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Abstract. For a generic embedding of a smooth closed surface M into R4, the subset
of R4 which is the affine λ−equidistant of M appears as the discriminant set of a
stable mapping M × M → R

4, hence their stable singularities are Ak , k = 2, 3, 4,
and C±

2,2. In this paper, we characterize these stable singularities of λ−equidistants in
terms of the bi-local extrinsic geometry of the surface, leading to a geometrical study of
the set of weakly parallel points on M .
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1 Introduction

When M is a smooth closed curve on the affine planeR2, the set of all midpoints
of chords connecting pairs of points on M with parallel tangent vectors is called
the Wigner caustic of M , or the area evolute of M , or still, the affine 1/2-
equidistant of M . The 1/2-equidistant is generalized to any λ-equidistant, de-
noted Eλ(M), λ ∈ R, by considering all chords connecting pairs of points of M
with parallel tangent vectors and the set of all points of these chords which stand
in the λ-proportion to their corresponding pair of points on M .
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The definition of the affine λ-equidistant of M is generalized to the cases when
M is an n-dimensional closed submanifold of Rq , with q ≤ 2n, by considering
the set of all λ-points of chords connecting pairs of points on M whose direct
sum of tangent spaces do not coincide with Rq , the so-called weakly parallel
pairs on M . In the particular case of M2 ⊂ R

4, a weakly parallel pair on the
surface M can be either 1-parallel (when the tangent spaces span a 3-space) or
2-parallel, which is the case of true parallelism, also called strong parallelism.

Affine equidistants of smooth submanifolds appear naturally in the defini-
tion of affine-invariant global centre symmetry sets of these submanifolds and,
particularly the Wigner caustic, also appear naturally in some problems in math-
ematical physics. In every case, precise knowledge of their singularities is an
important issue [2, 3, 4, 8, 9, 11]. Thus, stable singularities of affine equidistants
of Mn ⊂ R

q have been extensively studied [1, 2, 3, 4, 7, 8, 9, 10], culminating
in its complete classification for all pairs (2n, q) of nice dimensions [5].

On the other hand, not so much is known with respect to the interpretation for
the realization of these stable singularities in terms of the extrinsic geometry of
Mn ⊂ R

q . The case of curves on the plane has long been well understood [1, 7],
just as for hypersurfaces [8]. Another instance that has been completely worked
out refers to a Lagrangian surface M2 in symplectic R4, for its Wigner caustic
on shell, that is, the part of its 1/2-equidistant that is close to and contains M
[3]. A geometric study of the Wigner caustic on shell for general surfaces in R4

has also been partly worked out in [10].
In this paper, we extend the extrinsic geometric study of the realization of

affine equidistants to the case of general (off-shell) λ-equidistants of any smooth
surface M2 ⊂ R

4. Our paper is organized as follows:
First, Section 2 reviews basic definitions and characterizations of affine equi-

distants.The presentation is based on [5]. Then, basic facts on extrinsic geometry
of surfaces in 4-space are recalled in Section 3.

Our geometric study is presented in Sections 4 and 5. First, in Section 4 we
describe the realization of singularities of affine equidistants in terms of the
bi-local extrinsic geometry of the surface. The main result for the case of 1-
parallel pairs is presented in Theorem 4.3, while Theorems 4.4 and 4.5 present
the results for the 2-parallel case.

This is followed in Section 5 by a complementary study of the set of weakly
parallel points on M . We start by using the Grassmannian of 2-planes in 4-space,
cf. Propositions 5.1 and 5.2 and Theorem 5.3, leading to the final detailed descrip-
tion of the set of weakly parallel points presented in Corollary 5.4, Theorem 5.8
and Proposition 5.9.
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2 Singularities of affine equidistants: overview

In this section, we summarize the material that is presented in [5] in greater
detail, in order to describe, characterize and classify the singularities of affine
λ-equidistants of smooth submanifolds.

2.1 Definition of affine equidistants

Let M be a smooth closed n-dimensional submanifold of the affine space Rq ,
with q ≤ 2n. Let α, β be points of M and denote by τα−β : Rq � x �→
x + (α − β) ∈ Rq the translation by the vector (α − β).

Definition 2.1. A pair of points α, β ∈ M (α 	= β) is called a weakly parallel
pair if

TαM + τα−β(TβM) 	= R
q.

A weakly parallel pair α, β ∈ M is called k-parallel if

dim(TαM ∩ τα−β(TβM)) = k.

If k = n the pair α, β ∈ M is called strongly parallel, or just parallel. We also
refer to k as the degree of parallelism of the pair (α, β).

Definition 2.2. A chord passing through a pair α, β, is the line

l(α, β) = {x ∈ Rq |x = λα + (1 − λ)β, λ ∈ R},
but we sometimes also refer to l(α, β) as a chord joining α and β.

Definition 2.3. For a given λ, an affine λ-equidistant of M, Eλ(M), is the set
of all x ∈ Rq such that x = λα + (1 − λ)β, for all weakly parallel pairs (α, β)
in M. Eλ(M) is also called a momentary equidistant of M. Whenever M is
understood, we write Eλ for Eλ(M).

Note that, for any λ, Eλ(M) = E1−λ(M) and in particular E0(M) = E1(M) =
M . Thus, the case λ = 1/2 is special:

Definition 2.4. E1/2(M) is called the Wigner caustic of M [1, 15].

2.2 Characterization of affine equidistants by projection

Consider the product affine space: Rq × R
q with coordinates (x+, x−) and the

tangent bundle to Rq : TRq = R
q × R

q with coordinate system (x , ẋ) and
standard projection π : TRq � (x , ẋ) → x ∈ Rq.
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Definition 2.5. ∀λ ∈ R \ {0, 1}, a λ-chord transformation

�λ : Rq × Rq → TRq , (x+, x−) �→ (x , ẋ)

is a linear diffeomorphism defined by:

x = λx+ + (1 − λ)x− , ẋ = x+ − x−. (2.1)

Remark 2.6. The choice of linear equation for ẋ in (2.1) is not unique, but this
is the simplest one. Among other possibilities, the choice ẋ = λx+ − (1 −λ)x−
is particularly well suited for the study of affine equidistants of Lagrangian
submanifolds in symplectic space [4].

Now, let M be a smooth closed n-dimensional submanifold of the affine space
R

q (2n ≥ q) and consider the product M × M ⊂ R
q × Rq . Let Mλ denote the

image of M × M by a λ-chord transformation,

Mλ = �λ(M × M)

which is a 2n-dimensional smooth submanifold of TRq.
Then we have the following general characterization:

Theorem 2.7 ([4]). The set of critical values of the standard projection π :
TRq → R

q restricted to Mλ is Eλ(M).

Definition 2.8. ∀λ ∈ R \ {0, 1}, the λ-point map is the projection

�λ : Rq ×Rq → R
q , (x+, x−) → x = λx+ + (1 − λ)x− .

Remark 2.9. Because �λ = π ◦ �λ we can rephrase Theorem 2.7: the set of
critical values of the projection�λ restricted to M × M is Eλ(M).

2.3 Characterization of affine equidistants by contact

In the literature, if M ⊂ R
2 is a smooth curve, the Wigner caustic E1/2(M)

has been described in various ways, one of which says that, if Ra : R2 → R
2

denotes reflection through a ∈ R2, then a ∈ E1/2(M) when M and Ra(M) are
not transversal [1, 15]. We generalize this description for every λ-equidistant of
submanifolds of more arbitrary dimensions.

Definition 2.10. ∀λ ∈ R \ {0, 1}, a λ-reflection through a ∈ Rq is the map

Rλ
a : Rq → R

q , x �→ Rλ
a(x) = 1

λ
a − 1 − λ

λ
x (2.2)
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Remark 2.11. A λ-reflection through a is not a reflection in the strict sense
becauseRλ

a ◦Rλ
a 	= id : Rq → R

q , instead,

R1−λ
a ◦Rλ

a = id : Rq → R
q ,

so that, if a = aλ = λa+ + (1 − λ)a− is the λ-point of (a+, a−) ∈ R2q ,

Rλ
aλ
(a−) = a+ , R1−λ

aλ
(a+) = a− .

Of course, for λ = 1/2, R1/2
a ≡ Ra is a reflection in the strict sense.

Now, let M be a smooth n-dimensional submanifold of Rq , with 2n ≥ q.
Also, let M+ be a germ of submanifold M around a+, let M− be a germ of
submanifold M around a− and let a = aλ = λa+ + (1 − λ)a− be the λ-point of
(a+, a−) ∈ M × M ⊂ R

q × Rq .
Then, the following characterization is immediate:

Proposition 2.12. The following conditions are equivalent:

(i) a ∈ Eλ(M)

(ii) M+ and Rλ
a(M

−) are not transversal at a+

(iii) M− and R1−λ
a (M+) are not transversal at a−.

Therefore, the study of the singularities of Eλ(M) � 0 can be proceeded via
the study of the contact between M+ and Rλ

0(M
−) or, equivalently, the contact

between R1−λ
0 (M+) and M−.

2.4 Singularities of contact

Let N1, N2 be germs at x of smooth n-dimensional submanifolds of the space
R

q , with 2n ≥ q. We describe N1, N2 in the following way:

• N1 = f −1(0), where f : (Rq, x)→ (Rq−n, 0) is a submersion-germ,

• N2 = g(Rn), where g : (Rn, 0) → (Rq, x) is an embedding-germ.

Definition 2.13. A contact map between submanifold-germs N1, N2 is the fol-
lowing map-germ κN1,N2 : (Rn, 0) → (Rq−n, 0), where κN1 ,N2 = f ◦ g.

Let Ñ1, Ñ2 be another pair of germs at x̃ of smooth n-dimensional submani-
folds of the space Rq, described in the same way as N1, N2.
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Definition 2.14. The contact of N1 and N2 at x is of the same contact-type
as the contact of Ñ1 and Ñ2 at x̃ if ∃ a diffeomorphism-germ 
 : (Rq, x) →
(Rq, x̃) s.t. 
(N1) = Ñ1 and 
(N2) = Ñ2. We denote the contact-type of N1

and N2 at x by K(N1, N2, x).

Theorem 2.15 ([14]). K(N1, N2, x) = K(Ñ1, Ñ2, x̃) if and only if the contact
maps f ◦ g and f̃ ◦ g̃ are K-equivalent.

Definition 2.16. We say that N1 and N2 are k-tangent at x = 0 if

dim(T0N1 ∩ T0N2) = k .

If k is maximal, that is, k = dim(T0N1) = dim(T0N2), we say that N1 and N2

are tangent at 0.

Remark 2.17. In the context of affine equidistants, Eλ(M), note that N1 = M+
and N2 = Rλ

0(M
−) are k-tangent at 0 if and only if Ta+ M+ and Ta− M− are

k-parallel, where λa+ + (1 − λ)a− = 0 ∈ Eλ(M).

Proposition 2.18 ([5]). If N1 and N2 are k-tangent at 0 then the corank of the
contact map κN1,N2 is k.

3 Extrinsic geometry of surfaces in 4-space: overview

In this section, we recall basic definitions and results on the extrinsic geometry
of smooth surfaces in 4-space. See [12, 13] for details.

Let f : U → R
4 be a local parametrisation of M , where U is an open subset

of R2. Let {e1, e2, e3, e4} be a positively oriented orthonormal frame in R4 such
that at any y = (y1, y2) ∈ U, {e1(y), e2(y)} is a basis for the tangent plane TpM
and {e3(y), e3(y)} is a basis for the normal plane Np M at p = f (y).

Definition 3.1. The second fundamental form of M at p is the vector valued
quadratic form I I p : TpM → Np M associated to the normal component of the
second derivative d2 f of f at p, that is,

I I p = 〈d2 f, e3〉e3 + 〈d2 f, e4〉e4.

Let a = 〈
e3, fy1 y1

〉
, b = 〈

e3, f y1 y2

〉
, c = 〈

e3, fy2 y2

〉
, e = 〈

e4, fy1 y1

〉
,

f = 〈
e4, f y1 y2

〉
, g = 〈

e4, f y2 y2

〉
.

Then, with this notation, we can write

I Ip (u) = (au2
1 + 2bu1u2 + cu2

2)e3 + (eu2
1 + 2 f u1u2 + gu2

2)e4,
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where u = u1e1 + u2e2 ∈ TpM .

The matrix α =
(

a b c
e f g

)
is called the matrix of the second fundamental

form with respect to the orthonormal frame {e1, e2, e3, e4}.
Definition 3.2. The second fundamental form of M at p, along a normal vector
field ν is the quadratic form I I νp : TpM → R defined by

I I νp(u) = 〈
I Ip (u), v

〉
, u ∈ TpM, v = ν(p) ∈ Np M,

where I Ip (u) : TpM → Np M is the second fundamental form at p.

Let S1 be the unit circle in TpM parametrized by θ ∈ [0, 2π ]. Denote by γθ
the curve obtained by intersecting M with the hyperplane at p composed by the
direct sum of the normal plane Np M and the straight line in the tangent direction
represented by θ . Such curve is called normal section of M in the direction θ .

Definition 3.3. The curvature ellipse is the image of the mapping

η : S1 −→ Np M
θ �−→ η(θ)

where η(θ) is the curvature vector of γθ .

Scalar invariants of the extrinsic geometry of surfaces in R4 can be defined
using the coefficients of the second fundamental form. For instance the Gaussian
curvature

GM = ac − b2 + eg − f 2 (3.1)

and the� function

�M = 1

4
det

⎡⎢⎢⎣
a 2b c 0
e 2 f g 0
0 a 2b c
0 e 2 f g

⎤⎥⎥⎦ . (3.2)

Although neither�M nor GM is an affine invariant (a chosen metric was used
to define them), the following proposition allows for an affine-invariant classifi-
cation of a point p ∈ M ⊂ R

4.

Proposition 3.4 ([3], Proposition 4.18). The sign of �M is an affine invariant.
When rank{I I(p)} = 1, the sign of GM is also an affine invariant.

Definition 3.5. A point p ∈ M is called
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(i) parabolic if �M(p) = 0,

(ii) elliptic if �M(p) > 0,

(iii) hyperbolic if �M(p) < 0.

Definition 3.6. A parabolic point p ∈ M is called

(i-i) point of nondegenerate ellipse, if rank{I I(p)} = 2.

When rank{I I(p)} = 1, p is an inflection point. In this case, it is

(i-ii) inflection point of real type, if GM(p) < 0,

(i-iii) inflection point of flat type, if GM(p) = 0.

(i-iv) inflection point of imaginary type, if GM(p) > 0,

Definition 3.7. A direction v ∈ Np M is a binormal direction at p if the second
fundamental form I I v

p along the v direction is a degenerate quadratic form. In
this case, a direction u ∈ TpM in the kernel of I I v

p (u) is called an asymptotic
direction.

Definition 3.8. For a surface M ⊂ R
4, p ∈ M and u ∈ TpM, v ∈ Np M, we

say that (u, v) is a contact pair of M at p if v is a binormal direction at p and
u is an asymptotic direction associated to v.

Proposition 3.9 ([13], Lemma 3.2). Let M be a surface in R4,

1) For a hyperbolic point p ∈ M, there are exactly 2 contact pairs at p.

2) For an elliptic point p ∈ M, there are no contact pairs at p.

3) For a parabolic point p ∈ M,

i) if p is a point of nondegenerate ellipse, then there exists only one
contact pair at p.

ii) if p is an inflection point, then there exists only one v ∈ Np M such
that, for all u ∈ TpM, (u, v) is a contact pair at p.
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4 Extrinsic geometry of surfaces in 4-space and singularities of their
affine equidistants

We now present the geometric interpretation for the realizations of stable singu-
larities of affine equidistants of surfaces in R4.

We first recall the following result from [5]:

Theorem 4.1 ([5], Theorem 5.2). There exists a residual set S of embeddings
i : M2 → R

4, such that the map�λ : M × M \� → R
4 is locally stable, where

�λ(x , y) = λi(x)+ (1 − λ)i(y) and� is the diagonal in M × M.

Definition 4.2. We say that i : M2 → R
4 is a generic embedding if i ∈ S.

Because the codimension of each singularity of �λ is at most 4, the possible
stable singularities of affine equidistants of surfaces in R4 are:

A1, A2, A3, A4 for 1-parallelism, C±
2,2 for 2-parallelism.

For the reader’s convenience, we recall the normal forms of these stable sin-
gularities (R4, 0) → (R4, 0) in the table below:

Notation Normal form

A2 (u1, u2, u3, y2)

Aμ, 2 ≤ μ ≤ 4 (u1, u2, u3, yμ+1 + �
μ−1
i=1 ui yi)

C+
2,2 (u1, u2, x 2 + u1 y, y2 + u2x)

C−
2,2 (u1, u2, x 2 − y2, x y + u1x + u2 y)

We refer to [5], where all possible stable singularities of affine equidistants
are classified for submanifolds Mn ⊂ R

q , with (2n, q) an arbitrary pair of nice
dimensions, for all possible degrees of parallelism.

In this paper, we focus on investigating the conditions for realizing these
equidistant singularities Aμ, 1 ≤ μ ≤ 4 and C±

2,2 from the extrinsic geometry
of a generic embedding of smooth surface M ⊂ R

4.
In this specific case we substitute submanifold-germs N1 and N2 of Section 2

by N1 = M+ and N2 = Rλ
0(M

−), or equivalently by

N1 = M− and N2 = R1−λ
0 (M+),

where M+ is the surface-germ of M around a+ ∈ M ⊂ R
4 and M− is the

surface-germ of M around a− ∈ M ⊂ R
4, with λa+ + (1 − λ)a− = 0.
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4.1 Bi-local geometry of weakly parallel pairs and singularities of affine
equidistants

We start by looking at the bi-local geometry of 1-parallel pairs.
Suppose (a+, a−) is a pair of 1-parallel points. Then, we can choose coordi-

nates in a neighbourhood of a+ and a− as follows:


+ :(R2, 0) → (R4, a+)
(y, z) �→ a+ + (y, z, φ(y, z), ψ(y, z)),

(4.1)

j 1φ(0, 0) = j 1ψ(0, 0) = 0.


− :(R2, 0) → (R4, a−)
(u, v) �→ a− + (u, ξ(u, v), ζ (u, v), v),

(4.2)

j 1ξ(0, 0) = j 1ζ(0, 0) = 0. In these coordinates, the local expression of the map
�λ|M×M is given by

�λ|M×M : (R2, 0)× (R2, 0) → (R4, 0)

((y, z), (u, v)) �→ (λy + (1 − λ)u, λz + (1 − λ)ξ(u, v),

λφ(y, z) + (1 − λ)ζ(u, v), λψ(y, z)+ (1 − λ)v)

where, to simplify, we have assumed λa+ + (1 − λ)a− = 0, for fixed λ.
In order to construct the contact map, we first reflect (M−, a−) through the

point 0 to get Rλ
0(M

−), parametrized as

Rλ
0(


−)(u, v) =

a+ −
(
(1 − λ)

λ
u,
(1 − λ)

λ
ξ(u, v),

(1 − λ)

λ
ζ(u, v),

(1 − λ)

λ
v

)
.

The contact map Kλ : (R2, 0) → (R2, 0) is then given by

Kλ(y, z) = (z + 1 − λ

λ
ξ

( −λ
1 − λ

y,
−λ

1 − λ
ψ(y, z)

)
,

φ(y, z) + 1 − λ

λ
ζ

( −λ
1 − λ

y,
−λ

1 − λ
ψ(y, z)

)
.

(4.3)

The following theorem distinguishes the Aμ, 1 ≤ μ ≤ 4 singularities of
equidistants, in terms of the bi-local geometry of M .

Theorem 4.3. Let a+ ∈ M+, a− ∈ M−, so that λa+ + (1 − λ)a− = 0 is
a singular point of �λ|M×M. For a pair of vectors (u, v) in R4, such that u is
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in the direction of 1-parallelism of (a+, a−) and v ∈ Na+ M+ ∩ Na− M− is in
the common normal direction, let η+ and η− be the normal curvature of M+
and Rλ

0(M
−) along v in the common direction u. Then 0 is a singular point of

�λ|M×M of type Ak if and only if

η
( j)
+ (0) = (−1) j+1

(
λ

1 − λ

) j+1

η
( j)
− (0) , j = 0, . . . , k − 1, (4.4)

η
(k)
+ (0) 	= (−1)k+1

(
λ

1 − λ

)k+1

η
(k)
− (0) , (4.5)

where η( j)
+ and η( j)

− denote the j -order derivatives of η+ and η− respectively.

Proof. We can solve the first equation Kλ
1 = 0 in (4.3), as z = z(y), so that

the contact map Kλ is K-equivalent to the suspension of

θλ :R→ R

y �→ φ(y, z(y))+ 1 − λ

λ
ζ

( −λ
1 − λ

y,
−λ

1 − λ
ψ(y, z(y))

)
.

(4.6)

The point 0 is a singularity of type Ak of θλ if and only if

∂ jφ

∂y j
(0) = (−1) j−1

(
λ

1 − λ

) j−1
∂ jζ

∂y j
(0), j = 1, . . . , k, (4.7)

∂ jφ

∂y j
(0) 	= (−1) j−1

(
λ

1 − λ

) j−1
∂ jζ

∂y j
(0), j = k + 1, (4.8)

noting that condition (4.7) for j = 1 is the condition of 1-parallelism.
Letting α+ and α− be curves in M+ and Rλ

0(M
−) given by

α+(y) = (y, z(y), φ(y, z(y), ψ(y, z(y))

α−(y) = (y,
λ− 1

λ
ξ

(
λ

λ− 1
y,

λ

λ− 1
ψ(y, z(y)),

λ− 1

λ
ζ

(
λ

λ− 1
y,

λ

λ− 1
ψ(y, z(y))

)
, ψ(y, z(y))

)
and letting η+(y) and η−(y) be the projections of the normal curvatures of α+
and α− in the common normal direction v, then

η+(y) = ∂2φ

∂y2
(y, z(y)) and η−(y) = ∂2ζ

∂y2
(y, z(y)).

So, equations (4.7)-(4.8) reduce to equations (4.4)-(4.5). �
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We now look at the bi-local description of 2-parallel pairs.
Suppose (a+, a−) is a pair of 2-parallel points. Then, we can choose coordi-

nates in a neighbourhood of a+ and a− as follows:


+ :(R2, 0) → (R4, a+)
(y, z) �→ a+ + (y, z, φ(y, z), ψ(y, z)),

(4.9)

j 1φ(0, 0) = j 1ψ(0, 0) = 0.


− :(R2, 0) → (R4, a−)
(u, v) �→ a− + (u, v, ξ(u, v), ζ (u, v)),

(4.10)

j 1ξ(0, 0) = j 1ζ(0, 0) = 0.
Again, for simplicity we assume that for λ fixed, λa+ + (1 − λ)a− = 0. Now

the contact map Kλ : (R2, 0) → (R2, 0) is

Kλ(y, z) = (φ(y, z) + 1 − λ

λ
ξ

( −λ
1 − λ

y,
−λ

1 − λ
z

)
,

ψ(y, z) + 1 − λ

λ
ζ

( −λ
1 − λ

y,
−λ

1 − λ
z

) (4.11)

Let the contact surface Cλ ⊂ R
4 be the graph of the contact map Kλ.

If 0 ∈ Cλ ⊂ R
4 is a singular point of type C+

2,2 of the contact map Kλ, then
�Cλ(0) < 0 [13]. It follows that Cλ has two contact pairs at 0. For each of these,
we have the following:

Theorem 4.4. Let a+ ∈ M+, a− ∈ M−, so thatλa++(1−λ)a− = 0 ∈ Cλ ⊂ R
4

is a singular point of Kλ of type C+
2,2. The pair (u, v) is a contact pair of Cλ at

0 if and only if one of the following holds.

(i) The pair (u, v) is a contact pair of M+ and ofRλ
0(M

−) at a+ (equivalently,
(u, v) is a contact pair of M− and of R1−λ

0 (M+) at a−).
(ii) The pair (u, v) is not a contact pair of either M+ or Rλ

0(M
−) at a+, but

the normal curvatures of M+ and Rλ
0(M

−) along u in the direction of
v are in proportion λ

1−λ at a+ (equivalently, (u, v) is not a contact pair

of either M− or R1−λ
0 (M+) at a−, but the normal curvatures of M− and

R1−λ
0 (M+) along u in the direction of v have the proportion 1−λ

λ
at a−).
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Proof. Let (u, v) be a contact pair of the contact surface Cλ. Without loss of
generality we can take u = (1, 0, 0, 0) and v = (0, 0, 1, 0). Then, since v is a
binormal direction, it follows that the hessian of the function germ

Kλ
2 (y, z) = ψ(y, z) + 1 − λ

λ
ζ

( −λ
1 − λ

y,
−λ

1 − λ
z

)

is degenerate and u is its kernel. Then
∂2Kλ

2
∂y2 (0) = 0, hence

∂2ψ

∂y2
(0) = − λ

1 − λ

∂2ζ

∂y2
(0).

As in the proof of Theorem 4.3, either ∂2ψ

∂y2 (0) = 0 and ∂2ζ

∂y2 (0) = 0 or they are

not zero, but the normal curvatures of M+ and Rλ
0(M

−) along v in the direction
of u are proportional. Similar statement holds for M− and R1−λ

0 (M+). �
If 0 ∈ Cλ ⊂ R

4 is a singular point of type C−
2,2 , then �Cλ(0) > 0 [13]. It

follows that Cλ has no contact pairs at 0. We thus have:

Theorem 4.5. Let a+ ∈ M+, a− ∈ M−, so thatλa++(1−λ)a− = 0 ∈ Cλ ⊂ R
4

is a singular point of type C−
2,2 . Although a+ ∈ M+ and a− ∈ M− are strongly

parallel points, both of the following holds true.

(i) M+ andRλ
0(M

−) do not have any common contact pair at a+ (or equiv-
alently, M− andR1−λ

0 (M+) do not have any common contact pair at a−).
(ii) There is no pair (u, v) ∈ R4 with u ∈ Ta+ M+ and v ∈ Na+ M+, such that

the normal curvature along u in the v direction of M+ and of Rλ
0(M

−)
are in proportion λ

1−λ at a+ (or equivalently, the normal curvature along

u in the v direction of M− and of R1−λ
0 (M+) are in proportion 1−λ

λ

at a−).
Remark 4.6. Generically,�Cλ 	= 0 because singular points of Cλ ⊂ R

4 of type
C2,3 are not unfolded to a stable point of �λ ([5]).

5 Geometry of the set of weakly parallel points

We now extend our geometric investigations in order to describe the set of weakly
parallel points of M , as this set is naturally related to the set of affine equidistants
of M and its singularities.
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5.1 Grassmannian investigation of weakly parallel points

We start by using the Grassmannian Gr(2, 4), the space of 2-planes in R4.
First, we recall the Plücker coordinates for Gr(2, 4). Let e1, e2, e3, e4 be any

basis for R4 (not necessarily orthonormal or orthogonal, no metric is needed or
assumed here). Then, e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 is a basis
for �2

R
4 and we denote by (p12, p13, p14, p23, p24, p34) the coordinates of an

element π ∈ �2
R

4 in the above basis.
If the bi-vector π ∈ �2

R
4 with coordinates (p12, p13, p14, p23, p24, p34) rep-

resents an element in Gr(2, 4), then the bi-vector π ′ ∈ �2
R

4 with coordinates
(kp12, kp13, kp14, kp23, kp24, kp34), 0 	= k ∈ R, represents the same element
in Gr(2, 4). Thus, defining the equivalence class [π ] = {π ′ ∈ �2

R
4 | π ′ =

kπ, k ∈ R
∗}, it follows that [π ] ∈ P(�2

R
4) has homogeneous coordinates

[p12, p13, p14, p23, p24, p34].
However, not every element [π ] ∈ P(�2

R
4) lies in Gr(2, 4). π is in Gr(2, 4)

iff π is an elementary bi-vector, i.e. π = u ∧ v, for some u, v ∈ R
4. Thus

[π ] ∈ Gr(2, 4) iff
π ∧ π = 0.

In terms of the above coordinates, this translates into the equation

p12 p34 + p23 p14 − p13 p24 = 0. (5.1)

The homogeneous coordinates [p12, p13, p14, p23, p24, p34] subject to constraint
(5.1) are the Plücker coordinates of [π ] ∈ Gr(2, 4) with respect to the basis
e1, e2, e3, e4 of R4. It follows that dimR(Gr(2, 4)) = 4.

Now, consider the Gauss map

G : M → Gr(2, 4) , R4 ⊃ M � a �→ [Ta M] ∈ Gr(2, 4).

The Gauss map fails to be injective precisely for (non-diagonal) strongly par-
allel pairs, i.e, a1 	= a2 ∈ M , such that G(a1) = G(a2). Thus, for a residual set
of embeddings M ⊂ R

4, G : M → Gr(2, 4) is an immersion with transver-
sal double points and such a [π ] ∈ G(M) whose neighborhood in G(M) is not
homeomorphic toR2 is the common tangent plane for a (non-diagonal) 2-parallel
pair (a1, a2) ∈ M × M .

Consider also the double Gauss map:

G × G : M × M → Gr(2, 4)× Gr(2, 4) , (a1, a2) �→ ([π1], [π2])
Then, [π1] and [π2] are weakly parallel, iff

π1 ∧ π2 = 0. (5.2)
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And we denote

W = {([π1], [π2]) ∈ Gr(2, 4)× Gr(2, 4)| π1 ∧ π2 = 0}.
In terms of the Plücker coordinates for Gr(2, 4),

[π1] = [p12, p13, p14, p23, p24, p34] , p12 p34 + p23 p14 − p13 p24 = 0 , (5.3)

[π2] = [q12, q13, q14, q23, q24, q34] , q12q34 + q23q14 − q13q24 = 0 , (5.4)

condition (5.2) translates into

p12q34 + p34q12 + p14q23 + p23q14 − p13q24 − p24q13 = 0. (5.5)

Thus, equations (5.3), (5.4) and (5.5) define coordinates for an element ([π1],
[π2]) of the 7-dimensional subvariety W ⊂ (Gr(2, 4)× Gr(2, 4)).

We denote by Wreg the set of smooth points of W , and by Sing(W ) the set of
singular points of W .

Proposition 5.1. Away from the diagonal, W is a smooth hypersurface of
Gr(2, 4)× Gr(2, 4).

Proof. First, note that each of the equations (5.3) and (5.4) define smooth sub-
manifolds Gr(2, 4) ⊂ P(�2

R
4) and, similarly, equation (5.5) defines a smooth

submanifold ofP(�2
R

4)×P(�2
R

4). Thus, W is singular only where these three
submanifolds of P(�2

R
4)×P(�2

R
4) do not intersect transversaly. By straight-

forward computation,we see that the rank of the matrix of the derivatives of equa-
tions (5.3), (5.4) and (5.5) is not maximal iff ∀ 1 ≤ i < j ≤ 4, pi j/qi j = k ∈ R∗.
It follows that Sing(W ) = {([π1], [π2]) ∈ Gr(2, 4)× Gr(2, 4) | [π1] = [π2]}.
�

Now, as Gr(2, 4)× Gr(2, 4) fibers (trivially) over Gr(2, 4), say, via the first
projection Pr1, this induces a sub-bundle W → Gr(2, 4), ([π1], [π2]) �→ [π1],
which may not be trivial. Its typical fiber W[π1] is a 3-variety, which can locally
be described as follows.

Chose a basis e1, e2, e3, e4 for R4 such that [π1] = [e1 ∧ e2]. Then, [π1] =
[1, 0, 0, 0, 0, 0], and [π2] = [q12, q13, q14, q23, q24, q34] ∈ W[π1] iff q12q34 +
q23q14 − q13q24 = 0 and q34 = 0, that is,

[π2] ∈ W[π1] ⇐⇒ [π2] = [q12, q13, q14, q23, q24, 0] , q23q14 − q13q24 = 0 ,

or equivalently,

[π2] ∈ W[π1] ⇐⇒ [π2] = [1, α, β, γ, δ, 0] , βγ − αδ = 0 , (5.6)



�

�

“main” — 2016/5/16 — 18:31 — page 16 — #16
�

�

�

�

�

�

in other words, close to α = β = γ = δ = 0,

W[π1] = {(α, β, γ, δ) ∈ R4 | αδ − βγ = 0} . (5.7)

Thus, we have a refinement of Proposition 5.1, that is,

Proposition 5.2. In a neighborhood of [π2] = [π1], the 3-variety W[π1] is a
cone.

The following theorem, which follows from standard transversality arguments,
describes how affine equidistants Eλ(M) are related to the intersection of W and
G(M)× G(M).

Theorem 5.3. Let M ⊂ R
4 be a generic embedding and (a, b) be a weakly

parallel pair on M.

(i) Let (a, b) be a 1-parallel pair, so that (G(a),G(b)) ∈ Wreg. If �λ|M×M :
(R2 × R

2, (a, b)) → (R4, λa + (1 − λ)b) has a stable singularity (of
type Ak, k = 1, 2, 3, 4), then G(M) × G(M) is transverse to Wreg at
(G(a),G(b)).

(ii) Let (a, b) be a 2-parallel pair, so that (G(a),G(b)) ∈ Sing(W ). If
�λ|M×M : (R2 × R

2, (a, b)) → (R4, λa + (1 − λ)b) has a stable sin-
gularity (of type C±

2,2) then (a, b) is a transversal double point of the
Gauss map.

5.2 Geometric description of the set of weakly parallel points

We emphasize that, from Theorem 5.3, for generic embeddings of smooth closed
surfaces in R4 there are only double points of Gauss map. There are no triple,
quadruple... points of the Gauss map, generically.

Therefore, we obtain the following corollary of Theorem 5.3:

Corollary 5.4. For generic embeddings of smooth closed surfaces inR4, strongly
parallel (nonidentical) points come only in pairs and there are only finite numbers
of such pairs.

Remark 5.5. An interesting question,whose answer is unknown to us, is whether
there exists any embedded compact surface M ⊂ R

4 without nonidentical 2-
parallel points, in other words, such that the Gauss map G : M → Gr(2, 4) is
injective.
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Notation 5.6. For p ∈ M , let Wp ⊂ M denote the set of weakly parallel points
to p and let W q

p denote the germ ofWp at q ∈ M .

Remark 5.7. It is easy to see that G(Wp) ⊂ W where the latter is described in
Propositions 5.1 and 5.2.

Then, the following theorem describesW q
p in all possible situations.

Theorem 5.8. For a generic embedding of M into R4, cf. Definition 4.2 and
Theorem 4.1, the following hold.

(1) If q is 1-parallel to p, then W q
p is a germ of smooth curve.

(2) If q is 2-parallel to p, then:

(i) If q is an elliptic point of M, then W q
p = {q}.

(ii) If q is a parabolic point of M, thenW q
p is a singular curve with a cusp

singularity at q which is tangent to the asymptotic direction at q (this
is generic for q = p, as a generic embedding has a parabolic point,
or in a 1-parameter family of embeddings for q 	= p, cf. Remark 4.6).

(iii) If q is a hyperbolic point of M, then W q
p is a singular curve with a

transversal double point at q so that each branch ofW q
p is a smooth

curve tangent to an asymptotic direction at q.

Proof. If the points p, q ∈ M are 1-parallel then the germs of M at p =
(p1, p2, p3, p4) and at q = (q1, q2, q3, q4) can be parametrized in the following
way F(x , y) = (p1 + x , p2 + y, p3 + f3(x , y), p4 + f4(x , y)) and G(u, v) =
(q1 + u, q2 + g2(u, v), q3 + g3(u, v), q4 + v) respectively, where f3, f4, g2, g4

are smooth function-germs vanishing at (0, 0) such that d f3|(0,0) = d f4|(0,0) =
dg2|(0,0) = dg3|(0,0) = 0. The point G(u, v) is weakly parallel to p if the
Jacobian of the map

(x , y, u, v) �→ λF(x , y)+ (1 − λ)G(u, v) (5.8)

vanishes at the point (0, 0, u, v). The Jacobian of the map (5.8) at (0, 0, u, v)
has the form ∂g3

∂u (u, v). Generically d
(
∂g3
∂u

)|(0,0) 	= 0, thereforeW q
p is a germ at

q of a smooth curve.
If the points p, q ∈ M are 2-parallel then the germs of M at p = (p1, p2,

p3, p4) and at q = (q1, q2, q3, q4) can be parametrized in the following way
F(x , y) = (p1 + x , p2 + y, p3 + f3(x , y), p4 + f4(x , y)) and G(u, v) =
(q1 + u, q2 + v, q3 + g3(u, v), q4 + g4(u, v)) respectively, where f3, f4, g3, g4
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are smooth function-germs vanishing at (0, 0) such that d f3|(0,0) = d f4|(0,0) =
dg3|(0,0) = dg4|(0,0) = 0.

The point G(u, v) is weakly parallel to p if the Jacobian of the map (5.8)
vanishes at (0, 0, u, v). It is easy to see that the Jacobian of the map (5.8) at
(0, 0, u, v) is J ac(g3, g4)(u, v), i.e. the Jacobian of the map (g3, g4) at (u, v).
It is also easy to see d(J ac(g3, g4))|(0,0) vanishes.

The Hessian of the function (u, v) �→ J ac(g3, g4)(u, v) at (0, 0) is equal to
4�M(q). Therefore if q is an elliptic point, then W q

p = {q}, if q is a parabolic
point, then W q

p is a singular curve with a cusp singularity at q which is tangent
to the asymptotic direction at q, and finally if q is a hyperbolic point, then
W q

p consists of the crossing of two smooth curves at q, each one tangent to an
asymptotic direction at q.

We can also interpret the above calculations in terms of singularities of pro-
jections into planes. In fact, let ρp : M → Np M be the projection of M into the
2-plane Np M = R

2, which is fixed.
Then the singular set of the projection,

�ρp = {q ∈ M | there exists some v ∈ Tq M, v ∈ kerρp}
coincides with the setWp. Given q ∈ Wp, we use the above local parametriza-
tions to studyW q

p .
If points p, q ∈ M are 1-parallel then the germs of M at p = (p1, p2, p3, p4)

and at q = (q1, q2, q3, q4) can be parametrized respectively by F(x , y) =
(p1 + x , p2 + y, p3 + f3(x , y), p4 + f4(x , y)) and G(u, v) = (q1 + u, q2 +
g2(u, v), q3 + g3(u, v), q4 + v). The normal plane of M at p is the plane
[(0, 0, 1, 0), (0, 0, 0, 1)]. Hence, the germ at q of the projectionρp : M → Np M
is given by

ρp ◦ G(u, v) = (q3 + g3(u, v), q4 + v).

Thus, as above, W q
p is smooth in a neighbourhood of q if and only if (g3uu (0),

g3uv(0)) 	= (0, 0) and this condition is satisfied for generic embeddings of M .
On the other hand, if points p, q ∈ M are 2-parallel, the germ at q of the
projection is given by

ρp ◦ G(u, v) = (q3 + g3(u, v), q4 + g4(u, v)),

and we proceed as above. �
Because the case (2 − ii) above for q 	= p is only generic in a 1-parameter

family of embeddings, according to Definition 4.2 and Theorem 4.1, we now
analyze its bifurcation set.
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Proposition 5.9. Let I � t be an open interval containing 0, with Mt a generic
smooth 1-parameter family of smooth surface embeddings in R4 such that the
points pt and qt in Mt are strongly parallel ∀t ∈ I and q0 is a parabolic point
of M0 ⊂ R

4. Let W qt
pt ⊂ Mt denote the germ of weakly parallel points to pt at

qt . Then, W qt
pt is described by the Whitney umbrella

2u2 − 3v3 − 2tv2 = 0 , (5.9)

such that a curve Ct=t0 on this surface inR3 has a smooth branch and an isolated
point if t0 < 0, or is a cusp if t0 = 0, or is a looped curve with a transversal self-
crossing if t0 > 0. These three cases correspond to the point qt0 = (u, v) = (0, 0)
being an isolated point for t0 < 0 (elliptic case), a cuspidal point for t0 = 0
(parabolic case), or a transversal double point for t0 > 0 (hyperbolic case).

Proof. Following the same notation of the proof of Theorem 5.8, with t denot-
ing the parameter of the family of embeddings and assuming qt is parabolic
for t = 0, the germ of Mt at qt can be put after translation to the form4

gt(u, v) = (u, v, g3
t (u, v), g4

t (u, v)), where g3
t (u, v) = u2 +v3 + tv2 + Vt(u, v)

and g4
t (u, v) = uv + Wt (u, v), with Vt and Wt of third or higher order in (u, v)

for all t .
The point pt being 2-parallel to qt , the germ of Mt at pt is, after translation,

of the general form ft (x , y) = (x , y, f 3
t (x , y), f 4

t (x , y)), with f 3
t and f 4

t of
second order in (u, v) for all t .

Thus, as before, gt(u, v) is weakly parallel to pt if the Jacobian of the map (5.8)
vanishes at (0, 0, u, v) and this Jacobian is the same as the Jacobian of the map
(g3

t , g4
t ) at (u, v), which is of the form J (u, v, t) = 2u2 −3v3 −2tv2 + Rt(u, v),

where Rt is of third or higher order in (u, v) for all t . We now apply the following
lemma:

Lemma 5.10. The Jacobian J (u, v, t) = 2u2 − 3v3 − 2tv2 + Rt(u, v), with Rt

of third or higher order in (u, v), ∀t , can be put for small t , by a smooth near-
identity change of coordinates of the form (u, v, t) �→ (U (u, v, t), V (u, v, t), t),
to the normal form H (U, V , t) = 2U 2 − 3V 3 − 2tV 2(1 + φ(U, V , t)), with φ
a smooth function satisfying φ(0, 0, t) = 0, for small t .

Proof. Start by writing Rt (u, v) = t
(
ψ3(v, t)+ uψ2(v, t)+ 2u2ψ1(u, v, t)

)
,

where ψ3 is of order at least 3 in v, ∀t , ψ2 is of order at least 2 in v, ∀t , and

4In general, the tangent plane to Mt at qt will change with t, but we can adapt an orthonormal
moving frame such that Tqt Mt = span < (1, 0, 0, 0), (0, 1, 0, 0) >,∀t.
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ψ1(0, 0, t) = 0. Then,

J (u, v; t) = 2u2(1 + tψ1(u, v, t))− 3v3(1 − tψ̃3(v, t))− 2tv2(1 − uψ̃2(v, t)),

where ψ̃3(v, t) = ψ3(v, t)/3v3, ψ̃2(v, t) = ψ2(v, t)/2v2. Thus, setting

V (u, v, t) = V (v, t) = v
3
√

1 − tψ̃3(v, t)

and U (u, v, t) = u
√

1 + tψ1(u, v, t), we note that (u, v, t) �→ (U, V , t) is
a near-identity transformation for small t , therefore invertible, so that we can
write J (u, v, t) = H (U, V , t)= 2U 2 − 3V 3 − 2tV 2(1 + φ(U, V , t)), where φ
is a smooth function satisfying φ(0, 0, t) = 0, for small t . �

It follows that, for small t and in a neighborhood of (U, V ) = (0, 0), the
curve C′

t=t0, which is obtained as the section {H (U, V , t = t0) = 0}, is a small
deformation of the curve Ct=t0, which is obtained as the section {h(u, v, t =
t0) = 0}, where h(u, v, t) = 2u2 −3v3 −2tv2. In particular, for t0 = 0 the curve
C′

t=t0 is a cusp, just as Ct=t0, for t0 < 0 the curve C′
t=t0 has a smooth branch and

an isolated point at (0, 0), just as Ct=t0, and for t0 > 0 the curve C′
t=t0 is a looped

curve with a transversal self-crossing at (0, 0), just like Ct=t0. �

Remark 5.11. In the same vein, when the embedding is fixed and we look at
the cases q = p, if a smooth curve I � s �→ p(s) ∈ M is transversal to the
smooth curve of parabolic points on M at a parabolic point p(0), then by slightly
adapting the above reasoning we can easily see that the family of germs W p(s)

p(s)
is described by the Whitney umbrella (5.9).

Remark 5.12. As a last remark, we note that two distinctpoints q, q ′ ∈ Wp need
not be weakly parallel to each other. For instance, if [π1] = G(p) = [e1 ∧ e2],
we may have that G(q) = [e1 ∧ e3] and G(q ′) = [e2 ∧ e4]. We also note that,
if (p, q) is a strongly parallel pair (p 	= q), the local geometry of p and q can
be distinct (one elliptic, the other hyperbolic, etc), thus in general W q

p and W p
q

can be of distinct types.

5.3 Illustrations

We now provide examples of Theorem 5.8 and Proposition 5.9, this latter in the
form of Remark 5.11.
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Example 5.13. Let us consider the following embedding of a torus into the affine
space R4([6]), F(x , y) = ( f1(x , y), f2(x , y), f3(x , y), f4(x , y)),

f1(x , y) = cos(x)

(
1 − cos(y)

10

)
+ 1

10
sin(x) sin(y),

f2(x , y) =
(

1 − cos(y)

10

)
sin(x)− 1

10
cos(x) sin(y),

f3(x , y) = cos(2x)

(
1 − 2 cos(y)

5

)
+ 4

5
sin(2x) sin(y),

f4(x , y) =
(

1 − 2 cos(y)

5

)
sin(2x)− 4

5
cos(2x) sin(y).

The curves of parabolic points on this torus are given by

y = ±2 arctan

(√
1

5

(
−4 + √

41
))
.

Figure 1 presents the curve of weakly parallel points on the x , y-plane to a
hyperbolic point (π, π) (or elliptic point (0, 0)). All points marked by black dots
on Figure 1 are strongly parallel. Elliptic points (0, 0) and (π, 0) are isolated
points of the the curve. There are transversal self-intersections of the curve in
hyperbolic points (0, π) and (π, π).

Figure 1: Set of weakly parallel points to an elliptic or hyperbolic point.



�

�

“main” — 2016/5/16 — 18:31 — page 22 — #22
�

�

�

�

�

�

Example 5.14. Let us again consider the torus from Example 5.13. In Figures 2
to 4 we present the bifurcation of W p

p – the germ at a point p of the curve of
weakly parallel points to p – when we change p from a hyperbolic point to a
parabolic point and then to an elliptic point. For p we chose a point with the
following coordinates on the (x , y)-plane:(

s, 2 arctan

(√
1

5

(
−4 + √

41
))

+ s

)

For s = 0 the point p is parabolic and at this parabolic point (marked by a
black dot) the curve has a cusp singularity, cf. Figure 3, which also shows the
curve of weakly parallel points to this parabolic point.

Figure 2: Set of weakly parallel points to a hyperbolic point (s = 0.085).

For sufficiently small positive s the point p is hyperbolic (cf. Fig. 2) and for
sufficiently small negative s the point p is elliptic (cf. Fig. 4). The dotted lines
on Figures 2-4 are lines of parabolic points. From the figures we see that the
bifurcation of the set W p

p when we change s is diffeomorphic to the Whitney
umbrella, which is presented on Figure 5.
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Figure 3: Set of weakly parallel points to a parabolic point (s = 0).

Figure 4: Set of weakly parallel points to an elliptic point (s = −0.085).
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Figure 5: The bifurcation of the germ, at a parabolic point p, of the set of weakly
parallel points to p.
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