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Summary. In this paper we study the symplectic relations appearing as the
generalized cotangent bundle liftings of smooth stable mappings. Using this class of
symplectic relations the classification theorem for generic (pre) images of lagrangian
submanifolds is proved. The normal forms for the respective classified pullbacks and
pushforwards are provided and the connections between the singularity types of
symplectic relation, mapped lagrangian submanifold and singular image, are estab-
lished. The notion of special symplectic triplet is introduced and the generic local
models of such triplets are studied. We show that the open swallowtails are canonically
represented as pushforwards of the appropriate regular lagrangian submanifolds.
Using the SL,(R) invariant symplectic structure of the space of binary forms of an
appropriate dimension we derive the generating families for the open swallowtails and
the respective generating functions for its regular resolutions.

1. Introduction

The classification of singular lagrangian submanifolds as the sets of rays tangent to
the geodesic flows on a hypersurface was carried out in the previous papers [15, 3]. This
is connected to the theory of nested hypersurfaces in a symplectic manifold describing
the geodesics on a Riemannian manifold with boundary [14]. In particular it is closely
related to the problem of the shortest bypassing of the obstacle represented by a
smooth hypersurface [3, 2], which we can briefly formulate as follows: Let R** = {(z,p)}
be a phase space of a particle in classical mechanics [1], let k(z,p) = §(p*—1) be a
hamiltonian function for this particle. Then the space of bicharacteristics in
H = {h = 0}, say M, which forms a manifold of all oriented lines in R*, has a canonical
symplectic structure. Let K be a hypersurface in R (an obstacle) and y a geodesic flow
on K (e.g. the one defined on K by the variational problem of shortest bypassing of K).
It is proved in [2] that the set of oriented lines tangent to y on K forms a lagrangian
submanifold in M which is not necessarily smooth. The appropriate local classification
of these singular lagrangian submanifolds is carried out in the paper cited. It turned
out that the generic singularities of this classification, so-called open swallowtails, can
be conveniently described in the SL,(R)-invariant symplectic space of binary forms of
an appropriate degree. We find that the open swallowtails can be obtained as images of
the regular lagrangian submanifolds by means of a canonical symplectic procedure.
This observation suggests the further generalization of the problem and classification
of images of lagrangian submanifolds by means of (widely used in physical applications
[5]) symplectic relations [16]. It appears that the beginning of the geometrical classifi-
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92 STANISEAW JANECZEO

cation presented in this paper provides new types of singular lagrangian submanifolds
(cf. [12]).

Another motjvation for the investigations presented here comes from thermo-
dynamics of pbase transitions [12] and independently from statics of controlled
mechanical systems [18]. Let us consider a simple one-component thermodynamical
system (cf. [12]) and admit the class of deformations onto two isolated subsystems of
the same sample. The phase space for such deformations is as follows (cf. [12,17]):

(T*Y; x T*Yy, — 8,81, ~ 1AWy + py ANy ~ S, AT, — P AV, + iy AN,),

where T*Y,, {V, T}, Ny, =Py, — Sy, pa}; T*Y,, {V,, Ty, Ny, — Do, — Sp, i} are the phase
spaces of the respective subsystems and V;, T}, N,, p,, S;, y; are the standard thermo-
dynamical coordinates. Let a lagrangian submanifold L, x L,= T'*Y, x T*Y, be the
space of equilibrium states of a composite isolated system. After removal of (chemical,
thermical, mechanical) constraints, the virtual states of the system are defined by the
coisotropic submanifold C < T*Y, x T*Y, (cf. [5}),

C={T) =Ty, = Pas fts = Yo, N+ Ny = N = const. (N, >0, N, > 0)}.

~ C provides the canonical characteristic submersion, say p, onto the phase space of the
composite system (7*Y, — SdT — pdV),

p:C—->T*Y, p(W, Ty, Ny, 4, Sy, 4, Vo Ty Ny, P, S,, Ko) = M+ Ve, 11, D1, Sy +8).

Hence the space of equilibrium states of the composite system is an image p(L; x L),
which for the Van der Waals gas forms a singular lagrangian submanifold in 7*Y well
known in thermodynamics of coexistence states [12].

The aim of this paper is to set up a method of formalizing and generalizing these
examples and derive the first results for further applications. We now outline the
organization of the paper. In Section 2, in the beginning, we introduce some known but
perhaps unfamiliar results of symplectic geometry, which we shall need later. Then we
formulate the problem of classification of images of lagrangian submanifolds by means
of special classes of symplectic relations, namely those generated by modified push-
forwards and pullbacks of smooth mappings. This classification forces us to introduce
a notion of singular lagrangian submanifold and to prove some results concerning the
generating families (useful physical potentials) of these classified images. Restricting
consideration to symplectic manifolds of dimension not greater than four, we prove the
classication theorem for the normal forms of generic, generating families of the
respective images of stable lagrangian submanifolds with respect to stable mappings.
This classification substantially depends on the results of [13] but provides a more
exact description of singular images and their maximally reduced generating families.
Section 3 is devoted to the investigation of local properties of general symplectic
triplets. We prove here the classification theorem for the so-called special symplectic
triplets and derive the respective generating families for the respective lagrangian sets
which it provides. In Section 4 we introduce the basis of Arnold’s theory of open
swallowtails represented in the symplectic space of binary forms. We show that the
open swallowtails are provided by the appropriate special symplectic triplets. Using
the methods of symplectic relations developed before, we prove that the open swallow-
tails are images of the regular lagrangian submanifolds by the canonical symplectic
reduction relation. This fact allows us to perform the precise calculations for generating

Downloaded from https://www.cambridge.org/core. Polish Academy of Sciences, on 26 May 2020 at 16:45:10, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50305004100065889


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100065889
https://www.cambridge.org/core

Generating families for tmages of Lagrangian submanifolds 93

families of the open swallowtails and compare them to those for the respective special
symplectic triplets.

2. Symplectic relations and images of lagrangian submanifolds

Let (P, ), (£,, w,) be two symplectic manifolds (see [1]). We define the product
(B, w) x (B, w,) as the symplectic manifold (P, x Py, prf w, + pri w,), where

pri: AixF—> P (i=1,2)

are the cartesian projections. We define a symplectic relation from (P, w,) to (£, w,) as
an immersed lagrangian submanifold of (£, — w,) x (£, w,) and denote it by R (see
(16, 5)).

We recall a notion of symplectic relation of a particular kind, namely the symplectic
reduction relation. Such relations are morphisms in the category of symplectic mani-
folds and are very widely used in mathematical physics (ef. [19,17,18, 5, 1, 14]). A sub-
manifold C < (P, w) is called coisotropic if at each xe C

(1,0) = WeT,P;Vyep o (v AU, 0) = 0} < T,C. (1)

Let D = {veTC; v (w|c) = 0}; we call D the characteristic distribution of C. Let B be
the set of characteristics. We consider the following relation from P to B:

R = {(z,b)e Px B; zeC,b = p(z)}, (2)

where p: C — B is the canonical projection. If B admits a differentiable structure and
the map p is a submersion (cf. [19]) then there is a unique symplectic structure g on B
such that

P*p = wlc. 3)

In this case (B, ) is called the reduced symplectic manifold, and R is a symplectic
relation from (P, w) to (B, B). R is called the symplectic reduction relation of the sym-
plectic manifold (P, w) with respect to the coisotropic submanifold C (see [5, 16]).

Let R < (P, x P,, priw,— priw,) be a symplectic relation and L < P, a lagrangian
submanifold of (£, w,). The set

R(L) = {p, € P,; there exists p, € L such that (p,, p,) € R} (4)

is called the image of L under the symplectic relation R. Using the transpose relation
tR (cf. [5]) we analogously define the counterimage of N < (P,, w,), namely ¢ R(N).

For the purpose of this paper we confine considerations to the typical example of
symplectic manifolds, namely the cotangent bundle (i.e. the symplectic manifolds
found in most applications are isomorphic to cotangent bundles [16, 12, 1]) (T*X, wy),
where wy = d¥x, and ¢y is the Liouville form in the cotangent bundle 7*X (over a
smooth manifold X).

Let (T*X,wy), (T*Y, wy) be two cotangent bundles. the product

Q= (T*XxT*Y, privy —priwy)

is a symplectic manifold which, for further purposes, will be identified with 7*(X x Y).
Letf: X —» Y be asmooth mapping. We denote the graph of f by I'f; I'fis a submanifold
of X x Y. Any function on I'f can be pulled back onto X, so the smooth structure on
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I'f is equivalent to the smooth structure on X. As we know (see [17], proposition 3-1)
the set

{peTHXxY); mxy(@)el’f and {(u,p) = (u,dj) foreach
ueT(I'f) c T(X x Y) suchthat 7x,p(u)=mxp(®)} (5)

is a symplectic relation in Q. Here § is a smooth function on L'f; 73y, Txxy are the
projections for cotangent and tangent bundles respectively. Let g denote the function
g pulled back to X.

Definition 2-1. Let f: X - Y,g: X — R be smooth functions. The symplectic relation
defined in (5), and denoted by (f, 9), is called an f-constrained symplectic relation. We
denote the set of all f-constrained symplectic relations in Q by &.

In the present paper we are interested only in local properties of symplectic relations
as well as in local properties of images of lagrangian submanifolds. Hence X, Y will be
open subsets of R” and R™ respectively, and instead of lagrangian submanifolds or
mappings we shall in fact consider their germs (see [6]). Later on, to avoid an inessential
rigour, we speak about mappings, submanifolds etc. as representatives of germs.

Let us introduce in & an action of a subgroup of the group of symplectomorphisms
(an equivalence relation) such that for the images of lagrangian submanifolds this
action reduces to the standard action (see [4, 22]) of the group of symplectomorphisms
preserving the fibre structure of the cotangent bundle. Hence we introduce in Q the
canonical action of the group ¥ = Gy x Gy, where by Gy (resp. Gy) we denote the
group of symplectomorphisms preserving the fibre structure of 7*X (resp. T'*Y). It is
evident that ¢ acts on &, transforming a symplectic relation B < Q into (0, ¥') (R),
where (O, V)e . As we know (see [7,22]) a symplectomorphism (®, V') e %, locally,
has the following form:

Oz, ) = ($(2), *D(x)* (£ +da(x))): T*X > T*X, }
Yy, 7) = (@), ‘DY (y) (n+dBy))): T*Y - T*Y,

where ¢, i are diffeomorphisms, ¢: X - X, ¥: ¥ - Y and «, # are smooth functions
on X and Y respectively. Thus the group ¢ is defined as a system of functions and
diffeomorphisms: (@, a, ¢, #) with an appropriate composition formula.

By straightforward calculations, using (6] and the definition of a symplectic relation
belonging to &, we obtain

(6)

ProrosiTioN 2-2. For pairs (f,g) determining symplectic relations belonging to F,
we have the following transformation law (for the action of ¥ on Q introduced above):

(/,9) > (®,¥)(f,9) = (Yofod~',gog' +fofog~t—aog?). (7

Taking f = 0 and a = g, we see that the second component on the right hand side of
(7) vanishes. Thus we have

COROLLARY 2-3. For any orbit of the action (7) of G in F , there exists a representative of
the form (f,0) i.e. a pure lifting of f to the cotangent bundle Q, henceforth denoted by
T*f (cf. [19,12]).

If we consider the subgroup of ¢, say ¢’, whose elements are determined by triplets
(¢, @, ¥) and act on a relation R by means of the symplectomorphism (¢, a, ¥, x0f),
then immediately we obtain
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Generating families for images of Lagrangian submanifolds 95

CoOROLLARY 2-4. The action (7) restricted to the subgroup ¥’ < ¥ is a well-defined action
on the space, say F, of canonical liftings T*f of smooth mappings f: X - Y to Q. An
element of ' is represented by a pair (f,0).

Let Re # and L, N be the lagrangian submanifolds in (7*X, wy) and (7*Y, wy)
respectively.

Definition 2:5. Let R = (f,g). The subset R(L) €« T*Y(*R(N) = T*X) is called the
pushforward of L (respectively pullback of N) with respect to R.

It is well known (see [10]) that if f is an immersion then the pushforwards of
lagrangian submanifolds are always smooth lagrangian submanifolds of 7'*Y.
Analogously, if f is a submersion then the pullbacks of lagrangian submanifolds are
smooth lagrangian submanifolds of 7*X. More generally, if 7y|y: N> Y and
f: X > Y are transversal mappings then the pullback ¢R(N) is a lagrangian sub-
manifold of 7*X. An analogous result holds for pushforwards: if f has constant rank
and L is transversal to tR(7T*Y) then R(L) is a lagrangian submanifold of 7*Y.

In this paper we study the more general situation when the transversality conditions
mentioned above are not assumed and f is a stable smooth mapping. We shall study
a further possible approach to the classification of singular images (pullbacks and
pushforwards), by specifying the various types of nontransversalities, in a forth-
coming paper.

Let us denote the pushforward of L with respect to R by the pair (R, L); similarly,
for the pullback of N with respect to R we use the notation (N, R).

Definition 2-6. The pushforwards (R,, L,), (RB; L,), (pullbacks: (N, R,), (N, R,)) are
called equivalent if there exists ge ¥4, g = (@, V), such that

(By, Ly) = (9(Ry), D(Ly)) }
(respectively (N, By) = (F(N,), g(Ry))).

Before we proceed to classification of images we recall the very convenient notion of

Morse family. It is well known (see [19, 5]) that any lagrangian submanifold L of the

cotangent bundle, say 7*X, can be locally generated by a family of functions, the
so-called Morse family, F': X x R¥ — R (for some ke N, k¥ € dim X) so that

(8)

L@t £=m@A, 0=Fr@al, Q

where rank (92F/0A?, 8*F/0A éx) = k in an appropriate source point of the germ F.
Between Morse families with a minimal number of parameters (see [22]), there is
the following notion of equivalence: two Morse families (or generating families as
below) F, F': X x R* -> R are equivalent if there exists a diffeomorphism

E: XxRF> X xRF, pyoZ =py,
such that F = F'oE, where py: X x R¥ > X is the projection. Let us note that
equivalent Morse families represent the same lagrangian submanifold of 77*X (change

of parametrization). For the proof of the converse statement see e.g. [22].
In this paper, most frequently, we use rather the following notion.

Definition 2-7. A family of functions on X, which describes a lagrangian subset in
T*X (possibly nondifferentiable but endowed with a Whitney stratification [11], the
maximal strata of which are lagrangian) by the formula (9), not necessarily with the
rank assumption, is called a generating family for the lagrangian subset in question.
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ProOPOSITION 2-8. Let L <« T*X, N < T'*Y be lagrangian submanifolds generated by
the Morse families, say G: X x R* — Rand F: Y x R! — Rrespectively. Let R = (f,9) e F,
then the images of L and N with respect to R have the following generating families:

(i) for the pushforward (R,L); P: Y x RM - R,

Ply; A, %) = 3 Ats—Fi) +9(0) + G, )

where p = (fg, oo s o), V= (U1, oo, Vi), M S m4+-n+k,
(ii) for the pullback (N,R); H: X x R! - R,
in respective local Darboux coordinates on T*X and T*Y .

Proof. On the basis of (5) and Lecture 6 in [19] (see also [17]) a Morse family for the
relation R is

A,y 2) = 3 Ny File) +9(e),

i.e. R, locally, can be expressed by the following equations:

-g=-3% Aiaf<x)+ @ (<<,

X

T = /\r (1<r<m)
L is described by the equations

26 26 . .
€f=a_x',(””’)’0=a_w(x’”) (1<j<m 1<igk).

Hence using (4) for (R, L) we obtain (i). In the same way, reducing only an appropriate
part of the parameters (as for the stable equivalence in [22]) we obtain (ii).
From (7), (8) and Proposition 2-8 we obtain immediately

COROLLARY 2-9. Let P(y; A, pu,v), H(x; A) be generating families for a pushforward
(R, Lyand pullback (N, R) respectively asin Proposition 2-8. Thenthe respective generating
families, for the equivalent pushforward and pullback, are

Py, A, u,v) = E Ay;— (W ofo ™), (u) +g0 61 () + Bofo ¢ ) + Gl (), ),
B ) = F(fo §-3), 1) g0 §-e) + w0 d-i(),

where the equivalent symplectic relation B has the form (7).

Now we give the beginning of the classification of normal forms for the appropriate
pushforwards and pullbacks. Let us denote by (£i/*, 4,) for pushforward and (4,, Z¥¥)
for pullback, the types of the respective equivalence classes, where Lk is a Boardman
symbol of f: (X, z,) - Y (cf. [11]) and 4, is the singularity type of L (or N) (cf. [4]) at
a source or target point of the germ of the symplectic relation R.

ProrosITION 2:10. Let dim X, dim ¥ < 3. Then the normal forms for the generating

families of generic pushforwards and pullbacks of the appropriate types are given in
Table 1.
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Table t
n, m Type P:YxRN >R Type H:XxR'-R
11 1 (20’ Al) 0 (Al’ 20) 0
(X0, 4,) Ay +A3 (Ag X9 A4 Az
(Z1,4,) Ay (4,,Z°) 0
(Z1°,4,) Ay (Ag 220 A4 Azt
1,2 (X0, 4,) Ay, (4,, X9 0
(2, 4,) A+ A1+ Ay, (45, 2% A+ Ax
(45, 2% A+ 222+ Ad(x), 4(0) = O
2,1 (X, 4, 0; A3+9yA (4,, Y 0
(ZY, 4, -9+ 0u); P+yd(A), ¢'(0) = 0 (A, XY Ad+xA
44 ybly) (4, 29 0
(0, 4,) Ay (A T9)  B+A(£2t+a))
(X2, 4,) Ay
(2, 4y) Ay
2,2 (2%4) o0 (4,29 0
(2, 4,) A+ Ay, (4, X9 A+ Az,
(22, 4,) A+ A%, + Ay, (45, 29 At A%z, + Az,
(21, 4,)) — A8 A+ A+ ALY, (4,21 0
, (X0, 4,) Ax?/x +AgYa— Ay — /\zl‘g +8 (45,219 A3+ Az,
(it ) Fopi+pa (e, 1) (A, ) A4 A%z, + Az + Bly))
(21, 45) Ay + Ay — Ay — Ao sy + 04 (44, Z11% 0
+ VE(py + pro) + v (15 fa) (45, Z119) A3t2,A
+aps+ py Gy, p3) (As, 211 At 4 A2z 4 Ay () + Ps(wy)
(B0, 4)) Ay —p) + Aglye— g o — 13) X (23 +2,2,)), $2(0) > 0
3+ pa Pl poa + 1)

(Zto, Ay) Ay, —p) + ’\2(:’/2 — e _I“;)
+ U8+ V(fg + Pal s P o+ 13))
+ pa Grlpys po oy + 13)
+ B Paphn, iy oo+ 13) + 0t
(10, 4,) Ay — 1) + Aoy — py o _.”‘;)
+ A+ V(g + Py pra + 13, 1))
+ vyl frs foa) + pa Pilfess Py pia+ 113)
+ 13 Doy o iy + 13 +apg

Proof. By assumption dim X, dim ¥ < 2. The types (cf. [4, 11]) for f, L, N are those
listed in the table. Hence for the respective germs, say for L < T*X, we use the
following Morse families (cf. [22]):

A1: G(x’ /\) = go(z):
4,: Gz, A) = A3+ g,(x) A +go(x), (10)
431 G(z,A) = A4 +9,(2) A2+ gy(2) A + go(2).

By [12], the classification of germs of pushforwards (R, L), restricted to R belonging
to #' (see Corollary 2-3), reduces to the classification of germs of mapping diagrams

@0 9) 1
(R! x R3, 0) «— (R", 0) —> (R¥, 0),

4 PSP 100
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where 8 = 0,1,2, g = g, or g = (g,,9,) for s = 1 or 2 respectively, with respect to the
equivalence relation represented by the following commuting diagram:

(90 9) f
(R! x R¢, 0) — (R*, 0) — (Rk, 0)

idx(id+aof)l lh 5 lﬁ
(gO) g) f
(R x R?, 0) ——— (R, 0)— (R*, 0)

The situation for pullbacks is analogous but simpler. Here any pullback of type
(A4,, ZY%) can be reduced to normal form with the trivial Morse family. Hence the
problem of classification of pullbacks can be reduced to the problem of finding normal
forms for mapping diagrams (cf. [4,12])

(R",0) > (R¥, 0) 5 (RL,0) (1 = 1,2)

with a given type of singularity of the germ f and endowed with the following equi-
valence relation (cf. [4]):

f
(R™, 0) — (R*, 0)

g
lh , 15 \(RI,O),

(R®, 0)— (R¥, 0) 7 7

where gy = 0, g = g, or g = (g,,95).

Applying the Malgrange Preparation Theorem (cf. [6]), the generalized Morse
Lemma and the method of liftable and lowerable vector fields (cf. [4]), we obtain the
following list of normal forms for generic pairs (R, L) and (&, R) defining the push-
forwards and pull-backs respectively (see also [13]).

Pushforwards:
(n, ) = (1,1)
f@) =2 Ayge) =0 Ay (Gog) (@) = (0,2),
f@) =a% Ay:golr) = a2 +ax®; A, (g, 9) () = (aa?+2%¢,(2?), v + Po(2?))
(n, k) = (1,2)
f(@)=(2,0): A4;:g4x) =0; A,:(gy,9)(x) = (0,7)
(n k) = (2, 1)
flx) =z A;:go(x) = 2] or go(z) = 2,7, +23;
4s: (9o, 9) () = (T, 25+ 2] P(), 7,) O (9o, 9) (%) = (x, (%), 2, £ 23),
A3 (90, 9) (2) = (72 $1(), Tg, 7, + 7, §y(7)),
fx)=attx}: Ag:go(x) = 22t +ax}+2,8,(f (%) + 2. bo(f (%)), @ * 1;
A4,: (90, 9) () = (az}+ 2, $1(f (%)) + 22 Po(2), T, + $3(f (%)));
A3 (g, 9) (%) = (az}+ 2, $,(f (%)) + 22 Po(%), 21 + P3(f (7)), Pa(2))

(n, k) = (2,2)
f@)=2: A;:gox) =0; A5 (90,9)(x) = (0,7,); Aj: (90, 9)) = (0, 7y, 7,)
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F(@) = (@, 28): Ay gole) = @, 2, + 23;
Ay: (90, 9) () = (a2} + 2, $(f (%)), 7, + 2,);
As: (g0, 9) (%) = (azf+ 25 ¢,1(f (%)), 7y + 25, P4(2))
f(@) = (zno 2 +28): Ay: gol®) = 235+, §(2, Ty +28) + axi;
Ayt (9o, 9) () = (%2 §1(f (2)) + 25 Po( f () + a3, 7 + P5(f (2)));
A5 (90, 9) (@) = (22$1(f () + 25 So(f (%)) + 023, 7,
+ ¢5(f (%)), dal)).
Pullbacks:

(n, k) = (1,1)

f@ =2 dyge) =2
f@) =22 Ayglx) = x22,

(n: k) = (122)
f(@)=(2,0): Ay g(@)=2; 43 9()=(z,¢),
(na k) = (2’ 1)

f@) =z Ayigl@) =2,
fl@)=attal: Aygla) =aital

(n, k) = (2,2)

F(@) = (2, %5): Ay g(x) =25 Az g(x) = (21, %5)

f(@) = (x,2]): Ay g(@) = x5 Ay g(x) = (%1, $(2,) +23)

f@) = (@pag+2,%): Ayig@) = t25 Ay 9() = (£21,$1(21) + (23 +2,75) $o(y)).

Using these normal forms and Proposition 2-8, we can write down the generating
families for the respective images of L < T*X and N < T'*Y. It is easy to check that
the R(L), for the types listed above, are germs of smooth lagrangian submanifolds in
T*Y. Hence on the basis of [22], theorem 4 and after some calculations, we can make
a further reduction of the number of parameters for generating families of push-
forwards. Thus the proof of Proposition 2-10 is completed.

Let us abbreviate the notation for pullbacks and pushforwards, writing (4,, Z%¥), .
and (Z¢%, 4,), . respectively. So from Proposition 2-10 almost immediately we obtain

COROLLARY 2-11. For the generic pullbacks and pushforwards listed in Proposition 2-10,
we have the following relations:

(zo, Ai)(l, V= At’
(239, 4,)q, 1 = (constrained lagrangian submanifold, so unstable in the standard
sense (cf. [22, 12, 16]),
(29, A)q, 2 = (constrained lagrangian submanifold) (i = 1,2),
(=, Al)(2.1) = {AI’AZ}’
(zl,Az)(z, V= {AI’A2}’
(21: Aa)(z, V= Al,
(2%, 4,)0. 1) = (constrained lagrangian submanifold) (i =1,2,3),
(20, A{)(Z, 2) = Ai (i = 1: 2’ 3))
(ZIO,A‘)(& 2= (thable) (i =1, 2, 3):
(B9, 4,)z o) = (unstable) (¢ =1,2,3),
(Af: Zo)u, = Ai’ (e=1, 2),
(Av Zlo)(l, = AI’
4-2
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(45, 219,y = (singular),

(A{a Eo)(l, 2) = Aa’. (¢=1,2),

(dg, 2%, o) = (unstable smooth if ¢'(0) + 0),

(Ai’ Z;l)(z, V= At (¢t=1,2),

(4, 220)(2, p=4;

(Az» Z20)(2, V= (Singula’r)’

(Ai’ 20)(2,2) = At (i = 1’ 21 3):

(Ai’ zl0)(2, 2= Ai (i = 1’ 2),

(A3, 2, 5 = (singular),

(4, Zuo)(z, a=4; (=12),

(A3, 210, 5 = (singular).

Example 2-12. An analogous phenomenon to that of the unstable pushforwards in

Proposition 2-10 appears in many mechanical and thermodynamical systems (see e.g.
[18, 12]). Let Y be the Euclidean plane. The equations

7, =rcosl, 7, =rsinb,
Y= —k(r—a)cosb, y,=—k(r—a)sind

describe a lagrangian submanifold N of 7'*Y with coordinates (0,7), 0 < 6 < 2m,
— 00 < r < . (N can be obtained as a canonical pushforward, see {18]). N represents
the position-force relation for a point subject to a simple restoring force whose centre
of attraction is allowed to move freely on the circle %% + 9% = a® We see that forr = a,
T%Y n N is the circle 9, = acos 8, 3, = asiné and for (y,,y,) + 0, N is transversal to
the fibres T¢, ,,, Y. Hence N is an unstable lagrangian submanifold like the ones
listed in Proposition 2-10. The corresponding physically realizable reduction relation
R and lagrangian submanifold L are constructed in [18].

Remark 2-13. Let us notice that every symplectic relation R, in general, is locally
generated by the Morse family (z,y; A) - G(x,y; A) (A-parameter). The classification
of images (preimages) for more general symplectic relations R than those considered
in this paper can be obtained using the following symplectic equivalence: let Ry, Ry be
two symplectic relations in (7*X x T*X, 7§ &y —nf ¥x) and in

(T*Y xT*Y, m5 8y — 1t 9y)

respectively, representing the appropriate elements of the group of symplecto-
morphisms of 7'*X and T'*X respectively (cf. [17]). We say that the symplectic
relations R, R’ < (T*X x T*Y, n§ wy —7f wx) are equivalent if there exist relations
R, Ry such that

. R =RyoRoR, (cf.[10]).
IfGx: X xX > R,Gp: Y x Y - Rare Morse families for By and B respectively then
R’ has the following Morse family:

G'(z,y; u,v,A) = Gy, 1)+ G(p, v, A} + Gy (v, y). (11)

It is easily seen that if X = R!, ¥ = R! and R is transversal to the fibres of 7#(X x Y)
then we can reduce G to the normal form

G(z,y; p,v) = v +yp+vuf (v, p).
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Generating families for images of Lagrangian submanifolds 101

It seems to be interesting to consider the classification problem for images of lagrangian
submanifolds with a more general class (than the one considered here) of symplectic
relations. The more detailed analysis of this problem we leave to a forthcoming paper.

3. Special symplectic triplets

Now we pass to the images of lagrangian submanifolds provided by a symplectic
reduction relation defined by a hypersurface H in a symplectic manifold (P, »). The
first nontrivial step in the study of mutual intersection of a lagrangian submanifold
X < Pandahypersurface H < P was carried out in [15] and {2]. It turned out that the
nontransversal positions of X and H, i.e. a mutual tangency of the first order along the
hypersurface H n X of X, the so-called symplectic triplets (H, X, H n X) provide the
singular images p(X) (see [2]), which are encountered in variational calculus of
physical systems {2,3] and in boundary value problems for differential operators
[14,15].

It is easy to establish that at any point, say pe H n X, for a symplectic triplet
(H,X,H n X) one can choose a local special symplectic structure on P (see [17] and
[20], theorem 4-1), the so-called Weinstein symplectic structure 7*X ~ P, such that

1= {@8er* X Med) = £ afe O+ 1) = 0, } 2
l=HnX ={xzeX; y(x) = 0} is a submanifold of codimension 1,

where a;, ¥, 1 < 7 < n are smooth functions and in addition, graph y =€ X x R has a
first order tangency to X along I.

Definition 3-1. Let (H, X, 1 = H n X) be a symplectic triplet in (P, w). We say that it
is a special symplectic triplet if there exists a Weinstein symplectic structure, say 7*X,
such that & generates a hamiltonian flow preserving this structure.

Locally, a special symplectic triplet is described by (12) with the additional assump-
tion that A(z, £) = 37, a,(x) &+ x(x). We see that the characteristics (provided by )
on X are defined by the vector field V = 3 a,(x) 8/ox;. Using the symplectomorphisms
preserving an affine form of » and zero section X (i.e. a class of special symplectic
triplets, see [9] for contact equivalence) as well as the standard equivalence for
Hamiltonians (i.e. & ~ k' iff h = ah’ for some smooth function a such that a(0) + 0) we
obtain the following result.

ProrosrrioN 3.2. Let (H, X,1) be a special symplectic triplet. Then, generically in a
neighbourhood of any point of 1, (H, X,1) can be reduced to one of the following normal
forms:

H, ={(z,8)eT*X; h = & ta(@¥ + a2t 14 42,2 = 0},}
L = {geX; v, 1+ ... +xp,, = 0},
where k < dimX —1, a: (T*X, 0) - R and a(0) # 0.

Proof. We show first that a germ y: (X, 0) > R, defining a symplectic triplet as in
(12), can be brought to the form g2 for some smooth function-germ g: (X,0) > R
defining the hypersurface I. Let us take coordinates on X, and simultaneously sym-
plectic coordinates in 7*X by cotangent bundle lifting (see [19]), such that

l={zeX;x, =0}

(13)
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So x(x) = z,¢9,(x) and, since ! is a hypersurface of nonisolated critical points for f, i.e.
- %9 99 %% -
VX|1 - (gl(x) +xl axl (x)’ I azz (x)! reey xla_x; (x) = O:

thus g,(x) = z,g,(z). By the assumption of first order tangency of graph y to X we have
g2(0) =+ 0. Hence we can write y = +¢?, where g(z) = 2,/( £ g5(%)).

The vector field V = 3, a,(x) &/0z; can be straightened in a neighbourhood of the
considered point, so that ¢, V = &/dz, for some diffeomorphism ¢: (R?, 0) - (R", 0).
Taking the canonical lifting of ¢ to 7*X, we obtain the following normal form for A
(for an equivalent special symplectic triplet):

h(x,£) = &, + g*(x). (14)
Now we have the natural group of equivalences for integral curves of d/dx,, i.e.

diffeomorphism germs preserving the fibre structure (r,,z,,...,z,) —ﬂ> (Tgy -ver Xp).
Using these equivalences, we reduce the problem of description of mutual generic
positions of characteristics of & and the submanifold ! ({g(x) = 0}) to the classification
problem for Whitney’s projections (see [2, 11, 6])

Ty 1 > R,
Hence (14) can be brought into the normal form
h(z,§) = £,b(x) + (2T + 22 M+ .+ 2pn)

~where b(0) # 0. Taking an equivalent hamiltonian for H we obtain (13). Thus the proof
of Proposition 3-2 is completed.
For any special symplectic triplet (H, X,1) there exists a canonical special sym-
plectic structure on the space (B, #) of characteristics (bicharacteristics) on H (cf. (3)),
say T*Y, such that for the reduction relation

B = {(p1,p.) e T*X x T*Y ; p, = p(p1), 1€ H}, (15)
where p: H > R*Y is the canonical projection onto bicharacteristics, we have the

following commuting diagram:

p
T*X2>2H——T*Y

l ‘”XIH l"}’ s

x—1 v

where 7 is a submersion (along characteristics).

COROLLARY 3-3. Let'(H, X,l) be a special symplectic triplet. Then a stationary
lagrangian submanifold R(X) (cf. [2]) is a canonical pushforward, i.e.

R(X) = T*n(L), (17)
and for the respective types of triplets described in Proposition 3-2, we have:

mX—>Y, m{r,T...,2,) > (Zg, ..., T,)-
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Generating families for images of Lagrangian submanifolds 103
Moreover L is generated (for the type of the triplet) by the following generating

SJunction:
F(z,,...,x,) = i—ftl a8, Ty, ..., X,) (851 + 285 4 L.+ 2;,1)2d8. (18)
0
Proof. We see that the space of characteristics of H, described by the dynamical
system
d=1,2=0,..%, =0,
oh oh
i =G bn = =3

can be easily obtained (integrated). As the canonical variables
(51’ vy &y, Ela seey Zn—l)’

parametrizing the symplectic space of characteristics, we can take the initial values
forz,, ...,x, &,, ..., £,, where the initial value for z, is equal to zero. The corresponding
symplectic form g, such that p*8 = 37, df; A dx,| g, for this space may be chosen in
the Darboux form. Now it is easy to check that (17) holds for each type of symplectic
triplet of Proposition 3-2, with generating function (18) for L.

4. Generating families for the open swallowtails

Let us consider now the most representative example of the Arnold theory [3] for
singular lagrangian submanifolds.

We are given the space of binary forms of degree d = 2k + 3, the dimension of which
is equal to 2k 4 4 (cf. [2]). This space can be endowed with the unique SL,(R)-invariant
symplectic form. In the appropriate Darboux coordinates (gq, ..., r19, Po> - -+» Prs2) &
binary form, say ¢(z,y), can be written as follows:

p2k+3 p2k+2 y xk+2yk+l

1 ahtlyht k424 2k48
+(—1)Pk+1(k—+1—)!-+---+(—1) Poy*ets.

We see that the space of characteristics of the coisotropic hypersurface {g, = 1} is
identified with the space of polynomials of degree 2k + 2 (derivatives of the respective

polynomials ¢(z, 1)), i.e.
e 22k+2 22k+1 k1 ok
Q= {(2k+ i T hEEr T T P

+ooH (= 1)y,

with the reduced symplectic form w = Y¥+1dp, A dg,, where (g,, ...,q,.,,) are coordinates
on Q.
ProrosiTION 4-1 (cf. [2]). The triplet (H,Q,1), where

H = {h(q,p) = 1+ "1 P2+ ... +%Pril +0i11/2 = 0},

18 a special symplectic triplet in (T*Q, wy) such that p(l) = T*Y is an open k-dimensional
swallowtail.

Proof. The space of characteristics of the hamiltonian system
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Gr=1,4 = @1 - fr41 = Gz }

. . , (19)
Dy ==P2 3P = ~Pp+1> Prer1 = —Qkn1

can be identified with the space of polynomials of degree 2k + 2 in H < T'*@, such that
¢, = 0. We see that the zero section § = 7'*Q intersected with H (i.e. ) forms the space
of polynomials divisible by a*+2, so the canonical projection p(l) onto the space of
characteristics 7*Y (endowed with the Darboux coordinates (g,, ..., @1y, Pas -++> Prs1))
can be identified with the polynomials of degree 2k + 1 of the form

2k+1 22k—-1 xk xk —1 &
¢(x’1) (2k+1)'+q2(2k 1)|+ +qk+lk' pk+1(k ) ++(_1) D

such that ¢(z, 1) = (x —§)¥*t1 (2¥ 4 ...) for some £ € R. But this is nothing else than the
definition of open swallowtail mtroduced in [2], for example.

We can also use the initial values of (q,,...,¢1, Py, .-, Prs1) ON characteristics to
parametrize the space 7*Y. Remembering that % is a Hamiltonian of translations
along the variable x, for the polynomial parametrization of characteristics we can
make the following identification:

(x — t)2k+2 (x _ t)2k+1 (.’2: — t)k+1 (:l: )
Cr+2) TN EErny T YU T TP T
z2k+2 22k k1
(2k‘+2)'+q2(2k)’+ +Qk+1(k+1), pk“k'

+... (= 1)kHp,

+...+(=1)F1p, (20)

where (g, ..., G541, P1s -+ Pryr) = 0 and g, = 0 implies ¢, =¢. Hence we can take
(@3> --> Gry1s Pos - -+» Prs1) 88 Darboux coordinates on 7*Y, where Y is parametrized by
(@zs -+ > Tpsy) a0d Wy |z = p*wy. Likewise in (16) 7: (qy, ..., qz41) > (@2 ---» Tx4q) has the
following form:

j—-2 } —
= 5 (-0 gdaa- (- et =2k, (21

Let R be the canonical symplectic reduction relation connected with H, i.e. R is the
graph of p in (T*Q x T'*Y, 7} wy — 7} wg).

PROPOSITION 4-2. An open, k-dimensional swallowtail can be represented as a canonical
pushforward of a regular lagrangian submanifold, 1.e.

R(@) = T*n(L,), dim@ =k+1,

where L, is a lagrangian submanifold of (T*Q,wy) with the following generating
SJunction :
k-2 k—i-1

Fqyoten) = T 3 DP; it %,q,

i=—1

- k-2 X
+§ 'Eo D;ck)‘t Y .20 EP gt o+ 3DEh k1 i B
1= i=

{er
qak3, (22)

k+lqk 1~ F+3
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where
k+1 (—1)i-
&) _ (_ 1\k—r
Dy =(-1) jga(j—s)!(2k+3—j—f)!’

. (23)
T DN
k) — (_ 1Yk~ _ - 1<r,8<k+1).
EP =(-1) '((2k+3-r)z 2 iiohra—j—ni (dsmesk+l)
Proof. On the basis of (21) 7*# can be written as follows:
kg R
1= 2P & (—1) Wﬁ 95141
j=1 =1 )! (T*m)
_ ok (—1pn < bat
»= Pﬁjé‘:fﬁxmql (1 <r<k+1).
On the other hand, making further calculations, for R we obtain
_ S k(A qBr+e-s—) \
P = 121 'Zo (T_—;.—:j—),—quk_m g § E q;
x gy D o — Z Efh ;687 — gk s
(R)

k4+1-r 1
= — 1)k+1—-r—§ - c+1-r-3
D, j=20 ( 1) (k+1_r_j)!pk+1—qu{

k41
k —g— k .
+ 22 D("gqsq%lﬂs 8 r+E’$ )q%k+3 r
8=

where 2 < r < k+1 and D), E® are defined in (23).

Comparing equations for R and for 7*m, and remembering that @ is described by the
equations p, = p,... = P, = 0, after simple but long calculations we obtain (22).

Using Proposition 2-8 and the function (22) we obtain a generating family (not
necessarily a Morse family) for the singular lagrangian submanifold in 7*Y called an
open swallowtail (see [2]).

COROLLARY 4.3. 4 generating family for an open, k-dimensional, swallowtail can be
written in the form

P@as s Qs Mo +-os Birrs Ars -5 Ag) = Filta, oo 1)
k _ -1 1 ;
+ Z AT 3, (= O bt + (= D ™).

where F, is defined in (22) and py, ..., fg11s Ays ---» Ay @€ parameters of the family.

Example 4-4. Let k = 1 or 2. Then the respective generating functions for smooth
(resolvent) lagrangian submanifolds L,, L, are

Ly: F\(¢1, %) = —T5qi + 59192 — 3023,
Ly: Fy(q1, 92, 0a) = — 34691 + 7900392 — 5010 — IR B + 30100 — 301 &5
Now by Corollary 4-3 and the standard method for reduction of parameters we obtain

the generating one-parameter families for the cusp singularity (see [6]) and the two-
dimensional open swallowtail singularity (see [3]) of the lagrangian submanifold:
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cusp:

B33, A) = — 56X — 2%, — $Ag,
open swallowtail :

Fy(@2, 933 A) = — 579" — goA°0, — 754 % — 3A°73 - $4°0, s — 1Ag3.
Remark 4-5. Taking new coordinates on 7'*@, defined by (21) and g; = ¢;, we have
mQ— Y, 7(qy, ..., Q1) = (2 -+ pya)- So after straightforward calculations (cf. [13])
we derive the following generating families for the respective open swallowtails

k+2 ksl

— _ 1A B 2
R(@): P@s -, Qs A) =5 fo ((k—-l-T)-' zhHl 4 ¢§2 mqﬂk‘”l) de.

Comparing this formula with Corollary 3-3 (formula (18)) we see that the special
symplectic triplets with ¥ = n—1 are diffeomorphic to the ones providing the open
swallowtails.

Remark 4-6. One of the most interesting appearances of the open swallowtail (k = 2)
is the one proposed by V.I. Arnold (and coworkers) {2], [3] in variational calculus,
which is frequently called ‘shortest bypassing of the obstacle’. It has some connection
to geometrical optics (see [3]). Let us consider a piece D of a hypersurface (obstacle)
in R3, and define the geodesic flow on Dby the time function7: D — R. Hence (V7)% = 1.
An appropriate symplectic triplet connected with this situation is defined by
¢: T*R3 - R (defining H), ¢ = p?—1 (all directions in the fibres) and the lagrangian
submanifold L as all the extensions to 7,R? of the 1-forms p = d7|, defined on the
tangent space to D. It turns out the (H, L, H n L) is a symplectic triplet diffeomorphic
to the one considered in §§ 3, 4 of the present paper.
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