancy is
inserted into the display where needed.

NESUG 2010 Programming Beyond the Basics

Figure 2. Four of the 60 Container lineages are derived recursively from the Styles.Default Template.

Lineage Line# Style Element
16 164 style Container

414 style Cell from Container

450 style HeadersAndFooters from Cell

465 style Header from HeadersAndFooters

472 style HeaderEmphasis from Header

477 style HeaderEmphasisFixed from HeaderEmphasis
26 164 style Container

214 style Date from Container

227 style ContentsDate from Date
32 164 style Container

169 style Index from Container

250 style IndexProcName from Index

260 style ContentProcName from IndexProcName

262 style ContentProcLabel from ContentProcName
60 164 style Container

305 style TitlesAndFooters from Container

319 style SystemTitle from TitlesAndFooters

When style elements are listed in lineage order, the developer can quickly identify default values assigned to affiliated
attributes. The 60 Container lineages span lines 164 to 544 in the Styles.Default template. (Graphics lineages do not
inherit from Container. Instead they inherit from GraphComponent which has no ancestor).

RECURSION DEFINED

From Tannenbaum[4, p. 96-98] and Wikipedia[7] the definition for recursion contains two major components:
1) Recursion solves problems by finding solutions to smaller instances of the same problem. This approach to
problem solving is iterative, because it repeats the same process until a predefined condition is met.
2) The predefined condition is called the stopping point or “base case” where no reference is made to a smaller
instance of the same problem. Otherwise, processing would become infinite.
The trail of recursive processing can be graphed as an upside-down tree where the root or top node represents the
base case, and the leaves represent starting points for recursive processing.

Recursion is illustrated below by looking first at two classic examples recreated in SAS. Art Carpenter shows how to
write n! (n-factorial) recursively as a macro [1, p. 394], and a highly abbreviated report of the chain of command in
President Obama’s cabinet is created with a self-join in PROC SQL. The self-join is a limited version of a fully recur-
sive join available in Oracle®.

EXAMPLE #1: THE FACTORIAL FUNCTION

Art Carpenter’s algorithm for n-factorial is reproduced in the source code that follows [1, p. 394]:

%macro Ffactorial (number);
%if &number gt 1 %then %eval (&number * %factorial (%eval (&number-1)));
helse 1;

%mend factorial;

options nosymbolgen mlogic mlogicnest;
%put The factorial of 5 is: %factorial(5);

This example shows how recursion works. By creating a function that calls itself, n-factorial is solved by finding solu-
tions to smaller instances of the same problem. 5-factorial in this call = 5*41(4!= 4*3!)(3!=3*2!)(2!=2*11)(1=1). Each
time FACTORIAL is invoked, NUMBER is successively decremented by 1. When NUMBER reaches 1 the stopping
condition kicks in (%else 1) and the function calls execute as 1*2*3*4*5=120.

Carpenter’s solution works in SAS, because both FACTORIAL and EVAL are macro functions that have return val-
ues. Unlike C, you cannot assign the output of a function call to a variable in SAS. In other words, %let

NESUG 2010 Programming Beyond the Basics

FACT=%eval (&number * %factorial (%eval (&number-1)))doesn’t work. Likewise, a variable assignment is
not needed in the PUT statement containing the embedded macro call. %factorial (5) simply resolves to 120.

The MLOGICNEST option in the code for n-factorial along with a tree containing a single branch in Figure 3 shows
how SAS works recursively in macro.

Figure 3. Each time FACTORIAL is called, execution BEGINS anew. Eventually five FACTORIAL calls are strung together; one
per macro call. When NUMBER is reduced to 1, the stopping condition is activated and execution ENDS for the last entered
BEGIN (This is an example of LIFO processing). Executions continue to END until all the FACTORIAL calls are resolved.

48 %put The factorial of 5 is: %factorial(5); 11=1
MLOGIC(FACTORIAL): =
Beginning execution.
MLOGIC(FACTORIAL): +
Parameter NUMBER has value 5 2X1!
MLOGIC(FACTORIAL): (])
%IF condition &number gt 1 is TRUE
MLOGIC(FACTORIAL .FACTORIAL): I
Beginning execution. 3X2!
MLOGIC(FACTORIAL .FACTORIAL):
Parameter NUMBER has value 4 %EVAL(5 * FACTORIAL(4)) (B

MLOGIC(FACTORIAL .FACTORIAL):
%IF condition &number gt 1 is TRUE |
MLOGIC(FACTORIAL . FACTORIAL.FACTORIAL): 4X3!
Beginning execution. %EVAL(5 * %EVAL(4 * FACTORIAL(3))) db
MLOGIC(FACTORIAL . FACTORIAL.FACTORIAL):

Parameter NUMBER has value 3 |

MLOGIC(FACTORIAL .FACTORIAL.FACTORIAL): 5X4!
%IF condition &number gt 1 is TRUE <5
MLOGIC(FACTORIAL .FACTORIAL.FACTORIAL.FACTORIAL):
Beginning execution. %EVAL(5 * %EVAL(4 * EVAL(3 * FACTORIAL(2)))) ‘f
MLOGIC(FACTORIAL .FACTORIAL.FACTORIAL.FACTORIAL): 5l
Parameter NUMBER has value 2 (5
MLOGIC(FACTORIAL .FACTORIAL.FACTORIAL.FACTORIAL):

%IF condition &number gt 1 is TRUE
MLOGIC(FACTORIAL . FACTORIAL.FACTORIAL .FACTORIAL.FACTORIAL):
Beginning execution. %EVAL(5 * %EVAL(4 * EVAL(3 * EVAL(2 * FACTORIAL(1)))))
MLOGIC(FACTORIAL . FACTORIAL .FACTORIAL .FACTORIAL .FACTORIAL):
Parameter NUMBER has value 1
MLOGIC(FACTORIAL . FACTORIAL.FACTORIAL .FACTORIAL.FACTORIAL):
%IF condition &number gt 1 is FALSE
MLOGIC(FACTORIAL . FACTORIAL.FACTORIAL .FACTORIAL.FACTORIAL):
Ending execution. %EVAL(5 * %EVAL(4 * EVAL(3 * EVAL(2 * 1))))
MLOGIC(FACTORIAL . FACTORIAL.FACTORIAL .FACTORIAL):
Ending execution. %EVAL(5 * %EVAL(4 * EVAL(3 * 2)))
MLOGIC(FACTORIAL . FACTORIAL.FACTORIAL):
Ending execution.%EVAL(5 * %EVAL(4 * 6))
MLOGIC(FACTORIAL .FACTORIAL):
Ending execution.%EVAL(5 * 24)
MLOGIC(FACTORIAL):
Ending execution. 120

EXAMPLE #2: USING RECURSION TO DISPLAY AN ORGANIZATIONAL HIERARCHY

A self or reflexive join in PROC SQL is used to display the chain of command in an organization. In this example,
President Obama’s cabinet has been reduced to two secretaries, and each of the two secretaries has just two subor-
dinates; a perfect binary tree! First, the input data set:

data govtHierarchy;
Length EName Title $15;
infile cards missover;
input ENum EName Title MNum ; /* Prefixes "E"= Employee and "M" = Manager */

cards;

2 Clinton SecyState 1
3 SteinBerg DepSecyState 2
6 Lynn DepSecyDefense 5
1 Obama President

4 Mills ChiefOfStaff 2
5 Gates SecyDefense 1
7 Mullen JntChiefsStaff 5

run;

NESUG 2010 Programming Beyond the Basics

Unlike n-factorial, the input data do not have to be entered in strict order. For example, President Obama’s entry ap-
pears in the middle of the data set — not in the beginning. However, for the SQL join to work in SAS, employee num-
bers have to be assigned in “left-branch” order so that output is organized by lineage affiliation. By way of illustration,
employee numbers are affixed to the tree displayed in Figure 4. For a discussion of the left-branch tree traversal algo-

rithm, see [5, p. 780-782].

Recursion in this example takes advantage of the fact that managers are also employees. So looking at a smaller
instance of the same problem, let’s find out who is Steinberg’s boss. That would be Secretary of State Clinton. Then
who is Clinton’s boss? That would be President Obama. Since President Obama represents the “base case”, execu-
tion stops for this lineage. When all the “starting points” (Steinberg, Mills, Lynn, and Mullen) are processed, the pro-
gram terminates.

In PROC SQL below, the input data set, govtHierarchy, is being joined with itself. The ORDER clause guarantees
that the output in Figure 4 is printed “depth-first” or by lineage.

proc sql;
select LowerH.Enum as EmpNum, LowerH_EName as EmpName,
LowerH.Title as EmpTitle,
UpperH_.Enum as MgrNum, UpperH.EName as MgrName,
UpperH.Title as MgrTitle
from govtHierarchy as LowerH, govtHierarchy as UpperH
where LowerH_MNum eq UpperH.ENum
order by LowerH.ENum;
quit;

Figure 4. The chain of command in the Obama administration maps to a binary tree with four lineages and three levels.
President Obama as the “base case” occupies the root node. Leaf nodes with Steinberg to Mullen would be identified
as “starting points” for recursion.

EmpNum EmpName EmpTitle MgrNum MgrName MgrTitle
2 Clinton SecyState 1 Obama President
3 SteinBerg DepSecyState 2 Clinton SecyState
4 Mills ChiefOfStaff 2 Clinton SecyState
5 Gates SecyDefense 1 Obama President
6 Lynn DepSecyDefense 5 Gates SecyDefense
7 Mullen JntChiefsStaff 5 Gates SecyDefense

1) President Obama

2) Secretary of State Clinton 5) Secretary of Defense Gates
3) DepSecyState Steinberg 7) JntChief of Staff Mullen
4) Chief of Staff Mills 6) DepSecyDefense Lynn

In contrast to SAS, ORACLE has implemented recursion in a way that does not require an assignment of a pre-
ordered identification number or a self-join [3, p. 275-286]. Instead, the FROM keyword associated with a single table
is coupled with ORACLE commands START, CONNECT BY, and PRIOR to produce the following:

Manager Subordinates
Obama Clinton

Clinton Steinberg
Clinton Mills
Obama Gates

Gates Lynn
Gates Mullen

An Oracle-type solution where ordering is determined exclusively by relationships among data elements is required
for creating the ODS lineage tracer. In this instance, PROC SQL is replaced with a couple of SET statements having
POINT options.

NESUG 2010 Programming Beyond the Basics

TRACING ODS STYLE ELEMENTS BY LINEAGE

Of interest to the user of n-factorial is the starting point (5!) or more correctly, its return value of 120. Values for inter-
mediate points are only displayed to show how recursion works behind the scenes. For the chain of command prob-
lem, however, the entire tree is the object of interest. What the tree provides is a comprehensive view of employee
relationships: both by lineage (top down, hierarchical) and by level (across, peer).

For the ODS lineage-tracer, each lineage becomes the object of interest. In “lineage-trace mode”, output from Figure
4 would be reconfigured as:

Lineage Official #1 Official #2 Official #3

1 President Obama Secretary of State Clinton Deputy Secretary of State Steinberg
2 President Obama Secretary of State Clinton Chief of Staff Mills

3 President Obama Secretary of Defense Gates Deputy Secretary of Defense Lynn
4 President Obama Secretary of Defense Gates Joint Chiefs of Staff Mullen

The single lineage from Figure 1 becomes Lineage #16 in the lineage tracer:

Lineage Node #1 Node #2 Node #3 Node #4 Node #5 Node #6

16 Container Cell HeadersAndFooters Header HeaderEmphasis HeaderEmphasisFixed

Recursion in this example takes advantage of the fact that both style and from clauses in the Styles.Default template
reference style elements. With linked style elements, it becomes possible to define a lineage recursively by looking at
smaller instances of the same problem. Working backwards, to follow the direction of the arrows in figure 1,
HEADEREMPHASISFIXED inherits attributes from HEADEREMPHASIS. Next, HEADEREMPHASIS inherits from
HEADER, and so on up to CONTAINER which is the base case. When the from clause equals CONTAINER, a single
lineage is defined, and when style clause equals CONTAINER, processing terminates. The 60 lineages derived from
CONTAINER in the ODS Styles.Default template map to the tree displayed in Figure 5.

Figure 5. The CONTAINER tree is wide and shallow. Leaf nodes in the tree reference unigue style elements. They are
represented by lineage number rather than by the style name to save space. Circles also serve as place holders for
embedded style elements. Lineage #16 shown earlier has been highlighted in blue for easy reference.
Container -
1 24
Cell Date | |Document Index Indexltem
i i ‘ ‘
Data HeadersAndFooters
25-27 28-31 37 39
i 3233 3435 36 38
[caption |
> I - Container (contd)
2 5 87 B
s I
8 51-54
Note ‘ Output ‘ TitlesAndFooters
40@42?44?46%8 49-50 55-57 CP 59-60
41 43 45 47 58

CREATING THE LINEAGE-TRACER

To translate the ODS Styles.Default template into a list of stand-alone CONTAINER lineages, five steps must be fol-
lowed in strict order:

1) Read in the raw file, stylesDefault.txt and save CONTAINER style elements to two SAS data sets: contai-
nerStyles and containerAttributes. containerStyles has three variables: styleNum, styleName and from-
Name. styleName and fromName are parsed from the original style element definition in stylesDefault.txt.
For example, styleName = Pages and fromName = Document when the style element definition = Pages
from Document. containerAttributes also has three variables: styleName, attributeNum and attribute.
Separating style elements from attributes simplifies the recursive processing that is only applied to contai-
nerStyles. containerAttributes becomes the data source for detail entries displayed in Figure 8 below.

5

NESUG 2010 Programming Beyond the Basics

2) Sort containerStyles in descending order so that the “starting points” or descendents precede their ances-
tors. The only motivation for the sort is to simplify data processing.

3) Create the lineages data set by applying recursion to containerStyles. Variables saved to the lineages data
set include numNodes and nodel-node7. numNodes contains the number of style elements in a given li-
neage. The number ranges from 2 to 7. From the CONTAINER tree in Figure 5, lineage #1 contains two ele-
ments, and lineage #20 contains seven. Values in nodel-node7 reference style elements that define a single
lineage. The lineages data set contains sixty observations: one for each lineage.

4) Post-process the lineages data set to reverse the effects of the descending sort in step #2. node7 becomes
stylel in the new data set. Then node6 becomes style2, node5 becomes style3 and so on. The output data
set, reverselLineages, contains the re-ordered variables, stylel-style7.

5) Sort reverseLineages by style2 ... style7. (stylel is always set to “Container”). Add a lineage number, lin-

Num, to the data. The variables in the final data set, containerLineages, include linNum and stylel-style7.
See Figure 6 for an illustration of the data transformation that takes place between step #3 and step #5.

STEP#3: CREATE THE LINEAGES DATA SET WITH RECURSION

To explain how recursion is used in step #3, a small input data set with just 8 observations has been derived from the
larger containerStyles data set. From Step #2 above, the input data are sorted in descending order so that
processing can proceed in a simplified top-down fashion. Descendents appear before their ancestors in rContainer
(check styleNum) with the result that the CONTAINER style element now appears at the end of the data set. Even
with such a small data set, it is difficult to see that three complete lineages will be fully defined with an application of

recursion.
Data Set: rContainer
styleNum styleName fromName
83 HeaderEmphasisFixed HeaderEmphasis
82 HeaderEmphasis Header
80 HeaderFixed Header
79 Header HeadersAndFooters
75 HeadersAndFooters Cell
64 Cell Container
39 BylineContainer Container
10 Container

Key to understanding the data step for step#3 is the double looping in the code that supports two SET statements
and their associated stopping conditions. The DO-Loops, SET, and stopping conditions are highlighted in yellow be-
low.

In the outer loop, the input data are processed in sequential order from the first observation to the last where the
stopping condition, styleName EQ “Container”, is satisfied. Each time a record is read in from the outer-loop
SET statement, an inner loop SET statement is conditionally executed to identify a complete lineage. The inner loop
starts searching for lineage members at record i+1 where i is reset each time the outer loop executes. Each lineage
is fully defined when fromName EQ “Container™.

Processing is conditional for lineage definition in the LINEAGES data step. To prevent redundant partial lineages
from being generated, the value for oldFromName must not be the same as the value for node[1], derived from the
current value for styleName. In the code listing below, oldFromName entries are highlighted in blue. Interim output in
Figure 6 shows how oldFromName does its job.

/* STEP #3 DATA PROCESSING */
data lineages (keep= numNodes nodel-node7);
array node {7} $30 nodel-node7; /* FOR UP TO 7 STYLE ELEMENTS PER LINEAGE */
length oldFromName $30;
retain nodel-node7 k;
start=1;
do i=start to totobs;
/* OUTER LOOP: READ IN LEAF NODES FIRST */
set rContainer point=i nobs=totobs;
/* STOPPING POINT FOR EXECUTION -- WHERE STYLENAME="'CONTAINER" */
if styleName EQ "Container® then stop;
else do;
/* HOUSEKEEPING OCCURS AFTER THE CREATION OF A COMPLETE LINEAGE */
if i GT start then do;
do kk=1 to 7;
node[kk]=" *;
end;
end;
node[1]=stylename;

NESUG 2010 Programming Beyond the Basics

node[2]=fromName;
/* FOR LINEAGES WITH ONLY TWO STYLE ELEMENTS. */
if fromName eq "Container” AND stylename then do;
NumNodes=2; output;
end;
else do;
/* EXECUTE THE INNER LOOP FOR LINEAGES HAVING MORE THAN TWO STYLE ELEMENTS.
DATA ARE POLLED IN THE INNER LOOP FROM [CURRENT_REC + 1] TO TOTOBS. */
iplusl=i+1;
k=2;
if node[1] OR i1 EQ start then do j=iplusl to totobs;
/* CREATE A COMPLETE LINEAGE */
set rContainer point=j nobs=totobs;
if styleName EQ node[k] then do;
k=k+1;
node[k]=fromName;
if node[k] eq "Container®™ then do;
NumNodes=k; output;
leave; /* STOPPING POINT FOR LINEAGE DEFINITION -- WHERE FROMNAME="'CONTAINER" */
end; *if CONTAINER;
end; *if stylename;
end; *do j (inner loop);
end; *else do recursive search for one entry;
end; *else do go to next entry;
end; *do i (outer loop);
run;

Figure 6. Interim output from step #3 and final output from step#5 are displayed. Only the blue complete lineages are written out to the lineages data set in step
#3. Overlooked are partial lineages where oldFromName is equal to nodel. Also, as expected from the outer loop SET statement, nodel and node2 are identical
in value to styleName and fromName in rContainer. In step#5 nodel - node7 (descendent —ancestor) is replaced with stylel - style7 (ancestor — descendent).
The final data are sorted alphabetically by style2, style3, ..., style7. stylel is excluded from the sort, because it equals “Container” for all 60 lineages.

Output from Step#3

oldFromName nodel node2 node3 node4 node5 node6 node7
#HeaderEmphasisFixed HeaderEmphasis Header HeadersAndFooters Cell Container

HeaderEmphasis =HeaderEmphasis Header HeadersAndFooters Cell Container

Header #HeaderFixed Header HeadersAndFooters Cell Container

Header =Header HeadersAndFooters Cell Container

HeadersAndFooters=HeadersAndFooters Cell Container

Cell =Cell Container

Container #BylineContainer Container

Output from Step#5

StyleNum stylel style2 style3 style4 style5 style6 style7
1 Container BylineContainer
16 Container Cell HeadersAndFooters Header HeaderEmphasis HeaderEmphasisFixed
18 Container Cell HeadersAndFooters Header HeaderFixed

ODS WITH PROC REPORT IS USED TO CREATE THE LINEAGE TRACER

Screen snapshots of the lineage tracer are displayed in Figures 7 and 8. The complete 61-“page” ODS|HTML tracer
is included as an attachment to the paper in the NESUG Proceedings. Style elements were customized to create the
lineage tracer, and the lineage tracer facilitated the customization; perfect circularity! PROC REPORT also played a
central role in the tracer’s development. The algorithm for inserting internal links comes from Carpenter’'s Complete
Guide to the SAS® Report Procedure [2, p. 257-260].

NESUG 2010 Programming Beyond the Basics

Figure 7. Part of the cover page for the ODS tracer. Code for the three lineages with arrows is presented in Step #3 above.
Pressing the green link at lineage #16 brings up a list of attributes for the member style elements displayed in Figure 8.

60 Container Lineages in the ODS Styles.Default Template
(Abstract Classes are in Blue)

—> 1 || Container | BylineContainer
2 | Container || Cell Diata DataFrphasis DataEmphasisFied
3 | Container || Cell Diata DataErmpty
4 || Container || Cell Diata DataFied
5 | Container || Cell Data DataStrong DataStrongFixed
6 || Contaimer || Cell Headers AndFooters | Caption AfterCaption
7 | Container || Cell Headers&ndFooters | Caption BeforeCaption
8 | Container | Cell Headers&indFooters | Footer FooterEmphasis FooterEmphasisFied
9 || Comtainer || Cell Headers &ndFooters | Footer FooterEmpty
10 | Container || Cell Headers ndFooters || Footer FooterFixed
11 | Container || Cell Headers indFooters | Footer FooterStrong FooterStrongFixed
12 | Container || Cell HeadersindFooters | Footer RowFooter RowFooterErmphasis || EowFooterEmphasisFied
13 | Container || Cell HeadersindFooters | Footer RowFooter RowFooterErpty
14 | Container || Cell Headers ndFooters || Footer RowFooter RowFooterFied
15 | Container | Call Headers&ndFooters | Footer FowFooter RowrFooterStrong RowFooterStrongFied
—» Qﬁ Container || Cell HeadersindFooters | Header HeaderEraphasis HeaderEmphasisFined
I | Container || Cell Headers &ndFooters || Header HeaderErapty
—> 18 | Container || Cell Headers & ndFooters | Header HeaderFixed

Figure 8. The drill-down from figure 7 brings up a detailed list of associated attributes for lineage #16. The attributes come
from the containerAttributes data set described earlier in the paper. The full lineage is recapped in the title, and there is a link
at the bottom of the page that takes the viewer back to the cover page.

Lineage # 16: Container Cell HeadersAndFooters Header HeaderEmphasis HeaderEmphasisFixed

r—

Container Absiract. Conirols all container oriented elements.
font = Fonts{'DocFont') FONT
foreground = colors('docfz) FOREGROUND
hackground = colors(dochg’); BACKGROUND
Cell Absiract. Conirols general cells.
Headers AndFooters Absiract. Conirols table headers and footers.
font = fonts('HeadingFont) FONT
foreground = colors{'headerfs’) FOREGROUND
background = colors(headerbg); BACKGROUND
Header Controls the headers of a tahle.
HeaderEmphasis Comnirols emphasized tahle header cells.
foreground = colors(headerfzemph’) FOREGROUND
barkground = colors{ headerbgermph') BACKGROUND
font = fonts('EmphasisFont'); FONT
HeaderEmphasisFixed Comnirols emphasized table header cells. Fixed font
font = fonts('FixedEmphasisFont); FOHT
Fetum to Lineage List

NESUG 2010 Programming Beyond the Basics

DATA VALIDATION

PROC SQL is applied to the containerStyles SAS data set created from stylesDeftault.txt to check for accuracy.
First, a check is made to identify the style elements that inherit directly from CONTAINER:
proc sqgl noprint;
create table chkNode2 as
select distinct styleName
from containerStyles
where fromName eq "Container”
order by styleName;
select count(*) into :nNode2 from chkNode2;
quit;
The fourteen style elements listed are identical in number and content to those in the third column on the cover page
in the HTML output. Matching lineage end-style elements (or tree “leaves”) is trickier and requires a sub-query:
proc sqgl noprint;
create table chkLeaves as
select distinct styleName
from containerStyles
where styleName not in
(select fromName from containerStyles);
select count(*) into :nLeaves from chkLeaves;
quit;
The NOT IN directive to the sub-query satisfies the requirement for “leaf” status: end-style-elements are never ances-
tors. That means they won't be listed in fromName. The sixty style elements produced from the query match the sixty
end-names for complete lineages found in the cover page for the lineage tracer.

COMPANION PAPER

A companion paper, Make the Most of Your Inheritance with the SAS® ODS Styles.Default Lineage Tracer has been
prepared for presentation at a future user group conference. In this paper, the lineage tracer is used to show how
inheritance works in Version 9.1.3 SAS when style elements in the Styles.Default template are being altered. Along
with the lineage tracer, additional font, color and attribute descriptors are employed to demonstrate that:

1) Inheritance works differently for abstract and regular style elements. Unfortunately, there is no working defi-
nition for an ‘abstract’ style element in SAS. The term is an Object-Oriented construct, and it refers to a base
class that cannot be declared as an object. In SAS, however, abstract style elements are objects that can be
changed with a REPLACE statement whereas both STYLE and REPLACE work with different results on
regular style elements.

2) The FROM keyword is only needed when attribute defaults are to be transferred to an updated style ele-
ment.

3) ODS inheritance is much more flexible than it is in other object-oriented programming languages such as
C++. Style elements can obtain default settings from immediate and distant ancestors, themselves, and
even their descendents!

4) Non-lineage attributes can also be added to a style element in a new template. Unfortunately, however, out-
comes are unpredictable. An attribute may be picked up, or it can simply be ignored with no WARNING be-
ing written to the LOG. In the paper, the intractable non-lineage text justification attributes, JUST and
VJUST, are reviewed in depth.

The font descriptor is also described and listed in Macros and Conventional Macro Variables: Effective Tools for Cus-
tomizing Tabular Output in SAS® ODS [6].

SUMMARY

Tracking inheritance in the ODS Styles.Default template becomes possible when recursion is used to express 60
lineages derived from the CONTAINER style. Initially, recursion is defined and illustrated by example. Next, the data
step that processes Styles.Default recursively is reviewed. After the data step review, several screen snapshots
showing portions of the final output produced in ODS with an HTML destination are presented. Finally, PROC SQL is
used to check the HTML output for accuracy. A section that describes the companion paper Make the Most of Your
Inheritance with the SAS® ODS Styles.Default Lineage Tracer has also been added to show why it is a good idea to
have the lineage tracer on your desktop when you need to change the definition for a style element.

COPYRIGHT STATEMENT

The paper, Using Recursion to Trace Lineages in the SAS® ODS Styles.Default Template, is protected by copyright
law. This means if you would like to paraphrase original ideas, adapt output from figures or attachments for your own

NESUG 2010 Programming Beyond the Basics

use, or quote text from the paper in any type of publication you are welcome to do so. All you need to do is to cite the
paper. For all uses that result in corporate or individual profit, written permission must be obtained from the author.
Conditions for usage have been modified from http://www.whatiscopyright.org.

REFERENCES

[1] Carpenter, Art. Carpenter's Complete Guide to the SAS® Macro Language: Second Edition. Cary, NC: SAS In-
stitute Inc., 2004.

[2] Carpenter, Art. Carpenter's Complete Guide to the SAS® REPORT Procedure. Cary, NC: SAS Institute Inc.,
2007.

[3] Koch, George and Kevin Loney. ORACLE: The Complete Reference, Third Edition. Berkeley, CA: Osborne
McGraw-Hill, 1995.

Tanenbaum, Aaron M. and Moshe J. Augenstein. Data Structures Using Pascal. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981.

Watts, Perry and Samuel Litwin. Using SAS/GRAPH® Software to Create Trees that Model Developmental Bio-
logical Phenomena. Proceedings of the Sas Users Group International Sixteenth Annual Conference. SAS In-
stitute, Inc. Cary, NC, pp. 779-784, 1991.

Watts, Perry. Macros and Conventional Macro Variables: Effective Tools for Customizing Tabular Output in
SAS® ODS. Proceedings of the 23 Annual Northeast SAS Users Group Conference. Baltimore, MD 2010, paper
#CC32.

=

&

=

WEB CITATIONS

[71 http://en.wikipedia.org/wiki/Recursion_(computer_science). Recursion (Computer Science): From Wikipedia, the
free encyclopedia.

SAS PAPERS ON RECURSION (from Carpenter's Complete Guide to the SAS® Macro Language [1, p.394])

Adams, John H. The Power of Recursive SAS Macros: How Can a Simple Macro do So Much? Proceedings of the
Twenty-Eighth SAS® User Group International Conference, Seattle, WA, 2003, paper #136.

Benjamin, William E. Jr. A Pseudo-Recursive SAS Macro. 1999. Online article available at www.sas.com/techsup/
download/observations/obswww18/obswww18.pdf.

Rhoades, Stephen. Recursion? SAS? Let's Fake It. Proceedings of the Fourteenth Annual NorthEast SAS® Users
Group Conference, Baltimore, MD, pp. 652-657, 2001, paper #PS8013.

Ward, David L. Using Recursion in the SAS System. Proceedings of the Pharmaceutical SAS Users Group Conference,
Boston, MA, pp.97-98, 2001, paper # CC12.

ACKNOWLEDGEMENTS

The author thanks Stan Legum, NESUG section co-chair, for his thoughtful review of her manuscript.

WHAT’S IN THE NESUG 2010 PROCEEDINGS OR AVAILABLE BY REQUEST

The ODS lineage tracer is available for download from the ZIP file associated with this paper. Additional source code
is available by request.

TRADEMARK CITATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION

The author welcomes feedback and requests for source code via email at perryWatts@comcast.net.
Related papers and Zip files can also be found at http://www.screencast.com/users/PerryWatts

10

mailto:perryWatts@comcast.net�
http://www.screencast.com/users/PerryWatts�

