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O. Introduction 

Most of the basic concepts of symplectic geometry were introduced by Lagrange [32] 
in connection with the study of the motion of planets in the context of analytical 
mechanics (cf. [1]). During the long evolution of mechanics, from Huygens and 
Newton through to Jacobi, Hamilton, Poincarr, Birkhoff, and Weyl, the language of 
modern geometry was developed and symplectic geometry appeared to be a very 
universal and useful part of it (of. [1], 1,23], 1,50]). 

Working in the quasiclassical methods of quantum mechanics, Maslov 1-36], 
introduced the notion of a Lagrangian submanifold, which appeared to play an 
especially important role in symplectic geometry and its physical applications. Quite 
recent results of Guillemin-Sternberg show that the idea that Lagrangian submani- 
folds are the morphisms of the symplectic 'category' [23, 51] is very unifying for 
symplectic geometry. It is also very fruitful in applications, in view of [24, 50], which 
assign classes of generalized functions and differential systems (e.g. Gauss-Manin 
systems) to Lagrangian submanifolds of an appropriate cotangent bundle. 

The focal sets of systems of rays, the wave-front evolution and caustics were 
investigated long ago by Huygens, Leibnitz, Bernoulli, Jacobi, and Morse (cf. [45, 30, 
16]). However, R. Thom 1,46] was the first to emphasize the fundamental importance 
of the theory of stable singularities of smooth mappings. He initiated the application 
of singularity theory to these systems and suggested the extended use of stable 
Lagrangian submanifolds to model the internal peculiarities of physical systems in 
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general. Following Thorn's proposal, Arnol'd gave the classification of simple and 
stable singularities of the so-called Lagrange projections [3]. Then it became obvious 
that singularities of Lagrangian submanifolds, or the corresponding Lagrangian 
projections, and their stable or generic properties, are indispensable for understanding 
a large part of geometrical optics [14, 4], variational calculus [6], optimization and 
control theory [47, 39], Hamilton-Jacobi equations [22], holonomic systems of 
differential equations [41], classical mechanics [1], and field theory [23, 50]. All these 
directions indicate their own problems and methods of solution, as well suggesting 
new investigations in singularity theory itself [1 l, 12, 8, 26]. The recently found con- 
nection between oscillating integrals and mixed Hodge structures [48] on the one 
hand and the theory of transformations of differential systems [41] on the other hand, 
connects the theory of the singularities of Lagrangian varieties to the mainstream of 
contemporary mathematics. The standard theory of singularities of Lagrangian 
projections was extended and generalized by Arnol'd ['5] (inspired by Melrose [37]) 
who showed that the singularities of Lagrangian varieties of systems of gliding rays 
along an obstacle in Euclidean space, substantially complete the amazing corre- 
spondence between the Coxeter groups generated by reflections A~, Bk, Ck, Dk, Ek, F4, 
G2, H2, Ha, H4, and simple singularities [9]. In fact, the group of symmetries of the 
icosahedron governs the singularities of systems of rays on the plane in the presence of 
an obstacle with an inflection point [43, 4]. The standard singularities of Lagrangian 
projections also relate to phase transitions in the classical thermodynamical systems. 
The phenomena of the coexistence of phases and their equilibrium, even in the critical 
region, has been explained by singular models of Lagrangian submanifolds and their 
reduced local forms [28]. 

The present paper does not pretend to give a complete report on the achievements 
in the theory of singularities of Lagrangian varieties. We emphasize only some 
representative directions, which seem very important from the point of view of 
applications to mathematical physics. Section 1, is entirely basic and introductory. We 
give the classical classification results for stable Lagrange projections and their 
connection to elementary concepts in optics and mechanics. In Section 2, we 
introduce the notion of caustics, bicaustics, and quasicaustics, and show how they 
appear in symplectic bifurcation theory. Using symplectic canonical varieties, we 
reformulate the results of Scherbak ([43]) concerning the classification of wave fronts 
on smooth obstacles. We report on the new ideas and classification results in the 
theory of generic invariant Lagrangian submanifolds (i.e. Lagrangian submanifolds 
with symmetry). In Section 3, we present a complete list of generic Z2-invariant 
bicausties in R 2 and R 3. This is a new result. Behind Arnold's [7], [19] theory of 
singular Lagrangian varieties lies some interesting combinatorial and algebraic 
material concerning the theory of invariants of binary forms. In Section 4, we give the 
most elementary properties of the sympleetic geometry of binary forms and construct 
the canonical generalization of open swallowtails. 

Another natural question is how to desingularize singular objects. For singular 
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Lagrangian varieties, the most straightforward desingularization procedure is the 
local 'inverse reduction' procedure. This is presented in Section 5. We desingularize 
concrete classes of singular Lagrangian varieties and provide a list of local models of 
generic pullbacks of smooth Lagrangian submanifolds. 

1. Singularities of Lagrange Projections 

Let P be a manifold, and o~ be a 2-form on P. The pair (P, o~) is called a symplectic 
manifold if co is closed, i.e. d m =  0, and nondegenerate [1]. The last condition implies 
that the dimension of P is even. The representative model of a symplectic manifold is a 
cotangent bundle T ' X ,  endowed with the canonical 2-form Wx = dOx, where the 1- 
form Ox on T *X  is defined by 

(u, Ox) = (T*Trx(U), Zr.x(U)), for each ue  T T * X .  

The mapping TTrx: T T * X - - ,  T X  is the tangent mapping of 7rx: T * X - , X ,  and 
Zr.x: T T * X  - ,  T * X  is the tangent bundle projection. If (xi) are local coordinates 
introduced in X, and (x ,  ~i) are corresponding local coordinates in T ' X ,  then to x has 
the normal form COx - ~i= 1 d~i A dxi (Darboux form [9]). 

We say that an immersed submanifold L c T * X  is Lagrangian if ~Oxl L = 0 and 
dim L = dim X. Let i: L c T * X  be a Lagrangian immersion of L, i.e. i*w = 0. Then 
the mapping 7r x o i: L --, X is called a Lagrange projection (cf. [3]). In applications to 
physics, say static mechanical systems, the manifold X appears as the configuration 
space of a static system and T * X  is the generalized force bundle. The system under 
consideration is usually characterized by its configuration-force relation represented 
geometrically by a Lagrangian submanifold of T * X  (provided the system is reciprocal 
[50]). Let L be transversal, at a point p e L, to the fibers of the canonical fibration 7rx. 
Then, in a neighbourhood of the point 7rx(p)eX, there exists a smooth function 
S: X - ,  R, such that L is locally defined as the graph of the section dS: X ~ T * X .  S is 
called the generating function or phase function (see, e.g., [24]). If the transversality 
condition is not fulfilled, which corresponds to the loss of static controllability of the 
system [1] (i.e. spontaneous flows, matter movements, phase transitions etc.), then L is 
represented by a family of functions on a manifold A, parametrized by X; 
G: X × A ~ R. It is called a Morse family [50] or generating family, and defines L by 
the canonical symplectic reduction procedure [1]: 

L = {(x, 4) e T ' X ;  there exists )~ e A, such that 

~G ~G } 
= ~ (x, 2) and 0 = -~- (x, A) 

near p ~ T*X.  The mapping d~ G: X x A ~ A, A _- R k is assumed to have maximal 
rank at (~x(P), 0 )~X x A. 
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The subset of X, say EL, or, in another words, the set of critical values of the 
Lagrange projection rex o i is given by the following equations [16]. 

OG 
EL = x ~ X ;  there exists 2cA,  such that 0 = - ~ ( x ,  2) and 

d2G det ( ~ ) ( 1 ,  2 ) =  0}. (1.1) 

An analytic properties of E L and its geometric structure are most important for 
applications. It represents the caustics in geometrical optics [33], lines of the phase 
diagram where phase transitions take place [17], and transition points from one 
equilibrium state to another inequivalent one in mechanical systems 1-23]. 

EXAMPLE 1.1. Let X be the Euclidean plane. The equations: 

x = r cos 0, y = r sin 0, f = - k(r - a)cos 0, g = - k(r - a)sin 0, 

describe a Lagrangian submanifold L of T * X  with coordinates (0, r) e S 1 x R. This 
represents the position-force relation for a material point subject to a simple restoring 
force whose centre of attraction is allowed to move freely on the circle x 2 + y2 = a 2. A 
Morse family for L defined on the manifold X x S 1 with coordinates (x, y, 0), is given 
by the following function of potential energy, 

k 
G(x, y, O) = ~ {(x - acosO) 2 + (y - asin 0)2}. 

It is easily seen that the loss of control appears at the critical values of the respective 
Lagrange projection, i.e. EL = {(x, y) = 0}. This point is a very 'unusual' critical point. 
Its counterimage is (rrx o i)- 1(EL) = S 1. Degeneration, or complexity, of this point is 
most interesting because it determines the singular sets for slightly deformed stabilized 
systems, which are more practical models of real open systems. For this sort of 
deformation, say L', we need more real elastic; namely with nonzero length of the 
unstretched elastics and some extra weak elastic joining the material point to the 
point (0, - b )  on the plane X. 

( ~ ,  ~2, k l )  - ,  G'(x, y, O) 

k 
= ~ (((xl  - acosO)  z + (Yl - asinO)2) l/z - e l ) z +  

+(k l /2 ) ( ( (a  cos 0) 2 + (a sin 0 + b)2) 1/2 - -  g2)  2, b > 0. 

In effect, we obtain the three-parameter-(ex, e2, k l ) - family  of Zeeman's machines 
(see [42], [53]) with critical sets illustrated in Figure 1. 

These critical sets or, more precisely, their geometrical form, are not removable by 
small deformations of L (illustrated in Figure 2) and they describe the interesting 
properties of the system. 

To describe the structure of the position of the Lagrangian submanifold L c T * X  
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relative to the nontransversal fibre of T'X, we must introduce the notion of fibered 
equivalence of germs of Lagrangian submanifolds [3]. To avoid inessential rigour, we 
frequently speak about submanifolds instead of their germs. 

DEFINITION 1.2. Let (Lt, P0, (L2, P2) be two germs of Lagrangian submanifolds of 
T*X. They are called equivalent iff there exists a germ of a symplectomorphism 

/ 
/ 

f, 

Fig. 2. 
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(I): (T 'X,  Pl) -'~ (T 'X ,  P2), preserving the fibre structure 7tx: T*X --, X and such that 

tb(Ll) = L2, ¢(Pl) = Pz- 

Let us introduce the Whitney C~°-topology [35] on the space of Lagrange 
immersions i: L - ,  T*X. Then we can say that a Lagrangian submanifold L1 c T*X is 
close to L if the corresponding immersion i1: L 1 --* T*X belongs to some Whitney- 
open neighbourhood of i. 

DEFINITION 1.3. We say that (L, p ) c  T*X is Lagrange stable if, for any close 
Lagrangian submanifold L 1 c T 'X ,  one can find a point Pl~ T 'X ,  close to p, such 
that (LI, P0, (L, p) are equivalent. 

It is shown in [3] (cf. [8]) that Lagrange stability is a generic property for 
n = d imX ~< 5. In this case, there are 16 stable models of Lagrange projections 
including the trivial one. They are given by the following Morse families: 

AI: F(x, 2) = 0, A2: F(x, 2) = 23 '+ 2XI, 

A~3:F{x, ;t) = +_24 + x222 + xlA, 

A4: F(x, 2) = 25 + x323 + x222 + xt2 , 

A~:F(x, 2) = +26 + x424 + x323 + x222 + x12 , 

A6: F(x, 2) = 27 + Xs25 + g,24 + X323 + X222 "-~ XI2 , 

O~,:e(x, ,Z) = ,~ + ,q2~ + x3,~ + x22, + ,q,h,  

D~:F(x, 2) = ___2~ +/~1/~ 2 2t- x423 + x3/~ 2 -+ x2/~ 1 + x1/~2, 

D~:FCx, 4) = __+2~ + ~,2~ + x~2~ + x,2 ~, + ~,~2~ + ~ 2 ,  + ~,2~, 

E~:F(x, 2) = +24 + 213 + xs2~22 + x42~22 + x32~ + x22~ + x~22. 

Their appearance in the respective dimensions is the following: 

d imX = 1; A1, As, 

d imX = 2; A1, A2, A~, 

d i m X = 3 ;  A 1,A 2,A3 ~ , A , , D ~ ,  

d imX = 4; A x, A 2, A~:, A,, D Z, a~ ,  D~, 

d i m X = 5 ;  A~,A2, A ~ , A , , D ~ , A ~ , D  -+5,A6,D~,E +. 

Illustrations of the corresponding critical sets (caustics) for the stable models in R a can 
be found in [8] (cf. also [9]). In general, the situation is much more complicated. There 
appear functional moduli and the normal forms for generic Lagrangian submanifolds 
have only obtained for n ~< 10 [8]. These results are valuable from the point of view of 
applications, so we briefly describe the procedure for obtaining the prenormal forms 
of generic Morse families. 

Let (L, p) ~ T*X be a Lagrangian germ and F: X x R k, 0 ~ R be the germ of a 
corresponding Morse family. Let O~k denote the space of germs of smooth functions at 
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0 taking 0 to 0. A miniversal deformation of f is a function-term G: R"-  t x R k, 0 --+ R, 

/ t - m -  1 

G(u, 4):= f(2) + ~ u,~bi(2) + ~ vi(/)lt_l_m+i(2), (1.2) 
i = 1  i = 1  

where v~ are modal parameters [52]. 
By the versality property of G [13], we have the prenormal form of F. 

T H E O R E M  1.4. Generic Morse families on X x A are symplectically equivalent (i.e. the 
corresponding Lagrangian germs are equivalent) to families of the form 

I t -m-1 
F(x, 4) = f(2) + ~ x,~b,(2) + ~,, ~ki(x)t,b,_~_m+,(2), (1.3) 

i = 1  i = l  

where/~ - m - 1 ~< dim X and (~k l . . . . .  era): R", 0 ~ R ' ,  0 is a generic map-germ when 
restricted to the subspace of modal directions M := {x~R"; x 1 = 0 . . . .  , x~_,._ l = 0}. 

Proof. Let F: Rnx  A, 0 ~ R, 0 be a Morse family germ, f (2) :=  F(0, 2). By the 
theorem on miniversal deformations ([35]), F is induced from the miniversal 
deformation (1.2), i.e. 

F(x, 4) = G o ~(x, 2), 

where - :  R" x A, 0 -+ R"-  ~ x A, 0 is an appropriate pullback. Now we can make a 
generic assumption that E is transversal to M. Thus, by right equivalence in the space 
of map-germs R"×A,  0-~ R ~'-1 ×A, 0, (cf. [35]), which induces a symplectic 
equivalence of the corresponding Lagrangian germs (cf. [16]), we can reduce F to the 
prenormal form (1.3) (see also [8], Section 21). 

EXAMPLE 1.5. In case G is unimodal deformation of singularity we have 

t a - 2  

F(x, 2) =f (2 )  + ~ xit.b,(2) + ~,(x)cb,_,(2). 
i = 1  

The generic function ~ has the following form 

(1) If n - / ~  - 2, then ~Pl is a smooth functional modulus. 
(2) If n>/~ - 2, then ~1 can be reduced by the right equivalence on M to the 

following normal forms 

¢l(x)=x,,-1 or  @,(x) -- ~(xl ,  • - • , X ~ - 2 )  "-1- X#2_ 1 --"~-"" ~ Xn2, 

where ¢:R "-2, 0 + R, 0 is a smooth modulus. 

As an example, we consider the D4-symmetric X9 singularity organizing the caustic 
structure in the catastrophe optics of liquid drop lenses [40]. The miniversal 
(nonsymmetric) deformation of X9; 214 + 2 2 a2122 + 2~, is given by 

2 2 G(u, ).) = ).~ + v12,2 2 + 2~ + u,2, + uz2 z + u3). 2 + u,,2~ + 

+u52122 + u621222 + u72222. 

Thus, the generic Lagrangian germs organized by X 9 do appear in at least of 



28 STANISEAW JANECZKO 

dim X = 7. We have the corresponding Morse family germs: 

+X521,~2 + X621). 2 + X7~.21,~2, 

where ~'1 is a smooth function if d i m X = 7 ,  and ~kl(x)=x8, or f f l (x )=  

¢(xl , . . . ,x7)  + x 2 _  "" + x~, if n > 7. 

Remark 1.6. Singularities of Lagrange projections are also universal in mathema- 

tics itself (cf. [6], [9], [24], [49]). Let us recall now only the simplest examples coming 

from differential geometry. 

(A) Let M be a connected complete Riemannian manifold, let T M  be its tangent 

bundle, and let Zu: T M  --, M be the projection map. The tangent bundle of TM,  

T T M ,  decomposes naturally under the Levi-Civita connection into the direct sum 

H + V of a horizontal subbundle H and a vertical subbundle V. At each point x e TM,  

Vx is the kernel of the tangent mapping TZM: T T M  ~ TM. The horizontal part at x, 
Hx, consists of all vectors which are tangent at x to the curves obtained by parallel 

translation of x along smooth curves in H. Here, H is the kernel of the map which is 

called the connection map (cf. [1]), 

where w is the initial tangent vector to a curve X( t ) •  TM. 
The Riemannian metric # on M gives rise to an isomorphism 0 between T M  and 

T*M. Under this isomorphism, an element x • TpM is mapped to the unique element 
O(x) • T ' M ,  which satisfies O(x)(v) = (x,  v)g for all v • TpM. The canonical symplectic 

structure on T * M  pulls back via this isomorphism to a symplectic form oJ on TM. It 

has the following form 

(O*tou)(v, w) = og(v, w) = (Tzuv,  Kw)o - (Kv,  TzMw)g, 

and is invariant under the geodesic flow. 
For a smooth n-dimensional manifold M, we consider the space F of all smooth 

complete Riemannian metrics on M endowed with the C ~ Whitney topology. For  
each g • F ,  p • M ,  expp: TpM ~ M is the smooth map which assigns to v•  TpM the 

terminal point of the unique geodesic curve 7: [0, 1] ~ M with 7(0) = p, )(0) = v. We 

can write expp as a Lagrangian map, 

expp ----- z M o ~1 

restricted to TpM, where ~,: T M  ~ T M  is the geodesic flow. It was proved (see [49]) 
that there exists a residual subset F' ~ F with the property that for each g • F', the 
family {exp,: T~M ~ M, p~ M} is a generic n-parameter family of Lagrangian maps 

with the above classified singularities. 

(B) The Gauss map f :  M -~ S ~, d imM = n, o f a  submanifold M c R "+~, is defined by 
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the conormal bundle to M in T*R "+1 and forms the constrained Lagrangian 
submanifold (cf. [26]). As the standard result, one obtains (cf. [49]) that the Gauss 
map and the exponential map have generically the same types of singularities as the 
classified singularities of Lagrange projections. 

2. Caustics, Bicaustics, and Quasicaustics. Singular Systems of Rays 

2.1. BICAUSTICS 

We define the caustic of a Lagrangian map nxlL: L --* X ,  rex: T * X  --, X ,  to be the set, 
EL, of its critical values. In applications of singularity theory to the time evolution of 
potential systems, e.g. the evolution of noninteracting particles in a potential field, we 
need the classification of possible evolutions of caustics. The problem was sub- 
stantially solved in [7]. We show here its use in symplectic bifurcation theory. 

Let H: T * X  --, R be a time-function on the phase space, i.e. H(p, q) = t, for which 0 
is not a critical value. For each co-isotropic hypersurface H - 1 ( 0  c T * X  we have a 
natural projection along characteristics, 

~ , : n - l ( t )  ~ H-l( t) / , ,~,  = M ~- T * Y  (locally), 

onto the reduced symplectic manifold which has the local form T * Y  Let L be a 
Lagrangian submanifold in T * X .  Its caustic, called the 'big caustic' is useful for 
characterizing generic one-parameter families of caustics. We define the correspond- 
ing one-parameter family of Lagrangian submanifolds in T* Y 

L, := H -  1(0). 

E'Lt will denote the singular set of the caustic ELt - called also the virtual caustic at 
time t. We consider the set Y:L = Ut~r (E'L,, t) = Y × I 

DEFINITION 2.1.1. The image of the set E'L, by the natural projection on the first 
factor nl: Y x I ~ Y is called the bicaustic corresponding to L. 

The bicaustic in Y is the set of all singularities of virtual caustics moving in Y. We 
see that if the caustic of an initial ('big') L has a singularity of type Ak + 1 in R k then the 
generic bicaustic has a singularity of type A k in R k- 1. The normal forms of bicaustics 
(and evolving virtual caustics) are classified in [7] for Y ~ R 2, and Y - R 3 

PROPOSITION 2.1.2. In the oeneral position, there is the followino correspondence 

between the caustics of 'big '  Lagranoian submanifolds L and their bicaustics: 

The plane: 

E L  = A 3 ,  

EL = A , ,  

Z L  = D4,  
= 

bicaustic: {u = 0}, 

bicaustic: {u 3 - v 2 = 0}, 

b i c a u s t i c :  {u 3 + ao2u  2 + i) 6 -~ 0}, 

bicaustic: {u = 0}. 



30 

The three-space: 

E L  = A3, 

E L  = A , ,  

EL  = As,  

E L  = D j,, 

~ L  = D~,  

STANISLAW JANECZKO 

bicaustics: {u2w - v 2 = 0} (Whitney's cross cap, Fig. 3a), {u = 0}, 

bicaustics: {u 2 - v ~ = 0}, {u 2 - yaw z = 0} (Fig. 3b), 

bicaustic: A 4, 

bicaustics: {w(w - v2)(w - (a + u)v 2) = 0}, 
{w(w - v2)(w -- (a +_ u2)v 2) = 0}, a e R ,  

bicaustic: {w = 0} 

Particular cases of caustics are the caustics of geometrical optics. These are the 
envelopes of families of optical rays, i.e. geodesics, in X. Let X be endowed with a 
Riemannian metric 0. Optical rays on X are defined by the geodesic flow of g on 
( T ' X ,  COx) [1]. Xg is a Hamiltonian vector field with energy function Hg: T * X - - ,  R, 

Hg(p) = ½ ( P , P ) v  where ( ' , ' )g  is an inner product induced by g, so that 
Ogx(Xg," ) = - d H g ( ' ) .  The optical caustics are singled out by the fact that the 
corresponding Lagrangian manifold, built by the rays, lies in the hypersurface of the 
phase space defined by the eikonal equation ( p , p ) g  = 1. The classification lists of 
stable caustics are the same as the lists of optical caustics. The only differences start 
when considering the evolutions of caustics (see [40]). The global invariants and 
obstacles in appearing of some generic caustic evolutions as the optical ones was 
established by Chekanov [14]. 

2.2. QUASICAUSTICS 

Structurally new caustics appear in optical diffraction through apertures and around 

a) 

b) 

Fig. 3. 
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smooth obstacles [30]. These are caustics generated by the singular Lagrangian 
varieties first introduced by Pham [41]. Let g be the Euclidean metric on X = R 3. The 

associated phase space of rays (M, to) is given by the symplectic reduction 
nu: H-1(0)- - ,  M ~- T*S  2, where H-1(0) is the zero level set of the Hamiltonian 
H: T * X  - ,  R, H(p, q) = 2!(11Pll 2 _ 1). If we have a system of rays in X, we can look at it 
as a Lagrangian subvariety L of M. By taking its image under the symplectic relation 
graph nu c (Mx  T * X ; n * t o x - n ' t o )  [1], we obtain the Lagrangian subvariety 
graph nu(L)  of T * X  (cf. [-26]). 

Consider now geometric diffraction due to a half-plane aperture [28]. Let 
{(x, y, z):z  = dp(x, y)} (with ~b normalized so that ~(0) = 0, D~b(0) = 0) be the initial 
wavefront in the presence of the aperture {(a, b, c); a/> 0, c = m b  - 1}, where m i> 0 
and (a, b) e R 2 parametrize the aperture. Let (a, b, x, y, u, v, w) - ,  F( a, b, x, y, u, v, w) be 
the optical distance function from the wavefront. 

It is a function on a manifold with boundary {(a, b, x, y); a = 0} parametrized by 
(u, v, w). One can write it explicitly here: 

F(a, b, x, y, u, v, w) 

= ( (x -  a) 2 + ( y - b )  2 + (t~(x, y ) - m b +  1)2) 1/2 + 

+((u - a) 2 + (v - b) 2 + (w - m b +  1)2) 1/2. 

The stationary condition leads to m 2 u  2 + / ) 2 ( m 2  - -  1) - -  2my(1 + w) -- 0 and 
v + m(1 + w) ~< 0. These conditions define a half-cone of diffracted rays (Figure 4) 
[30]. The Lagrangian variety L of rays diffracted on this aperture is a union of 
two Lagrangian submanifolds; L = L 1 u L 2. L 1 is generated by F where a, b, x, y 
are the Morse parameters (cf. [28]) restricted to a > 0. L 2 is generated by 

incident ray 

~ e d g e  

diffracted rays 

Fig. 4. 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
aperture 
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if(b, x, y, u, v, w) := F(0, b, x, y, u, v, w) where b, x, y are the Morse parameters. Besides 
the ordinary caustic provide by the projections of L1 and L2, there is a caustic defined 
by the projection of intersection set nx(L t n L2). 

DEFINITION 2.2.1. Let F: R x R n × X, 0 ~ R, (y, x, a) ~ F(y, x, a) be the family 
of function germs on hypersurface boundary S = {y = 0}. Then the set QF = 

nx(L 1 c~ L2) defined by 

QF = {a~X; F(', a) has a critical point on S} 

is called the quasicaustic of F. 
Thus, caustics formed from the diffraction from simple apertures are determined by 

the singularities of functions on smooth boundaries classified in 18-1. Their miniversal 

unfoldings are 

~t-1 
Ar: + Y + x~+ ' + ~ ai xi, ~ >~1, 

i=1 

# - 1  
Bu: + f '  +_ x2 + ~ a~y ~-i, Iz >~ 2, 

i= l  

iz-1 
C~: yx +__ x ~ + ~ aix ~-i, #>12, 

i=1 
i t -2  

D~: + y + x ~ x  2+__x~ -1 + ~ a , x~+a u _ lx l ,  la>14, 
i=1 

/~6: -t-y + x~ +__ x~ + alx~ + a2x2 + aax~ + a4x~x2 + asxlx~, 

/~7: -by + x 3 + xlx3~ + axxl + a2x2 + aax~ + 

+a4x1x2 + asx 3 + a6 X4, 

/~8: -bY + X3 -4- x 5 + a lx  I -4- a2x 2 + a3 X2 + a 4 x l x 2 +  

+as x3 + a6xtx2~ + aTX1X3, 

F4: + y2 + x 3 + a2y + a3 x + alxy" 

By the straightforward computations we obtain the following result, 

PROPOSITION 2.2.2. The quasicaustics for simple boundary singularities are 

B~:Q~ = {aeC"- l ;  a ,_ l  = 0}, 

C,:QF = {aeC"  ~; a~-i  = 0}, 

F4:Qr = {a~C3; aZ2 + ~ala = 0} (Whitney's cross-cap). 

We see that the only stable singular quasicaustic for a half-plane aperture in R 3 is 
Whitney's cross-cap. It appears generically when the curve of rays passing through the 
edge of an aperture on the incident wave front is tangent to a constant curvature line 

on the wave front (cf. [43]). 
Investigation of quasicaustics in the presence of system of apertures reduces the 



SINGULARITIES OF LAGRANGIAN VARIETIES 33 

problem to the classification of singularities of functions on manifolds with corners 
and on singular varieties [11], [44]. As an example, we can consider the quasicaustic 
generated by the versal unfolding 

F(y ,x ,a )  = +_y2 +_ y2 _t_ X2 ..~ aly lY2 + a2Yl + aaY2 

on the corner {YI = Y2 = 0},  which is illustrated in Figure 5. 

2.3. SINGULAR SYSTEMS OF RAYS 

A new area of investigation in the formation of caustics by diffraction around smooth 
obstacles was invented by Arnold [4] (cf. [30]). Consider an open subset S of an 
obstacle surface in R 3. Denote by ll the initial tangent line to a geodesic segment ), on 
S (incident ray belonging to M). Let 12 be another tangent line to S. We say that 12 is 
subordinate to 11 with respect to an obstacle S if 12 (or a piece in (R 3, S)) belongs to the 
geodesic segment with initial point and tangent vector V (see [2]). The set 

A = {(/, r ) ~ ;  ris subordinate to I with respect to S} 

where 

A c ~ = (M x ffl, ~o O og), 

and where M = M, M, M are the symplectic spaces of lines in R 3. A is a Lagrangian 
subvariety of ~ defining the diffraction process around the obstacle S. If L is a 
Lagrangian subvariety of the space of incident rays M, then the outgoing diffracted 
rays form the Lagrangian subvariety of M. They are given by the image A(L) = {r~ ffl: 
there exists l e M  such that (l, r)eA}. 

Fig. 5. 
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For the generic pairs (A, L) we have the following result (see Theorem 10 in [43]) 
concerning the classification of stable images A(L) and their corresponding generating 

families. 

P R O P O S I T I O N  2.3.1. (A). For a generic obstacle curve in the plane, the only possible 
generic images by diffraction A(L) are given by the following normal forms of generating 
families 

A2: F1(2, ql, q2) = - ~ 23 + q22 - ½q122 (obstacle curve-parabole). 

n3: F2().1, )-2, q,, q2) 1-96).15 - )-2).~ 1 2 1 2 = "[- ]).2).1 "~- q2).2 -- ]ql).2 

(obstacle curve with an inflection point). 

A2.2: F3()., ql, q2) = ½2[).1 + q22 - ½ql). 2 

(obstacle curve with a double tangent). 

(B) Let S be a generic obstacle-surface in R 3. Let the pair (A, L) be defined in a 
sufficiently small neighbourhood of a point on S. Then generically, the symplectic images 
A(L) have the following generating families: 

-=1: F = ql, 

~'~2: F = ~).5 + 2ql).3 -I- q2)., 

~a :F  = (t 3 + ql t  + q2)2 dt, 

A2: F = 13 + q12, 

= :2~ + :).22~ + + Aa:F 1 5 2 a 21). ~ q:).~ + q2).2, 

A4: F = ().2 + t3 + qlt + q2) 2 dt + q3).2, 

~ 3 : F  = ).4 + ql).2 + q2)., 

/ i 4 :F  = 25 + qx 23 + q2). 2 + q3~., 

= :2~ + :).~(q1':2 + q2) + ).~(q~).2 + q2) 2 + ;:32 + q322. H4:F x 5 2 3 

Remark 2.3.2. These families describe the strata of ordinary universal unfoldings 

with odd multiple singularities (see [43]). 

3. Invariant Lagrangian Submanifolds and Classification 
of Symmetric Caustics 

In the study of the wave pattern of high-frequency waves coming from a source and 
moving through the medium, the corresponding intensity of radiation is described by 
the asymptotics of the rapidly oscillating integrals [16], [43]. Asymptotically, as the 
frequency becomes infinite this intensity becomes infinite around the singularities of 
the Lagrange projections generated by the phase functions. If the source, as well as the 
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boundary conditions (mirrors), exhibit symmetry properties, then the corresponding 
Lagrangian submanifolds describing the optical geometry of the system [28] possess 
these same symmetry properties. In fact, they are invariant with respect to the 
prescribed symplectic action of the compact Lie group G, defining the symmetry. 

Let X be a smooth manifold with a smooth action of the compact Lie group G. This 
action extends to an action on the cotangent bundle T * X  which leaves the natural 
symplectic form invariant. If L is a G-invariant Lagrangian submanifold of T ' X ,  then 
the Lagrange projection rCXlL: L ~ X  is G-equivariant and its discriminant, the caustic 
CL of L, is a G-invariant subvariety of X. These symmetric discriminants determine 
the local bifurcation diagrams in the breaking of symmetry and structural phase 
transitions [21], [25]. In this section, we give a brief description of the theory of 
classification of G-invariant Lagrangian submanifolds. We use the theory to obtain 
new symmetric caustics. 

We are interested in local properties of L so we may identify the manifold X with 
V = R", and assume that the action of G on (V, 0) is linear and orthogonal. We identify 
T * V  with V ~ V*. The orthogonality of the action of G on V implies that V* is 
isomorphic to V, as a G-space. If ( L , 0 ) c  (T'V, 0) is a G-invariant Lagrangian 
submanifold germ and nL:(L, 0)~(V,  0) its associated G-invariant Lagrange pro- 
jection then Ker DrrL(0 ) = ToL n V* is a G-invariant subspace of V* which we denote 
by W*. We see that we can identify V with W ~ ) W  ±. Let ql . . . . .  qk denote the 
coordinates for W, qk+l . . . .  , q,, for W ±, P l , . . . ,  Pg for W* and Pk+x . . . . .  p, for (W*) ±. 
Thus, we have (see [25]) that there exists a smooth G-invariant function germ 
F: A 0) V ~ R, F(21 . . . .  ,2k, q l , " ' ,  q,), the Morse family generating L. The Morse 
parameter space A is W. 

D E F I N I T I O N  3.1. We say that two G-invariant Lagrangian submanifold germs 
(Li, 0) = (T'V, 0), (j = 1, 2) are symplectically equivalent if there exist germs of a G- 
equivariant symplectomorphism O:(T*V,0)--.(T*V,0) and a G-equivariant dif- 
feomorphism ~: (V, 0) ~ (V, 0) such that 

nv o ¢p = ~ o nv and ~(L1) ~ L 2. 

For classification of local models of (L, 0), we need to reformulate symplectic 
equivalence in terms of generating Morse families; two G-invariant Morse families 
Fj : (A@ V,0 )~R ,  (j = 1,2) generate symplectically equivalent Lagrangian sub- 
manifolds if and only if there is a G-equivariant diffeomorphism germ 
~:  (A ~ V, 0) --, (A ~ V, 0), a G-equivariant diffeomorphism germ ~,: (V, 0) - (V, 0) and 
a G-invariant function germ ~t: (V, 0 ) ~  R such that 

~ 2 o k I  -/ = ~/ o ~ 2 ,  

and 

FI(,~, q) -- F2(tP(~, q)) + a(q), 

where zc2: A ~ V -~ V is the natural projection. 
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Infinitesimal Lagrange stability for invariant Morse families is defined in the usual 
way. Let 8~,~ (respectively ¢~) denote the ring of germs of G-invariant smooth 
functions on A ~) V (respectively, V). Let {~t 1 . . . . .  at,} denote a generating set for the 
8~.q-module ®~ consisting of germs of G-equivariant vector fields along the 
projection ~: A t~ V ~ A. Let {ill . . . . .  fls} denote a generating set for the 8~-module, 
®~, of germs of G-equivariant vector fields on (V,0). For any G-invariant function 
germ F: (A ~) V, 0) ~ R we define the tangent space (cf. [35]), 

To(F ) = gf , ,{atF . . . . .  a,F} + ~ { f l l  F . . . . .  ris E, 1} 

We denote the group of equivariant equivalences by ~ .  Then To(F) is the tangent 
space to the ~ +  orbit of F. As in the standard singularity theory, we say that a G- 
invariant function germ F:(A ~ V,0)~ R is infinitesimally stable ( ~ - s t a b l e )  if 

To(F ) = 8~,~. 
Our approach to symplectic equivalence in the symmetric case is a generalization of 

the nonequivariant theory of Arnold and Zakalyukin [3], [52]. To specify the 
classification problem, we need to have the specified action of the group G. We 
consider corank 1 Lagrange projections from Z2-invariant Lagrangian submanifolds 
of T 'R" ,  where Z 2 acts on V = R" by 

(xl  . . . . .  xr, y l  . . . . .  y s ) - ' + ( - x l  . . . . .  - x , ,  y~ . . . . .  y~), n = r  + s. 

In this ease, we have the following result (see [29]) 

PROPOSITION 3.2. 

(a) I f  r >>. s then generic Z2-invariant Morse families are infinitesimally stable and are 

equivalent to the following families: 

k k 

~2(k+1) + E yj~2j -F E xJ 22j-1, k <% s. 
j = l  j = l  

(b) I f  s >>. r = 1 then the infinitesimally stable Morse families are equivalent to the 

following families: 

k k - 1  

j = l  j = l  

k ~<½(s + 1); crieR. 

(c) I f  r = 2, s < 5 then the infinitesimally stable Morse families are equivalent to the 
families in (a) with k <<. 2. I f  r = 2, s = 5 then in addition to these, there are 

families equivalent to one of 

3 

28 + ~ yj22j -F {(c( t + y4)xl  + (or 2 --I- ys)x2}25 + x2~, 3 -b x12, 
j= l  

~tl~ ~2 ~ R,  

3 
28 -1- E yj,~2j d- {(0( 1 "[- 24)3(:1 + ysX2}/~ 3 + X2J- 5 -k- XI,~,, ~ I ~ R .  

j=l  
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(d) I f  n ~ 7 then the infinitesimally stable Morse families are equivalent to the families 
listed in (a), (b) and (c). 

PROPOSITION 3.3. (A) I f  n = 3, r = 1 we have an extra two corank 2 infinitesimally 
stable Z2-invariant Morse families 

D4~: F(21, ,~2, xl, yt, Y2) = +).~,~2 + 223 + Y~)~22 + x~21 + y2,~2, 

representing the symmetric umbilics, where Z 2 acts on A in the following way: 

(;~1, 2~) -o ( -  21, ,~2). 

(B) I f  n = 3, and G = Z 2 0 Z E a c t s i n  V by 

(x~, x2, y~) "0 ( - x l ,  x2, y~), (xl, x2, y~) --' (xl, - x2 ,  y~) 

then we obtain only two stable G-invariant Morse families: 

As: F(2, Xl, X2, Yl) = )3 + "]'Yl, 2 --* 2, 

Aa: F(~.,xl, x2, y l ) =  _+,~4+22yl + x 1 2 ,  2- -*- -2 ,  

One can easily see that any extension of the list of Propositions 3.2 and 3.3, provides 
the functional moduli in the normal forms of Morse families. As far as we are 
interested in the structure of symmetric caustics, it is natural to introduce weaker 
equivalence, namely caustic equivalence [15], [29]. 

DEFINITION 3.4. Two G-invariant Morse families Fj: (A @ V, 0) ~ R, (j = 1, 2) are 
caustic equivalent if the following conditions hold. 

(i) There exists a representation of G in U, a G-invariant Morse family 
.~-: A @ U ~ R and G-invariant map germs ~bj: (V, 0) ~ (U, 0) such that Fj(2, q) is 
~+-equivalent to ~(2,  c~j(q)). 

(ii) There exists a pair of G-equivariant diffeomorphism germs (H,h) with 
H: (V × U, 0) ~ (V x U, 0) and h: (V, 0) -~ (V, 0) satisfying the following conditions 

(a) H(q, y) = (h(q), H(q, y)) where/~: V x U -~ U satisfies/-t(q, 0) = 0, 
(b) H(V x C.~) __q V x C:~, 
(c) H(q, ~(q)) = (h(q), ~2(h(q))), 

where C~ is a caustic of ~'.  

Using this equivalence relation it is possible to reduce the functional modulus in the 
generic Morse family 

.~6 + y2.~4 + y1.~2 + t~(X 2, Yl, y2)X1 '~3 -~- X12, 

in the case s = 2, r = 1, and obtain a new symmetric caustic in R 3, which we call the 
'symmetric butterfly'. For the caustic equivalence, the list of Morse families of generic 
corank 1, Z2-invariant caustics in R" when n ~< 6 is given in [29] and [Janeczko, S., 
Roberts, M., Classification of symmetric caustics II; Caustic equivalence, Warwick 
Preprints: 43/1991]. Using that list we can prove the following result in R 4. 

PROPOSITION 3.5. I f  n = 4 then the generic corank 1, Z2-invariant caustics are 
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infinitesimally stable and are caustic equivalent to ones given by the following Morse 

families 

r =  1, s =  3: 

AI: 22 + x12, 

A3: 24 + yl)~ 2 + X12, 

a~: 26 + yl). 2 + y22" + xl~., 

A~: )s q_ y122 at. y2~4 q_ y326 + Xl).- 

r = 2 ,  s = 2 :  

/15: 26 q-yrS. 2 +yz,~ff +X223 q-X12. 

COROLLARY 3.6. All generic Z2-invariant caustics in R 5 are illustrated in Figure 6. 

The first step in classification of generic evolutions of caustics is to find out the 
corresponding bicaustics traced out by the singular edges of virtual caustics. 

PROPOSITION 3.7. All generic Z2-invariant bicaustics in R 2 and their virtual caustic 

evolutions are illustrated in Figure 7. 

PROPOSITION 3.8. Generic Z2-invariant bicaustics in R 3 and their virtual caustic 

evolutions corresponding to 

(a) A 3, A 5, D~ are the symmetric versions of the caustic evolutions illustrated in [7], 
(Figs. 5 and 6, Table 1.2.3), excluding the Whitney's cross-cap bicaustic, 

(b) A~ are illustrated in Figure 8, 
(c) the family of intersections of 'big' caustic A~7 are illustrated in Figure 9. 

4. Tensor Invariants and Invariant Symplectic Geometry of Binary Forms 

To obtain the previous results on bicaustics and wave-front singularities, one must use 
the information on the space of polynomials [7], [18]. It was shown in [6] that the 
interesting singularity of wave-front evolution around an obstacle in 3-space is 
diffeomorphic to the Lagrangian subvariety of the discriminant variety of the 4-space 
of polynomials {x 5 + Ax 3 + Bx 2 + Cx + D). The natural symplectic structure of this 
space is given by reducing the unique SL2(R)-invariant symplectic structure on the 
space of all 5th degree polynomials. This structure, in turn, is given by a unique tensor 
invariant of degree two on the space of binary forms of odd degree. In this section, we 
show how to prove these facts and some other results concerning symplectic geometry 

of binary forms. 
Let M n ÷ 1 be the space of binary forms of degree n, i.e. in coordinates x, y we have 

Let us consider the standard action v of GL2(K) on M" ÷ 1 (cf. [31]). A nonconstant 
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polynomial I ~ K[ao . . . .  , a., x, y] is said to be a covariant of index g of binary forms of 
degree n if for all h e GL2(K), we have 

~' I = (det h)gI, (4.2) 

where ~ is the canonical extension of v to M "÷ 1 × K 2. A polynomial function I defined 
only on M" ÷ ~ and invariant with respect to v(g = 0), is said to be an invariant of 

binary forms. We assume that the coefficients of f belong to a field K of characteristic 
zero and the action v of GLz(K) is induced by the following transformations of 
variables x and y: 

X ~--- CllX + c12Y, y -~- C21X "[- C22 ~ (4.3) 

An effective method for indicating the polynomial covariants of binary forms is 
provided by the umbral calculus (see [31]) whose basic properties we now recall. 

Let P = {~t, f l , . . . ,  o9, u} be an alphabet consisting of an infinite (or finite) supply of 
Greek letters followed by the single Roman letter u. To each Greek letter, say ~t, and 
the Roman letter u, we associate two variables ct 1, ~t 2, and u~, Uz, respectively. The ring 



SINGULARITIES OF LAGRANGIAN VARIETIES 

\ 

\ 

I 

t / 

Fig. 9. 

43 

of polynomials in these variables is a vector space called the standard umbral space ~/. 
With every space of binary forms we associate a linear operator, say U( f )  (also 

denoted by U), U(f): ~//~ K[ao . . . . .  a , , x , y] .  U ( f )  is defined by linearity on the 
corresponding monomials of ~ = K[cq, ct2 . . . . .  ul, u2]; 

(U(f)lotkct"2 - k )  ak, (U( f ) l  a k = ~qCt2) = 0, i f j + k ~ n ,  

( U ( f )  I u k ) = ( - y)k, ( U ( f )  I uk2 ) = (x) k, 
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and by the multiplicative rule 

(U(f )  I ~ t ~  .-. u~u~) = (U(f )  I ~ctJ2) -.. ( U ( f )  lu~)(U(f ) luq2) .  

Every polynomial I(ao . . . . .  a,, x, y) can be written as ( U ( f )  l Q(Otl, or2 . . . . .  ul, u2)) for 
some polynomial Q e q/. The ~-action of GL2(K) implies the corresponding action of 
GL2(K) on the umbral space 0//. Let (co) be defined as in (4.3). Then the corresponding 
change of umbral variables, say for some Greek letter ~t, is defined as follows 

ct I = [~ c], at 2 = [~ d], 

where 

= (~1' ~2), C = ( - -C21 , C l l ) '  d = (-c22, c12) 

and the bracket [v w] = VlW2 - V2Wl, for two vectors v = (vl, v2), w = (Wl, w2). So we 
easily have the following explicit expression for the representation v, 

~k = (U(f )  l [~t c]k[o: d] "-k) 

m=0 "11C12 C21 C22 ;am- 
\ i = r a - n + k  i m - -  i 

We see that the bracket monomials, say [at, /3], [0t u], etc., represent covariants of 
index 1, thus we can consider, in the umbral space q/, the subspace of bracket 
polynomials defined as the linear combinations of bracket monomials, and obtain the 
following result: 

(A) The umbral evaluation (U I P)  of a bracket polynomial P, for which in every 
bracket monomial the number of brackets containing only Greek letters is constant 
and equal to g ~ N, is a covariant of index g. 

(B) Let I be a covariant of index g of binary forms of degree n. Then there exists a 
bracket polynomial P of index g such that I = (UI P). 

Now we apply the umbral approach to classify the tensor invariants of binary 
forms. By q/,(,t) we denote the subspace of q/(ot) of all homogeneous polynomials of 
degree n. By D.(,t) we denote the vector space of all differential 1-forms: 
al(ct)dOtl + a2(ot)dot2, al, a2E~d,_l(~t). Let E,(ct)c D,(~) be the subspace of exact 

{d(~qct2 )}~=0. Let K,(~t) denotes the differential 1-forms. E,(*t) is generated by k ,-k , 
subspace of D,(at) generated by { ~ - , - 2 [ ~  d~l~"-2JS,:o- We denote by # the induced 
action of GL2(K) on D,(~). Thus, there exists a GL2(K)-invariant decomposition 
D,(ot) = E,(~) ~ K,(ct) with irreducible action of p on each component. Now we can 
define the umbral operator U* into the space of 1-forms on the space of binary forms 
M "+1. Let U ' =  U[,.(~). We define an operator tY on E,(ct) satisfying condition 
d o U' = t7 o d and given on the basis elements; 

(UId(ctk0t)-k)) = dak, k = 0 . . . . .  n 
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D E F I N I T I O N  4.1. The linear operator 

U* := 8 o P: D.(~t) ~ (M"+ x) *, 

where P is a linear projection P: E.(~t) @ K.(~) ~ E.(~t), Ker P = K.(~t), is called the 
elementary umbral operator onto differential 1-forms on M "+~. It is GL2(K)- 
equivariant linear operator. 

By the extension of U* to the tensor product of p factors, say W.,p 
= D.(ct) ® . . .  ® O.(fl), we obtain the umbral operator for representation of tensor 
invariants of binary forms of degree p 

U~ ..... p):D.(~t) ® ... ® D.(/3) ~ @P(M n+l) 

(u~,....,p~ I Wl(~) ® ... ® w,,(/3)) = (u,* I wl(~)) ® . . .  ® (U~lw~,(fl)). 

We call q E W.,p the bracket polynomial if it can be written as a linear combination of 

products (monomials) of brackets [~t fl] = ~qfl2 - ot2fll, let dff] = ~q dfl2 - ~t2 dfll, 
[dct ® dfl] = d~q ® dfl2 - d~t2 ® dflr  The space of bracket polynomials is denoted by 
B., r The index ofq E B.,p is the number of brackets in q. Now we immediately have the 
following proposition. 

P R O P O S I T I O N  4.2. (A) Let dp be the bracket polynomial of index g. Then the umbral 
~t evaluation of dp, (U(~,....p)[ ~b) is an invariant of index g. 

(B) Let Q be a tensor invariant of index g and degree p for binary forms of degree n. 
Then there exists a bracket polynomial dp of index g such that Q = * (U~,...,p)l c~), Now 
we give the complete classification of the tensor invariants of deoree two, p = 2. In fact, 
we have that Bn. 2 is generated by two elements 

vl = [~t fl]"-l[d~t ® dfl], v2 = [ct /3],-2[~ d~] ® [/3 d/3], 

also we can easily check that v2 e Ker U'p,  so dim Im(U*pllB..2) = 1. By straightforward 

calculation we obtain Proposition 4.3. 

P R O P O S I T I O N  4.3. All tensor invariants of degree two on the space of binary forms 
of degree n are proportional to the following basic invariant: 

Q = ~ ( -1 ) J+ l ( ( -1 ) "da j+ l  ® d a . _ j _  x + da , - j -1  ®daj+l) ,  
j=0 j 

COROLLARY 4.4. (A) I f  n is even, then there exists only one, up to constant multiples, 
SL2(K)-invariant symplectic structure on M ~ + 1, which in coordinates 

n! n! 
qr = ~ a . _ , ,  p, - ( -  1) ~-" : ~ r  " - - - w ( n  -- a .  r = 0  . . . . .  k +  1 , ( n = 2 k + 3 )  
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on M "+ 1, can be written in the Darboux form 

k+l  
o9= ~ dpj A dqi 

j=0  

and the elements of M "+1 in these coordinates have the followino form: 

x2k+3 xk+2y k+l x k + l y  k+2 

f (x ,  y) = qo (2k + 3)-----~ + "'" + qk+l (k + 2)! Pk+x (k + 1)! + 

+(-- 1)k+ 2poy2k+ 3. 

(B) In a similar way, we obtain the SL2(K)-invariant 1-form on M ~+1 (cf [10]), 

namely 

k+l  
0 = ~, ( p j d q j - q j d p j )  

j=0  

and the canonical contact structure 

k+l  
= ~ (pj dqj - qj dpj) - dpo 

j = l  

on the space of polynomials (cf. [4]) 

X2k+ 3 x2k+2 X k+2 X k+l } 
(2k + 3)! + q l ( 2 k + 2 ) ~ + ' " + q k + l ( k + 2 )  ! Pk+~(k+l )  - - - - ~ . + ' ' ' + ( - 1 ) k + 2 p °  " 

SLz(K ) acts symplectically on (M "+ 1, o9). Thus, we find the momen tum mapping of 

this action as the Ad*-equivariant  quadratic momen tum mapping (cf. [1]). It can be 

written as 

J: M "+' ~ slz(K)*; J(~) = (H+, H_ ,  nn)(~), 

where 

k+l  
1 2 

n + ( p ) =  ~', Prqr-x + ]qk+l, 
r = l  

k 
H_(~)  = ~ (2k + 3 - r)(r + 1)p, qr +1 - ½(k + 1)2p2+ 1, 

r=0 

k+ l  
Ha(p) = ~ (2r - 2k - 3)p, qr, 

r=O 

and {H+, H_}  = Hd. 
Let  (M, co) be a symplectic manifold. The new symplectic structures associated to 

(M, og) are provided by co-isotropic submanifolds in M (cf. [1]). We recall that  a 

submanifold C _ M is co-isotropic if at each x ~ C we have 

(T:,C) <> = {v~TxM; (v ^ u, co) = O, for every u~TxC} ~- T,,C. 

The distribution UxEc(T,,C) 0 is the characteristic distribution of oglc- Let B be the 
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space of characteristics of it and p: C ~ B be its canonical projection. It is known (cf. 
[1]) that if B admits a differentiable structure and p is a submersion, then there is a 
unique symplectic structure fl on B such that p*fl = tolc. The symplectic manifold 
(B,/7) associated in this way with the triplet (M, to,C) is called the reduced symplectic 
manifold. 

Let us consider two binary forms, f (x ,  y), g(x, y), where f is of degree n and O is of 
degree m, m ~< n. They can be written umbrally 

f = <U[ [~t u]n>, g = ( U l [ f l  u]m>. 

Their apolar covariant < f  I g> is the binary form of degree n - m defined umbrally by 

< f i g >  = <Uf[a  f l] ' [~ u]"-">. 

The apolar covariant < f  I f >  is an invariant for the binary forms of degree n. It can be 
expressed by 

1 •kf ~ . - k f  ( : )  ( f l f ) = ~ !  (- i )"  ~ (-1) k Ox._k - ~ (-1) "-k aka,,_ k. 
k=O ~X k k=O 

Let (M "÷ 1, to) be the symplectic space of binary forms. The canonical subspaces in 
M n÷~, say C °}, 0 ~< l ~< (n - 1)/2 of all binary forms apolar to its/-derivatives with 
respect to x are called the canonical apolar subspaces. It is easy to see that the apolar 
subspaces C °~ form the coisotropic variaties in (M "+ ~, to). They are described by the 
following systems of I + 1 equations: 

o O ao , (: O a, a.-,=O, 

0 a~al - 1 a~-la2 + "'" + alan-t+l = 0, 

= a,,a, - 1 a " - l a l + l  + "'" -t- aia,, = O, 

Now we pay more attention to the particular case; let l = 1, then the second apolar 
coisotropic variety C {1} can be expressed as follows: 

= { f  ~ M.+ l; ( f  I f 'x) = n(P~ol}Y + P~l~x) C.)  

=(--1)k+l l ( y H a +  2 x H + ) - - O } ,  

where {H+, Ha} = H+. To the space of binary forms of degree n, one can easily 
associate the corresponding spaces of polynomials of one variable putting y = 1. In 
order to have the polynomial symplectic spaces adapted to the investigations of 
singularities in the variational obstacle problem (see [6], [43]), we associate to every 
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symplectic space (M"+l,o~) the canonically reduced symplectic space Q, - I  of 
polynomials of degree n - 1. Q"-1 = Co/~,  where ' ~ '  is given by the characteristic 
fibration of the co-isotropie submanifold Co = { f e  M "+ 1; n!a, = I}. Q"- 1 is identified 
canonically with the space of derivatives d/dx( f (x ,  1)), f e M "+ ~ belonging to Co, 
namely 

x2k+2 x 2 k  + 1 x k  + l 

Q"-loq~(x) - ( 2 k  + 2)------~ + ql (2k + 1)-----~ + "'" + q~,+l (k + 1)! 

X k 
- Pk+l ~ + "'" + (-- 1)k+XPl. 

endowed with the reduced symplectic structure 

k+l  
co' = ~ dpj ^ dq~. 

j = l  

One can easily find that the apolar subspaces C (t) induce the corresponding co- 
isotropic subspaces of (Q"- 1, 09% say 

n - l )  ~(o, / = 1 , . . . , - - - ~  , 

described by 

Ca)= {q~sQ"- l ;P~' ) (q ,p)=O,s= 1 . . . . .  l}, l =  1 . . . . .  k +  1, 

where 

( - -1)kk-~+l(n-- l~(n~ -1 
P~')(q'P)- -n ~. i~=1 \ i : \ i /  qlPi+ 

,,+1 ( )  ~ (_1)  i n - l  i ! ( n _ s _ i ) ! q i q . _ ~ _ i  + 
+ (n!) 2 i=k-s+2 i 

(- 1) k ( ) _ _ n  - 1 1,k_s(n-s ), + , x~. i!(n s i)!p,_iq,_~_ i + ( -  ) ~ -p,. 
(n!) 2 i--~+2 i 

Now we investigate the properties of the symplectic space induced by the co-isotropic 
submanifold ~tl) in (Q"- 1, co'), n = 2k + 3. The reduced symplectic space correspond- 
ing to the triplet (Q"- 1, co', ~(11) (see, e.g., 14]) is identified with the following space of 
polynomials 

X2k+ 1 X2k-1 X k X k - 1  

Z = (i2-~- ~ ~)! + ql (2k - 1)t 4- ... + qk ~ -- Pk (k -- 1)! _ _ +  ... + ( - 1 ) k p l t ,  

k endowed with the reduced symplectic structure & = ~ = 1 dp~ ^ dqi. As a polynomial 
parametrisation of the characteristics of t~ tl~, described by Z, we can write the 
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following identification 

(x - tV (x - t) 
+~/a - -  + "'" + q k - 1  - -  

(2k + 1)! (2k)! 

--Pk+l (x -- t) k-1 + ... + (_  1)k~ 2 
( k -  1)! 

(x - t) k 

k! 

x 2 k  + l x 2 k -  1 X k X k -  1 

- (2k + 1)~.. + q' (2k - 1)~.. + " "  + qk ~ .  - -  Pk ( k  - 1)~ + " "  + ( -  1 ) k p ' '  

i.e. the space of characteristics of the co-isotropic submanifold ~(1) is identified with 
the derivatives of polynomials belonging to Q"- x. Using that identity, we obtain the 
following result (cfi [5]). 

PROPOSITION 4.5. (A) I f  m < k + 1, then the set of polynomials of Z having a root 
t t , -a) form the co-isotropic varieties in (Z, 63). of multiplicity m, say x-~2k_m+ 1, 

(B) I f  m >>. k + 1, then the set of polynomials of Z having root of multiplicity m, 
(r(,-3) ~ form the isotropic varieties in (Z, 63). The maximal isotropic variety, i.e. s"2k - m + 17~ 

m = k + 1 is a Lagrangian variety symplectomorphic, in the case ofk  = 2, to the system 
of rays diffracted on a smooth obstacle, with the open swallowtail singularity (see [43]). 

5. S y m p l e c t i c  I m a g e s  o f  L a g r a n g i a n  S u b m a n i f o l d s  and Reso lu t ion  o f  
S ingular i t ies  

V. I. Arnold [5] first called attention to singular Lagrangian varieties. Originally they 
appeared in the forward scattering of light rays by a convex obstacle [38] and in the 
geometrical theory of diffraction [30]. The results by Arnold and coworkers provided 
an exhaustive geometrical classification of them [6], [43]. Quite independently, 
singular Lagrangian varieties appeared in describing the equilibrium structure of 
phase transitions and in the classical mechanics of constrained systems [27]. In 
addition, there is evidence [51], [26] that it is necessary to add singular Lagrangian 
varieties to the set of smooth Lagrangian relations, the morphisms of the symplectic 
'category', in order to obtain an adequate category. 

The first step toward the investigation of singular Lagrangian varieties is just to 
understand those singularities which are removable by some canonical procedure. 
That procedure is suggested by the methods used in the investigation of hidden-order 
parameters in composite systems or in searching the smooth general potentials for the 
reduced mechanical systems [47]. The idea of the resolution of singularities is also 
imposed by the theory of oscilating integrals with smooth phases corresponding to 
nonclassical symbols in the integral formula for the scattering amplitude [38]. 

Let (P, co) be a symplectic manifold. Let (P, X, 7r) be a differential fibration and ~9 be 
a 1-form on P such that co = dO. The quadruple (P, X, n, 0) is called a special 
symplectic structure on P if there is a diffeomorphism a : P ~ T * X  such that 
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n = nxO~ , ~9 = ~'8 x (cf. [1]). Let L ~ (P, co) be a germ of a singular Lagrangian 
variety, i.e. a stratified subset of P whose maximal strata are Lagrangian [27]. The 
question is: 

Does there exist, 
(i) a special symplectic structure (P, X, n, ~) on (P, 09), 

(ii) a submersion p: A ~ X for some smooth manifold A, 
(iii) a regular (i.e. transversal to the fibers of T'A,) Lagrangian submanifold 

N ~ (T'A, d~A) , 

such that L is an image of N with respect to the canonical cotangent bundle lifting of 
p? i.e. can we write L = T*p(N)? 

If the answer is positive, then N is called the symplectic resolution of L and its 
generating function F is called a generating family for L. 

In this paper, we are interested only in the local version of the resolution problem. 
Let (L, 0) be a germ of a Lagrangian subvariety in T* V, V - R" (we say Lagrangian 
germ for short). Assume that (L, 0), given up to symplectomorphism of (T'V, cov) is a 
solvable symplectically Lagrangian germ. If (x, 2) are coordinates of A adapted to the 
submersion 

p:(A, 0) ~ (V, 0), A = V x R  k 

and F:(VxRk,  O ) ~ R  is a generating family for (N,0), then the image 
(T*p(N), 0) = (L, 0) is given implicitly by the system of equations 

OF 
P i = ~ ( x ,  2) ( i = l  . . . . .  n), 

dF 
(j= 1,...,k). 

If the position of (L, 0) and the cotangent fibration T* V are fixed, and L is smooth, 
then the resolution problem is equivalent to the problem of finding the Morse families 
which define (L, 0) in the form of these equations with an extra transversality 
condition [50]. For smooth L, (L, 0) is always solvable in this way [24]. If (L, 0) is not 
smooth, the existence of resolution is not obvious. Now we show the classes of 
Lagrangian varieties coming from related topics, which are solvable by the introduced 
procedure. 

1. Geometric interaction between holonomic components [34]. 
Let 1"1, V2 be Lagrangian submanifolds of (P, co). The Lagrangian subset V l u V2 is 
called a regular geometric interaction if the following conditions are fulfilled: VI c~ V 2 
is a submanifold of P, dim 1/1 n V2 = dim V1 - 1 and for every point p e I/1 c~ V2 we 
have T~(V1 c~ V2) ~-- TpV 1 (") TpV 2. 

PROPOSITION 5.1. Let (V~ u V2, P) be a oerm of a regular geometrie interaction in 
(P, co). Then there exist a symplectic manifold (P, &) and a symplectic reduction relation 
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R c (P x P, ~ 0 to), such that we have the canonical resolution formulae, 

V, u V2 = R(L), 

for some regular Lagrangian submanifold L ~ (P, (o). 

By this result, one can classify the normal forms of Gauss -Manin  systems on the 
boundary (see [41]). 

EXAMPLE 5.2. Let L = V1 u V2, be given on the plane R 2 with coordinates p, q, 
o = dp ^ dq, by the equation p2 _ q2 = 0. Then the generating function for the 
symplectic resolution N c T*(R 2 x R) is 

F(q, 2) = -- ½q2 -I- x/~q2 a - ½)6. 

2. The tangency classes of Lagrangian submanifolds 
Let ((I,'1, V2), p) be the tangency class of two Lagrangian submanifolds according to 
[20]. Locally it is represented by two components 

V, = { p ,  . . . . .  p . = 0 }  = X ,  V 2 =  ( q , p ) ; p = ~ q  (q) , (.) 

for some smooth function F - t h e  generating function for V2. 

P R O P O S I T I O N  5.3. Let ((V I, ~),  0) be a pair of Lagrangian germs belonging to the 
same tangency class, i.e. represented locally like in (*). Then there exists a symplectic 
resolution N c (T*(X x Rk), toXxRk) of (E  U V2, 0), i.e. 

V 1 U V  2 =  T * p ( N ) , p : X x R  k ~ X ,  

with the generating function: 

F(q, v, 2 , / 0 = - F ( 2 ) +  ,=,~ v , ( 2 , + q , ) +  #3(~,=~ 2~v,), 

where k = 2n + 1 and F is a generating function for V2-component. 

3. The generalized open swallowtails [6]: 
The Lagrangian varieties L~ TM described in Proposition 4.5, are called the generalized 
open swallowtails (cf. [9]) or shortly open swallowtails. It is possible to solve them 
canonically (see [26]). 

P R O P O S I T I O N  5.4. An open, k-dimensional swallowtail is represented as a canonical 
pushforward of a regular Lagrangian submanifold, i.e. 

L~ 2k)= T*rc(Nk), 

where 

(a) Nk is a Lagrangian submanifold of (T 'Q,  toe), 
(b) zc: Q--* Y is a projection given (in local coordinates of binary forms) in the 
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following form rc (ql . . . . .  qk+ 1) ~ (~h . . . . .  ~lk), 

i - 1  
1 __1)i+1 i! q~+X, i =  1 . . . .  

~/i = ,=o ~ ( -  1)' 8: q~qi - ( (i + 1)----~ k. 

By choice of coordinates in which rt is in the normal form, one can write the 
following formula for generating function of Nk; 

_ 1 ~ k + 2  x k + l +  ~ ( k - j ) !  ?:/jxk-J dx. Pk(ch, . . .  , qk, 2) = ~ 1)! j= 1 

This is a generating family (not Morse family) for the generalized open swallowtail 
LtZk~. 

The first step in the study of resolving Lagrangian varieties is the classification of 
symplectic pullbacks and pushforwards of smooth Lagrangian submanifolds. Let 
( T ' X ,  cox), (T*Y,,cor) be two cotangent bundles. We form the product symplectic 
manifold f~ = ( T * X  x T 'Y ,  coy @ cox). Let f :  X --* Y be a smooth mapping. We denote 
the graph o f f  by Ff, Ff  is a submanifold of X x Y Any function on Ffcan  be pulled 
back onto X. The set 

{pc  T*(X x Y); r~x× r ( p ) e F f  and (u, p)  = (u, dO) 

for each u e T(Ff) c T(X x Y) such that z x × r(U) = n x × r(P)} (,) 

is a Lagrangian submanifold of f~. Here 0 is a smooth function on Ff. Let g denote the 
function 0 pulled back to X. The Lagrangian submanifold defined in (,), and denoted 
by (f, g) is called an f-constrained symplectic relation in f~ (cf. [26]). We denote by 
the set of all f-constrained symplectic relations in f~. We introduce in f~ (hence in ,,~) 
the canonical action of the group (~ --- Gx x Gy, where by Gx (resp. Gy) we denote the 
group of symplectomorphisms preserving the fibre structure of T * X  (resp. T* Y). A 
symplectomorphism (O, W)e (~, locally has the following form: 

O(x, ¢) = (dp(x), ((D~(x))-1)t(~ + d~(x))): T * X  ~ T ' X ,  

tp(y, ~l) = (~k(y), ((D~b(y))-1)t(r 1 + dfl(y))): T * Y  .--, T 'Y ,  

where ~b, ~ are diffeomorphisms, ~b: X ~ X, ~k: Y ~ Y and a, fl are smooth functions on 
X and Y, respectively. This group acts on the pairs (f, g) in the following way 

(f, g)--, (~,, '~Xf, g) 
=(~kofo q~-l, goq~-, + f l o f o q ~ - i -  ao~b-1). 

Let R = ( f , g ) ,  the subset R ( N ) =  { b e T * Y ;  there exists a e N  that ( a , b ) eR}  
(Rt(L) = { a e T * X ;  there exists b e L  that (a ,b)eR})  is called the pushforward of 
N c T * X  (respectively, pullback of L c T* Y) with respect to R. 

One can easily see that if f is an immersion, then the pushforwards of Lagrangian 
submanifolds are always smooth Lagrangian submanifolds of T* Y Analogously, if f 
is an submersion, then the pullbacks of Lagrangian submanifolds are smooth 
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J 
f 

Fig. 10. Lagrangian variety of type (A2, El°). 

Lagrangian submanifolds of T*X. More generally, if rrrlN: N ~ Y and f:  X ~ Y are 
transversal mappings (cf. [50]) then the pullback R'(N) is a Lagrangian submanifold of 
T*X. An analogous result holds for pushforwards: if f has constant rank and L is 
transverse to Rt(T * Y) then R(L) is a Lagrangian submanifold of T* Y 

Let us denote the pushforward of Lagrangian submanifold L c T*X with respect 
to R by the pair (R, L); similarly for the pullback of N c T* Y with respect to R we use 
the notation (N,R). We say that the pushforwards (RI, L1), (R2, L2) (pullbacks 
(N1, R1), (N2, R2)) are equivalent if there exists g e (~, g = (~, qJ), such that 

(R2, L2) = (g(R1), ~(L1)) 

((N2, R2) = (U/(Nt), 0(RI)), respectively). 

In small dimensions, we have the following classification theorem for pullbacks (see 
also Figure 10 and Figures l la, b). There is an analogous classification result for 
generic pushforwards (see [26]). 

a) b) 
X2 

f 
X1 

Fig. 11. Caustic of type (A3, 5~2°), (a) ~,'(0) ~ 0, (b) q~'(0) = 0. 

3/4 
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Table I. 
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P R O P O S I T I O N  5.5. Let n = dim X, m = dim Y ~< 3. Then the normal forms of the 
generatin# families for the generic pullbacks of the appropriate types are equivalent to 
these ones listed in Table I. 

Remark 5.6. The phase space of a simple thermodynamical system is the symplectic 
manifold (R2t2+~),d0), where {T , -p ,  #l , . . . ,#k ,  S, V, N 1 . . . . .  Nk} are standard 
thermodynamical coordinates and 0 = TdS - pdV + ~,ki= 1 #idNi is a 1-form of 
internal energy (cf. 1-27]). The space of equilibrium states of the concrete thermody- 
namical system is identified with the Lagrangian subvariety of (R 2~2÷ k~, dO). Singular- 
ities of the Lagrange projection 7~:R2(2+k)"~R T M  onto { T - p ,  lq . . . . .  #k} of this 
variety correspond to the thermodynamical phase transitions and critical phenomena. 

In an attempt to model the phase coexistence around the critical point as well as the 
phenomena near absolute zero temperature, it seems natural to admit some 
singularities of symplectic structure on the phase space. 

HYPOTHESIS.  The natural structure in the absolute zero temperature region is the 
simplest stable degenerated symplectic structure (cf. [27]), defined by the following 1- 
form of internal energy 

k 

0=~1 t 2 d S _ p d V +  ~ /~idNi, (*) 
i=1 

where t is a parametric temperature. 

The 2-form dO has Martinet stable singularities of the form 

xl dxl ^ dyl + ~. dxi A dyi 
i=2 

along the hypersurface {t 2 = T = 0} and is nonsingular elsewhere. The corresponding 
'Lagrange projection' 7r is the projection of the thermodynamical phase space 

{t, - p ,  #1 . . . . .  #k, S, V, N1 . . . . .  Nk} 

onto the space of 'thermodynamical forces' {t, - p ,  ~1 . . . . .  #k}, which are natural 
control parameters in equilibrium. 

Assuming (*), we obtain a fine link between the thermodynamical postulate of 
positivity of absolute temperature and the stability of an applicable structure of 
thermodynamics. The normal states of equilibrium apart from {t = 0} are described 
by Lagrangian varieties in agreement with classical approach. However, in our 
completed phase space, it is natural to ask for the classification of local forms of 
maximal isotropic submanifolds near the singular hypersurface {t = 0}. Extending the 
standard theory of singularities of Lagrange projections, one can obtain the following 
list of generating families for simple Lagrange projections of maximal isotropic 
submanifolds of codimension 1, near {x 1 = 0}, namely 

)3 ..~ X2~, 

23 +(+_xk+l +_Xx +q)2, k>>. l, 
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23 + 

23 + 

23 + 

)3 + 

23 + 

23 + 

23 + 

where q is 

( X 2 X 2  A V Xk2 - 1 A t_ X1 .3!_ q)2, 

(X  3 "}- X'~ "J- X 1 + q)3,, 

(x 3 + x2xa3 + xl  + q)2, 

(x 3 + x ~ ± x  1 +q))., 

(_+x k + x 2  2+q)2,  k/>2, 

(X1X 2 "[- Xk2 "3 !- q)2, k / >  2, 

k>~4, 

STANISLAW JANECZKO 

(__+x 2 + x23 + q)2, 

a nondegenerate quadratic form of the remaining variables. 
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