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Abstract. We study germs of singular varieties in a symplectic space. In [A1], V.
Arnol’d discovered so called ‘‘ghost’’ symplectic invariants which are induced purely by
singularity. We introduce algebraic restrictions of di¤erential forms to singular varieties
and show that this ghost is exactly the invariants of the algebraic restriction of the sym-
plectic form. This follows from our generalization of Darboux-Givental’ theorem from
non-singular submanifolds to arbitrary quasi-homogeneous varieties in a symplectic space.
Using algebraic restrictions we introduce new symplectic invariants and explain their geo-
metric meaning. We prove that a quasi-homogeneous variety N is contained in a non-
singular Lagrangian submanifold if and only if the algebraic restriction of the symplectic
form to N vanishes. The method of algebraic restriction is a powerful tool for various
classification problems in a symplectic space. We illustrate this by complete solutions of
symplectic classification problem for the classical A, D, E singularities of curves, the S5 sin-
gularity, and for regular union singularities.

1. Introduction and main results

1.1. Starting points. The starting points for this paper are as follows:

� The classical Darboux-Givental’ theorem on non-singular submanifolds of a sym-
plectic manifold (proved by A. Givental’ and firstly published in [AG]).

� The works [A1], [A2] in which V. Arnol’d studied singular curves in symplectic and
contact spaces and introduced the local symplectic and contact algebras.

� The work [Z] developing the local contact algebra.

The work [Z] is based on the notion of the algebraic restriction of a contact structure
to a subset N of a contact manifold. The present work is based on a similar notion of the
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algebraic restriction to N of a symplectic structure, and we show that like in the contact
case it is a powerful tool for the study of singular submanifolds of a symplectic manifold.

1.2. Darboux-Givental’ theorem. A di¤eomorphism F : ðR2n; 0Þ ! ðR2n; 0Þ of a
symplectic space ðR2n;oÞ is called a symplectomorphism if it preserves the symplectic
form o: F�o ¼ o. Two subsets N1;N2 HR2n are called symplectomorphic if there exists
a symplectomorphism which brings N2 to N1.

Convention. Throughout the paper all objects are germs at 0 of a fixed category
which is either Cy or real-analytic.

Theorem 1.1 (Darboux-Givental’ theorem, see [AG]). (i) Let N be a non-singular

submanifold of R2n and let o0, o1 be symplectic forms on R2n with the same restriction

to TN. There exists a local di¤eomorphism F such that FðxÞ ¼ x for any x A N and

F�o1 ¼ o0.

(ii) (Corollary of (i)) Two equal-dimensional non-singular submanifolds N1, N2 of a

symplectic space ðR2n;oÞ are symplectomorphic if and only if the restrictions of the symplec-

tic form o to TN1 and TN2 are di¤eomorphic.

Let SympðR2nÞjR r ¼ fojTR r : o A SympðR2nÞg, where SympðR2nÞ denotes the set of
all symplectic 2-forms on R2n. Theorem 1.1 (ii) reduces the classification of germs of non-
singular r-dimensional submanifolds of a symplectic manifold with respect to the group of
symplectomorphisms to the classification of the set SympðR2nÞjR r with respect to the group
of all local di¤eomorphisms of Rr. This reduction is completed by an explicit description of
SympðR2nÞjR r .

Theorem 1.2 (see [AG]). The set SympðR2nÞjR r consists of closed 2-forms on Rr of

rankf 2ðr � nÞ:

1.3. The problem of symplectic classification of singular varieties. The present work
is devoted to the following problem.

Problem A. To classify with respect to the group of symplectomorphisms the class
of all varieties in a symplectic space ðR2n;oÞ which are di¤eomorphic to a fixed singular
variety N.

We give a method for solving this problem for any quasi-homogeneous variety N

based on generalization of Theorem 1.1 from non-singular submanifolds to arbitrary
quasi-homogeneous varieties. We recall the definition of a quasi-homogeneous variety in
section 2.6. The simplest example is

N ¼ Ak ¼ fx A R2n : xkþ1
1 � x2

2 ¼ xf3 ¼ 0g; k f 1;ð1:1Þ

which is a cusp if k is even and the union of two non-singular curves if k is odd.

1.4. Arnold’s ghost invariant. A natural symplectic invariant of a singular variety N

is the restriction of the symplectic 2-form to the regular part N reg of N. This invariant is not
complete—there are other independent and much more involved invariants. To explain
this, in the work [A1], V. Arnol’d solved the classification Problem A for the simplest case
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when the restriction of the symplectic structure to N reg vanishes—case N ¼ A2l. Arnol’d
proved that if lf 2 then there are exactly 2lþ 1 singularities (orbits). Describing this re-
sult Arnol’d wrote

‘‘. . . something nontrivial remains from the symplectic structure at the singular points of

the curve. It would be interesting to describe this ghost of the symplectic structure in terms of

the local algebra of the singularity.’’

1.5. Our approach. We believe that in the present paper this objective has been
reached: the ghost is exactly the singularity of the algebraic restriction of the symplectic
structure to Ak. The algebraic restrictions are introduced in the beginning of section 2.
The results of section 2 give a method (the method of algebraic restrictions) for solving
Problem A for many types of singularities. The main results are Theorems A–C (proved
in section 3) and D. Theorem A is the base for the method—it is a generalization of Theo-
rem 1.1 from non-singular submanifolds to arbitrary quasi-homogeneous varieties N: one
has to replace the pullback by the algebraic restriction. Theorem B states that the symplec-
tic form has zero algebraic restriction to N if and only if N is contained in a non-singular
Lagrangian submanifold. We introduce the index of non-isotropness and the symplectic
multiplicity of N and show how these symplectic invariants can be calculated using the al-
gebraic restrictions (Theorems C and D). In section 2 we also illustrate the method of alge-
braic restrictions showing that the results in [A1], devoted to Problem A with N ¼ Ak, are
almost immediate corollaries of Theorems A–D. Of course these theorems can be applied
to many much more involved singularities. In the present work, using the method of alge-
braic restrictions, we continue [A1] solving Problem A for the case that N is one of the clas-
sical Dk, E6, E7, E8 singularities of planar curves (sections 4, 5), we also solve Problem A
for the case N ¼ S5 ¼ fx2

1 � x2
2 � x2

3 ¼ x2x3 ¼ xf4 ¼ 0g (section 6) and for the case that N

is a regular union singularity, i.e. N ¼ N1 W � � �WNs, where Ni is a non-singular submani-
fold and the sum T0N1 þ � � � þ T0Ns is direct (section 7).

2. The method of algebraic restrictions

2.1. Definition of algebraic restrictions. Given a germ of a non-singular manifold M

denote by L pðMÞ the space of all germs at 0 of di¤erential p-forms on M. Given a subset
N HM introduce the following subspaces of L pðMÞ:

L
p
NðMÞ ¼ fo A L pðMÞ : oðxÞ ¼ 0 for any x A Ng;

A
p

0 ðN;MÞ ¼ faþ db : a A L
p
NðMÞ; b A L

p�1
N ðMÞg:

The relation oðxÞ ¼ 0 means that the p-form o annihilates any p-tuple of vectors in TxM,
i.e. all coe‰cients of o in some (and then any) local coordinate system vanish at the point x.

It is easy to check that in the case that N is a non-singular submanifold of Rm the
restriction of o to TN can be defined in the following algebraic way.

Proposition 2.1. If N is a non-singular submanifold of M then a p-form o on M has

zero restriction to TN if and only if o A A
p

0 ðN;MÞ. Therefore the restriction of o to TN can

be defined as the equivalence class of o in the space L pðMÞ, where the equivalence is as fol-

lows: o is equivalent to ~oo if o� ~oo A A
p

0 ðN;MÞ.
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Proof. Take local coordinates x ¼ ðx1; . . . ; xkÞ, y ¼ ðy1; . . . ; ylÞ on M such that N

is described by the equations x ¼ 0. A p-form o has zero restriction to TN if and only if it
can be written in the form

P
xiai þ

P
dxi5mi, where ai are p-forms and mi are ðp � 1Þ-

forms. It remains to note that dxi5mi ¼ dðximiÞ � xi dmi. r

Note now that Proposition 2.1 involves no structure of N. Allowing N to be any sub-
set of M and calling the equivalence classes by algebraic restrictions (we believe this name
is natural) we get the following definition, generalizing the definition in [Z] of the algebraic
restriction to N of a 1-form.

Definition 2.2. Let N be a subset of M and let o A L pðMÞ. The algebraic restriction
of o to N is the equivalence class of o in L pðMÞ, where the equivalence is as follows: o is
equivalent to ~oo if o� ~oo A A

p
0 ðN;MÞ.

Notation. The algebraic restriction of a p-form o on M to a subset N HM will be
denoted by ½o�N . Writing ½o�N ¼ 0 (or saying that o has zero algebraic restriction to N) we
mean that ½o�N ¼ ½0�N , i.e. o A A

p
0 ðN;MÞ.

It is clear that if o A A
p

0 ðN;MÞ then do A A
pþ1
0 ðN;MÞ. This allows to define the dif-

ferential of an algebraic restriction: d½o�N ¼ ½do�N . Another well-defined operation is
the external multiplication: ½o1�N5½o2�N ¼ ½o15o2�N , where o1 and o2 are di¤erential
forms of any degrees. This operation is well-defined due to the following almost obvious
proposition.

Proposition 2.3. Let N HRm and let o be a p-form on Rm such that ½o�N ¼ 0. Let m

be any q-form on Rm. Then ½o5m�N ¼ 0.

Proof. It su‰ces to write o in the form aþ db with a and b vanishing at any point
of N and to note that db5m ¼ dðb5mÞ þ ð�1Þqb5dm. r

2.2. Example: algebraic restrictions of 2-forms to Ak. The set of algebraic restric-
tions of p-forms on Rm to any variety N HRm is a vector space if p is fixed. Let us
calculate this space for the case p ¼ 2 and N ¼ Ak ¼ ð1:1Þ. Since the functions xf3

have zero algebraic restriction to Ak then by Proposition 2.3 the algebraic restriction to
Ak of any 2-form can be represented by a 2-form of the form f ðx1; x2Þ dx15dx2. Let
H ¼ xkþ1

1 � x2
2. We will use again (several times) Proposition 2.3. Since ½dH�Ak

¼ 0 then
½dH5dx1�Ak

¼ ½dH5dx2�Ak
¼ 0: It follows that if f ðx1; x2Þ belongs to the gradient ideal

of H then ½ f ðx1; x2Þ dx15dx2�Ak
¼ 0. The gradient ideal is ðx2; xk

1 Þ. Consequently the alge-
braic restriction to Ak of any 2-form on R2n can be represented by a 2-form of the formPk�1

i¼0

cix
i
1 dx15dx2. It is easy to show that if such a 2-form has zero algebraic restriction to

Ak then c0 ¼ � � � ¼ ck�1 ¼ 0. We obtain:

The dimension of the space of algebraic restrictions to Ak of all 2-forms on R2n is equal

to k. This space is spanned by the algebraic restrictions

½Ak� i ¼ ½xi
1 dx15dx2�Ak

; i ¼ 0; . . . ; k � 1:ð2:1Þ
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2.3. The action of the group of di¤eomorphisms. Let M and ~MM be non-singular
equal-dimensional manifolds and let F : ~MM ! M be a local di¤eomorphism. Let N be a
subset of M. It is clear that F�A p

0 ðN;MÞ ¼ A
p

0

�
F�1ðNÞ; ~MM

�
. Therefore the action of the

group of di¤eomorphisms can be defined as follows: F�ð½o�NÞ ¼ ½F�o�F�1ðNÞ, where o is an
arbitrary p-form on M. Let ~NN H ~MM. Two algebraic restrictions ½o�N and ½ ~oo� ~NN are called
di¤eomorphic if there exists a local di¤eomorphism from ~MM to M sending the first algebraic
restriction to the second one. This of course requires that the same di¤eomorphism sends ~NN
to N.

If M ¼ ~MM and N ¼ ~NN then the definition of di¤eomorphic algebraic restrictions re-
duces to the following one: two algebraic restrictions ½o�N and ½ ~oo�N are di¤eomorphic if
there exists a local symmetry F of N (i.e. a local di¤eomorphism preserving N) such that
½F�o�N ¼ ½ ~oo�N .

2.4. Reduction theorem. If a set N HRm is contained in a non-singular submanifold
M HRm then the classification of algebraic restrictions to N of p-forms on Rm reduces to
the classification of algebraic restrictions to N of p-forms on M. At first note that the alge-
braic restrictions ½o�N and ½ojTM �N can be identified:

Proposition 2.4. Let N be the germ at 0 of a subset of Rm contained in a non-singular

submanifold M HRm and let o1, o2 be p-forms on Rm. Then ½o1�N ¼ ½o2�N if and only if

½o1jTM �N ¼ ½o2jTM �N.

Proof. Take local coordinates in which M ¼ fx A Rn : x1 ¼ � � � ¼ xs ¼ 0g. Then
½x1�N ¼ � � � ¼ ½xs�N ¼ 0 and Proposition 2.4 follows from Proposition 2.3. r

The following, less obvious statement, means that the orbits of the algebraic restric-
tions ½o�N and ½ojTM �N also can be identified.

Theorem 2.5. Let N1, N2 be subsets of Rm contained in equal-dimensional non-

singular submanifolds M1, M2 respectively. Let o1, o2 be two p-forms. The algebraic restric-

tions ½o1�N1
and ½o2�N2

are di¤eomorphic if and only if the algebraic restrictions ½o1jTM1
�N1

and ½o2jTM2
�N2

are di¤eomorphic.

Proof. The ‘‘if ’’ part follows from Proposition 2.4. To prove the ‘‘only if ’’ part it
su‰ces to prove the following: the restrictions of any p-form o to TM1 and TM2 have dif-
feomorphic algebraic restrictions to any set N HM1 XM2. This statement easily follows
from the following observations: (a) one can easily prove that there exists a local di¤eomor-
phism of Rm sending M1 to M2 and preserving pointwise the set M1 XM2 (and conse-
quently preserving pointwise N); (b) any local di¤eomorphism F preserving N pointwise
preserves the algebraic restriction to N of any p-form. The latter follows from Proposition
2.3 because F has the form xi ! xi þ fiðxÞ, where fiðxÞ are functions vanishing at points
of N. r

2.5. Example: classification of algebraic restrictions of 2-forms to Ak. We continue
Example 2.2. The curve Ak has a symmetry of the form F : ðx1; x2Þ ! ðx1f

2; x2f
kþ1Þ where

f ¼ fðx1; x2Þ is any function such that fð0Þ ¼ 1. In view of section 2.2 consider the sym-
metries
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F : ðx1; x2Þ !
�
x1ð1 þ rxs

1Þ
2; x2ð1 þ rxs

1Þ
kþ1�; r A R; sf 1:

It is easy to calculate

F�ðx p
1 dx15dx2Þ ¼

��
x

p
1 þ ~rrx

pþs
1 þ o

�
kðx1; x2Þkpþs

���
dx15dx2; ~rr ¼ rð2p þ 2s þ k þ 3Þ:

Along with results of section 2.2 this implies

ðFÞ�ð½Ak� pÞ A ½Ak� p þ ~rr � ½Ak� pþs þ spanð½Ak� pþsþ1; . . . ; ½Ak�k�1Þ:

Since r and sf 1 are arbitrary it follows that any algebraic restriction of the a‰ne space
½Ak� p þ spanð½Ak� pþ1; . . . ; ½Ak�k�1Þ is di¤eomorphic to ½Ak� p. Therefore any non-zero

algebraic restriction to Ak of a 2-form on R2n is di¤eomorphic to r � ½Ak� p, where r3 0
and p A f0; . . . ; k � 1g. The factor r can be reduced to 1 due to the scale symmetries
ðx1; x2Þ ! ðt2x1; t

kþ1x2Þ and ðx1; x2Þ ! ðx1;�x2Þ. The algebraic restrictions ½Ak� i and
½Ak� j with i < j e k � 1 are not di¤eomorphic because, as it is easy to prove, ½Ak� i cannot
be represented by a 2-form with zero i-jet. Therefore we obtain the following result:

Any non-zero algebraic restriction to Ak of a 2-form on Rm is di¤eomorphic to one and

only one of the algebraic restrictions (2.1).

2.6. Relative cohomology groups. The name ‘‘algebraic restriction’’ was introduced
in [Z], but the di¤erential subcomplex of the de Rham complex related to the spaces
A

p
0 ðN;MÞ and the corresponding relative cohomology groups

H pðN;RmÞ ¼ fo A A
p

0 ðN;RmÞ : do ¼ 0g
fda : a A A

p�1
0 ðN;RmÞg

were studied much earlier, see [R], [Sa1], [B], [Se], [Gr1], [Gr2]. See also the work [DJZ]
and other references there. The main purpose of the mentioned works was to express cer-
tain local properties of N in terms of vanishing of some of the relative cohomology groups.
In the present work we will use the main result in this direction which can be called the
relative Poincaré lemma.

Definition 2.6. The germ at 0 of a set N HRm is called quasi-homogeneous if there
exist a local coordinate system x1; . . . ; xm and positive numbers l1; . . . ; lm such that the fol-
lowing holds: if a point with coordinates xi ¼ ai belongs to N then for any t A ½0; 1� the
point with coordinates xi ¼ tli ai also belongs to N.

Theorem 2.7 (see [R]). If N HRm is a quasi-homogeneous subset then

H pðN;RmÞ ¼ f0g for any pf 1.

2.7. Generalization of Darboux-Givental’ theorem. The method of algebraic restric-
tions is based on the following theorem.

Theorem A (cf. Theorem 1.1). (i) Let N be a quasi-homogeneous subset of R2n. Let

o0, o1 be symplectic forms on R2n with the same algebraic restriction to N. There exists a

local di¤eomorphism F such that FðxÞ ¼ x for any x A N and F�o1 ¼ o0.
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(ii) (Corollary of (i)) Two quasi-homogeneous subsets N1, N2 of a fixed symplectic

space ðR2n;oÞ are symplectomorphic if and only if the algebraic restrictions of the symplectic

form o to N1 and N2 are di¤eomorphic.

Theorem A generalizes Theorem 1.1 since any non-singular submanifold is quasi-
homogeneous and, as we explained in Proposition 2.1, the algebraic restriction of a p-
form o to a non-singular submanifold N can be identified with ojTN .

Remark. Our proofs in section 3 show that in Theorem A and in its corollaries—
Theorems B, C, D below—the assumption that N is quasi-homogeneous can be replaced
by the condition H 2ðN;R2nÞ ¼ f0g. This condition follows from the quasi-homogeneity
of N (see Theorem 2.7), but in general it is weaker than the quasi-homogeneity. It is possi-
ble that H 2ðN;R2nÞ ¼ f0g but one of the other cohomology groups is not trivial and con-
sequently N is not quasi-homogeneous, see [Gr1]. See also [DJZ] where there are examples
of non-quasi-homogeneous varieties N such that all cohomology groups are trivial. If
H 2ðN;R2nÞ3 f0g then the conclusion of Theorem A (i) remains the same if the symplectic
forms o1, o2 satisfy the additional assumption that o1 � o2 has zero class in H 2ðN;R2nÞ.
The proof is the same as that of Theorem A (i) in section 3. Nevertheless, we believe that
for a certain class of varieties N such that H 2ðN;R2nÞ3 f0g the algebraic restriction ½o�N
remains to be a complete symplectic invariant unless ½o�N ¼ 0.

2.8. Application to Problem A. Let us fix the following notations:

� ½L2ðR2nÞ�N : the vector space consisting of algebraic restrictions to a subset
N HR2n of all 2-forms on R2n.

� ½L2; closedðR2nÞ�N : the subspace of ½L2ðR2nÞ�N consisting of algebraic restrictions to
N of all closed 2-forms on R2n.

� ½SympðR2nÞ�N : the open set in ½L2; closedðR2nÞ�N consisting of algebraic restrictions
to N of all symplectic 2-forms on R2n.

Theorem A reduces Problem A for quasi-homogeneous N to the following

Problem B. To classify the algebraic restrictions of set ½SympðR2nÞ�N with respect to
the group of symmetries of N.

In fact, assume that Problem B is solved, i.e. we have a final list of normal forms
½y1�N ; . . . ; ½ys�N A ½SympðR2nÞ�N for algebraic restrictions, where yi are certain 2-forms
(some of them might depend on parameters). The 2-forms yi representing the algebraic re-
strictions might be not symplectic and even not closed. But we know that there exist sym-
plectic forms oi such that ½oi�N ¼ ½yi�N . Now, given a fixed symplectic space ðR2n;o0Þ take
local di¤eomorphisms Fi of R2n sending oi to o0 (the existence of such di¤eomorphisms
follows from the classical Darboux theorem). Consider the varieties N i ¼ F�1

i ðNÞ. By The-
orem A the tuple N 1; . . . ;N s is a final list of normal forms for Problem A.

2.9. Arnold’s ghost invariant in terms of algebraic restrictions. As we mentioned in
section 1.4, for the case N ¼ Ak ¼ ð1:1Þ Problem A was studied by V. Arnol’d in [A1]
(for even k). In fact, the classification results in [A1] and the ghost invariant are already
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obtained by our method in examples given in sections 2.2 and 2.5. Since Ak is contained in
a non-singular 2-manifold then Proposition 2.4 implies that the algebraic restriction to Ak

of any 2-form on R2n can be realized by a symplectic form provided nf 2. Therefore
the results of sections 2.2, 2.5 imply that in the classification Problem B with
N ¼ Ak HR2nf4 there are exactly k þ 1 orbits—the orbits of the k algebraic restrictions
(2.1) and the orbit of the zero algebraic restriction.

This complete solution of Problem B can be easily transferred to a solution of Prob-
lem A—the classification of symplectic Ak-singularities. The algebraic restrictions ½Ak� i are

represented by 2-forms which are not symplectic, but since they belong to ½SympðR2nÞ�Ak

then they also can be represented by symplectic forms. For example the zero algebraic re-
striction can be represented by a symplectic form

yk ¼ dx15dx3 þ dx25dx4 þ dx55dx6 þ � � � þ dx2n�15dx2n

and ½Ak� i with i < k can be represented by the symplectic form

y i ¼ xi
1 dx15dx2 þ yk; 1e ie k � 1:

Given a symplectic form o fix a local di¤eomorphism Fi bringing the symplectic form y i to
o, i ¼ 0; 1; . . . ; k. Let Ai

k ¼ F�1
i ðAkÞ: By Theorem A any singular curve in the symplectic

space ðR2n;oÞ which is di¤eomorphic to Ak is symplectomorphic to one and only one of
the curves A0

k; . . . ;A
k
k . This gives us the classification result obtained in [A1].

The geometric meaning of this classification, explained in [A1], is also one of the ap-
plications of the method of algebraic restrictions, as it will be showed below.

2.10. The geometric meaning of the zero algebraic restriction. Theorem 1.1 easily
implies that if N1, N2 are any di¤eomorphic subsets of non-singular Lagrangian submani-
folds in a fixed symplectic space then N1 and N2 are symplectomorphic. How to check if a
subset of a symplectic manifold is contained in a non-singular Lagrangian submanifold?

Theorem B. A quasi-homogeneous set N of a symplectic space ðR2n;oÞ is contained

in a non-singular Lagrangian submanifold if and only if the symplectic form o has zero alge-

braic restriction to N.

Example 2.8. Let C be a curve in a symplectic space ðR2nf4;oÞ which is di¤eomor-
phic to Ak. Let Ak

k be the curve defined in section 2.9. By Theorem B the curve C is con-
tained in a non-singular Lagrangian submanifold if and only if it is symplectomorphic to
Ak

k .

Arnol’d also introduced a symplectic invariant characterizing how far is a curve of the
class Ak from the closest non-singular Lagrangian submanifold. In the next subsection we
show that this invariant can be generalized and expressed in terms of algebraic restrictions.

2.11. Index of isotropness. In terms of algebraic restrictions one can express the fol-
lowing symplectic invariant. Given a di¤erential form germ o with zero ðk � 1Þ-jet and
non-zero k-jet we will say that k is the order of vanishing of o. If oð0Þ3 0 then the order
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of vanishing is 0. If o ¼ 0 or, in the Cy-category, o has the zero Taylor expansion, then
the order of vanishing is y.

Definition 2.9. Let N be a subset of a symplectic space ðR2n;oÞ. The index of iso-
tropness of N is the maximal order of vanishing of the 2-forms ojTM over all non-singular
submanifolds M containing N.

It is easy to prove that an equivalent definition is as follows: the index of isotropness
is the maximal order of tangency between non-singular submanifolds containing N and
non-singular isotropic submanifolds of the same dimension. The index of isotropness is
equal to 0 if N is not contained in any non-singular submanifold which is tangent to some
isotropic submanifold of the same dimension. If N is contained in a non-singular Lagran-
gian submanifold then the index of isotropness is y. (In the analytic category ‘‘if ’’ can be
replaced by ‘‘if and only if ’’.)

Theorem C. The index of isotropness of a quasi-homogeneous variety N in a symplec-

tic space ðR2n;oÞ is equal to the maximal order of vanishing of closed 2-forms representing

the algebraic restriction ½o�N.

Example 2.10 (cf. results in [A1]). Let Ai
k be the curves in a symplectic space

ðR2n;oÞ defined in section 2.9. By Theorem C the index of isotropness of Ai
k is equal to i

if ie k � 1 and the index of isotropness of Ak
k (the curve which is contained in a non-

singular Lagrangian submanifold) is y.

2.12. Symplectic multiplicity. One more invariant which can be e¤ectively described
in terms of algebraic restrictions is the symplectic multiplicity of a variety in a symplectic
space. This invariant, generalizing the symplectic defect of a parametrized curve [IJ1], is
defined below. At first let us fix the definition of a variety and one of equivalent definitions
of the (usual) multiplicity of a variety. Recall that the zero set of an ideal I in the ring of
function germs ðRm; 0Þ ! R is the subset of Rm consisting of points at which any function
in I vanishes. The ideal has the property of zeros if it contains any function vanishing on its
zero set. Throughout the paper by a variety in Rm we mean the zero set of a k-generated

ideal having the property of zeros, k f 1.

Definition 2.11 (cf. [T], [AVG]). Denote by Varðk;mÞ the space of all varieties de-
scribed by k-generated ideals. Given N A Varðk;mÞ denote by ðNÞ the orbit of N with re-
spect to the group of local di¤eomorphisms. The multiplicity (or Tjurina number) of N is
the codimension of ðNÞ in Varðk;mÞ.

To make this definition precise one should associate with N a map germ
H : ðRm; 0Þ ! ðRk; 0Þ whose k components are generators of the ideal of functions van-
ishing on N. Then the orbit ðNÞ can be identified with the orbit of H with respect to the
V -equivalence, see [AVG]. Recall from [AVG] that the V -equivalence of two map germs
H; ~HH : ðRm; 0Þ ! ðRk; 0Þ means the existence of a local di¤eomorphism F and a germ M

of a map from Rm to the manifold of non-singular k � k matrices such that ~HH ¼ M � HðFÞ.

A variety N A Varðk;mÞ is called a complete intersection singularity if k is the depth
of the ideal of functions vanishing on N. (In the holomorphic category this means that k

is the codimension of N in Cm.) If N is not a complete intersection singularity then its
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multiplicity is y. This follows from the fact that the set of k-tuples of function germs gen-
erating an ideal of depth3 k has infinite codimension in the space of all k-tuples of func-
tion germs.

In view of Definition 2.11 we define the symplectic multiplicity of a variety in a sym-
plectic space as follows.

Definition 2.12. Let N be a variety in a symplectic space ðR2n;oÞ. Let ðNÞ be the
orbit of N with respect to the group of local di¤eomorphisms and let ðNÞsymp be the orbit
of N with respect to the group of local symplectomorphisms. The symplectic multiplicity of
N is the codimension of ðNÞsymp in ðNÞ.

To make this definition precise take, as above, a map germ H : ðR2n; 0Þ ! ðRk; 0Þ
whose components generate the ideal of functions vanishing on N. Let ðHÞV be the orbit
of H with respect to the V -equivalence and let ðHÞV ; symp be the orbit of H with respect to

the V -symplectic-equivalence. The V -symplectic-equivalence is defined in the same way as
the V -equivalence; the only di¤erence is that we require that F (the change of coordinates
in the source space) is a local symplectomorphism. The codimension of ðNÞsymp in ðNÞ is
the codimension of ðHÞV ; symp in ðHÞV .

The classical Darboux theorem implies another equivalent definition of the symplec-
tic multiplicity of N H ðR2n;oÞ: it is the codimension of the orbit of o with respect to the
group of local symmetries of N in the space of all closed 2-forms. Therefore Theorem A
implies the following statement.

Theorem D (Corollary of Theorem A). The symplectic multiplicity of a quasi-

homogeneous variety in a symplectic space ðR2n;oÞ is equal to the codimension of the orbit

of the algebraic restriction ½o�N with respect to the group of local symmetries of N in the

space ½L2; closedðR2nÞ�N :

Example 2.13. Let Ai
k be the curves in a symplectic space ðR2n;o0Þ defined in sec-

tion 2.9. In section 2.5 we proved that the algebraic restriction c0½Ak�0 þ � � � þ ck�1½Ak�k�1

is di¤eomorphic to ½Ak� p if and only if c1 ¼ � � � ¼ cp�1 ¼ 0 and cp 3 0. Therefore by Theo-
rem D the symplectic multiplicity of the curve Ai

k is equal to i. This holds for all ie k (the
curve Ak

k corresponds to the zero algebraic restriction, i.e. to the case c0 ¼ � � � ¼ ck�1 ¼ 0).

2.13. The dimension of the space [L2, closed(R2n)]N . In view of results of the previous
subsections it is worth to present several general results on the number

sðNÞ ¼ dim½L2; closedðR2nÞ�N :

Theorem 2.14. Let N be a quasi-homogeneous variety in a symplectic space of dimen-

sion 2n such that sðNÞ < y. The symplectic multiplicity of N does not exceed sðNÞ. It is

equal to sðNÞ if and only if N is contained in a non-singular Lagrangian submanifold.

Proof. The first statement is a corollary of Theorem D. The second statement fol-
lows from Theorems B, D and the following statement: if a A ½L2; closedðR2nÞ�N and a3 0
then the orbit of a with respect to the group of symmetries of N has dimensionf 1. To
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prove this statement it su‰ces to note that in the quasi-homogeneous coordinates (see
Definition 2.6) the flow xi ! e�li txi preserves N and brings a to a family of algebraic re-
strictions at such at ! 0 as t ! y. r

It is easy to prove that if N is a stratified submanifold of dimensionf 2 (i.e. at least
one of the strata has dimensionf 2) then the space consisting of the pullbacks to the regu-
lar part N reg of N of all possible closed 2-forms on R2n is infinite-dimensional. Since two
2-forms on R2n with the same algebraic restriction to N have the same pullback to N reg (see
Proposition 2.1) then we obtain

Proposition 2.15. If N is a stratified submanifold of dimension bigger than 1 then

sðNÞ ¼ y.

Within 1-dimensional stratified submanifolds N consider at first the case that N is a
complete intersection singularity.

Proposition 2.16 (real-analytic category; corollary of results by Greuel [Gr1]). Let

N HR2n be a one-dimensional complete intersection singularity with finite Tjurina number

(multiplicity) tðNÞ. If N is quasi-homogeneous then sðNÞ ¼ tðNÞ.

In fact, Greuel proved a much more general statement in the holomorphic category
[Gr1]: if N HCk is an isolated complete intersection singularity of dimension m then the
Milnor number of N is equal to the dimension of the space ½LmðCkÞ�N=d

�
½Lm�1ðCkÞ�N

�
.

Greuel also proved [Gr1] that for any quasi-homogeneous isolated complete intersec-
tion singularity the Milnor number is equal to tðNÞ. In the case m ¼ 1 these results
of Greuel imply that for any N satisfying the assumptions in Proposition 2.16 one has
tðNÞ ¼ dim½L1ðR2nÞ�N=d

�
½L0ðR2nÞ�N

�
. Now we use one more time the quasi-homogeneity

of N. By Theorem 2.7 one has H 2ðN;R2nÞ ¼ f0g. This implies that the space
½L1ðR2nÞ�N=d

�
½L0ðR2nÞ�N

�
is isomorphic to ½L2; closedðR2nÞ�N . Consequently sðNÞ ¼ tðNÞ.

We do not know a direct proof of Theorem 2.16. We neither know if the assumption
that N is quasi-homogeneous can be removed. Our results in section 4.1 show that it can be
removed if N is a planar curve.

Conjecturally sðNÞ < y for any 1-dimensional stratified submanifold N HR2n.

Example 2.17. Let N1; . . . ;Np, pf 2 be non-singular 1-dimensional submani-
folds of R2n such that dimðT0N1 þ � � � þ T0NpÞ ¼ p. Let N ¼ N1 W � � �WNp. The ideal
of functions vanishing on N is k-generated with k ¼ pðp � 1Þ=2 þ 2n � p. One has
k > codim N ¼ 2n � 1 unless p ¼ 2. Therefore if pf 3 then N is not a complete intersec-
tion singularity and the multiplicity of N is y. On the other hand sðNÞ < y for any p. Our
results in section 7 imply that two closed 2-forms have the same algebraic restriction to N if
and only if they have the same restriction to the p-space T0N1 þ � � � þ T0Np. Therefore
sðNÞ ¼ pðp � 1Þ=2.

2.14. Calculation of the set [Symp(R2n)]N . The space ½L2ðR2nÞ�N can be calculated
using Proposition 2.3, see section 6.1. In this subsection we present a simple way for trans-
itions ½L2ðR2nÞ�N ! ½L2; closedðR2nÞ�N ! ½SympðR2nÞ�N . At first let us distinguish the case
where two or all of these spaces coincide.
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Proposition 2.18. Let N HR2n. If N is contained in a non-singular 2-dimensional

submanifold then ½L2; closedðR2nÞ�N ¼ ½L2ðR2nÞ�N. If N is contained in a non-singular

n-dimensional submanifold then ½SympðR2nÞ�N ¼ ½L2; closedðR2nÞ�N.

The first statement follows from Proposition 2.4 and the fact that any 2-form on a
2-manifold is closed. The second statement follows from Theorem 2.19 below.

This transition ½L2; closedðR2nÞ�N ! ½SympðR2nÞ�N is equivalent to distinguishing
closed 2-forms y on R2n whose algebraic restriction to N HR2n is realizable by a symplec-
tic structure, i.e. ½y�N ¼ ½o�N for some symplectic form o.

Theorem 2.19. Let N HR2n. Let r be the minimal dimension of non-singular sub-

manifolds of R2n containing N. Let M be one of such r-dimensional submanifolds. The alge-

braic restriction ½y�N of a closed 2-form y is realizable by a symplectic form on R2n if and only

if rankðyjT0MÞf 2r � 2n.

Theorem 2.19 is an almost obvious corollary of Theorem 1.2, Proposition 2.4 and the
following lemma.

Lemma 2.20. Let N HRm. Let W LT0R
m be the tangent space to some (and then

any) non-singular submanifold containing N of minimal dimension within such submanifolds.

If o is a p-form with zero algebraic restriction to N then ojW ¼ 0.

Proof. Fix a non-singular submanifold M containing N of minimal dimension with-
in such submanifolds (then W ¼ T0M). By Proposition 2.4 the form ojTM also has zero
algebraic restriction to N and consequently it can be expressed in the form aþ db, where
a and b are forms on M vanishing at any point of N. Since N is not contained in any non-
singular hypersurface of M then any function vanishing on N has zero 1-jet at 0. It follows
that dbð0Þ ¼ 0 and then ðojTMÞð0Þ ¼ 0. r

Now we give an algorithm for the transition ½L2ðR2nÞ�N ! ½L2; closedðR2nÞ�N under the

assumptions that N is quasi-homogeneous and the space ½L2ðR2nÞ�N is finite-dimensional.
(See section 6.1 where this algorithm is realized for the case N ¼ S5.) Take any basis
a1; . . . ; ak of ½L2ðR2nÞ�N and consider the algebraic restrictions da1; . . . ; dak A ½L3ðR2nÞ�N .
Let p be the dimension of the vector space over R spanned by these algebraic restrictions.
The case p ¼ 0 is not excluded. Change the order in the tuple a1; . . . ; ak so that

(a) the algebraic restrictions da1; . . . ; dap are linearly independent.

Replace now the algebraic restrictions ai, p < ie k by ai þ
Pp

j¼1

kijaj with suitable kij A R so
that

(b) dapþ1 ¼ � � � ¼ dak ¼ 0.

Theorem 2.21. Let N be a quasi-homogeneous subset of R2n and let a1; . . . ; ak be

a basis of ½L2ðR2nÞ�N satisfying (a) and (b). Then apþ1; . . . ; ak is a basis of the space

½L2; closedðR2nÞ�N.
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Proof. To conclude that the algebraic restrictions apþ1; . . . ; ak span the space
½L2; closedðR2nÞ�N we do not need the assumption that N is quasi-homogeneous. In
fact, the algebraic restriction to N of any closed 2-form o can be expressed in the
form ½o�N ¼ c1a1 þ � � � þ ckak, and taking the di¤erential of this relation we obtain
0 ¼ c1 da1 þ � � � þ cp dap. By (a), c1 ¼ � � � ¼ cp ¼ 0, i.e. ½o�N A spanðapþ1; . . . ; akÞ.

The quasi-homogeneity of N is required in order to prove that

apþ1; . . . ; ak A ½L2; closedðR2nÞ�N ;

i.e. that the algebraic restrictions ai>p can be represented by closed 2-forms. In what follows
i ¼ p þ 1; . . . ; k. Take any 2-forms oi representing ai. Since N is quasi-homogeneous then
by Theorem 2.7 the cohomology group H 3ðN;RmÞ vanishes. This means that any closed 3-
form with zero algebraic restriction to N, in particular the 3-forms doi, is a di¤erential of
some 2-form with zero algebraic restriction to N. Therefore doi ¼ d ~ooi, where ½ ~ooi�N ¼ 0.
The 2-form oi � ~ooi is closed because doi ¼ d ~ooi. It represents the algebraic restriction ai:
since ½ ~ooi�N ¼ 0 then ai ¼ ½oi�N ¼ ½oi � ~ooi�N . r

3. Proof of Theorems A, B, and C

In section 3.1 we reduce Theorem A (i) to the case that the symplectic forms o0 and
o1 in this theorem satisfy the condition ðo0 � o1Þð0Þ ¼ 0. In this case Theorem A (i) can be
easily proved by the homotopy method (section 3.2). Theorem B is proved in section 3.3
using Theorem A, and Theorem C is proved in section 3.4 using Theorem B. Throughout
the proof we use the following lemma.

Lemma 3.1. Let o be a closed 2-form on Rm with zero algebraic restriction to

N HRm. Let M LRm be a non-singular submanifold containing N of minimal possible

dimension within such submanifolds. There exists a closed 2-form y on Rm such that

yjTM ¼ ojTM , ½y�N ¼ 0, and yð0Þ ¼ 0.

Proof. Let m ¼ ojTM . By Lemma 2.20 one has mð0Þ ¼ 0. Let p : R2n ! M be a
submersion which is the identity on M. Let y ¼ p�m. Then y is a closed 2-form which van-
ishes at 0 and whose restriction to TM coincides with that of o. Since ½o�N ¼ 0 and
ojTM ¼ yjTM then by Proposition 2.4 we obtain ½y�N ¼ 0. r

3.1. Reduction of Theorem A (i) to the case (o0 Co1)(0)F 0. Take a non-singular
submanifold M as in Lemma 3.1. By this lemma there exists a closed 2-form y such
that yjTM ¼ o0jTM � o1jTM , ½y�N ¼ 0 and yð0Þ ¼ 0. Set ~oo ¼ o1 þ y. Then o0, o1, ~oo have
the following properties: (a) ~oo is symplectic (since yð0Þ ¼ 0Þ; (b) ~oojTM ¼ o0jTM ; (c)
½ ~oo�N ¼ ½o1�N , ð ~oo� o1Þð0Þ ¼ 0. By Theorem 1.1 there exists a local di¤eomorphism pre-
serving M pointwise (and consequently preserving N pointwise) and bringing ~oo to o0.
Therefore Theorem A (i) for the forms o0 and o1 will be proved if we prove it for the forms
o1 and ~oo.

3.2. Proof of Theorem A (i) in the case (o0 Co1)(0)F 0. We will prove the exis-
tence of a family of di¤eomorphisms Ft preserving pointwise N and bringing the form
ot ¼ o0 þ tðo1 � o0Þ to the form o0, for any t A ½0; 1�. This family will be found within
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families satisfying the ODE
dFt

dt
¼ VtðFtÞ, F0 ¼ id, where Vt is a family of vector fields on

R2n vanishing at any point of N. (The latter implies that Ft preserves N pointwise.) Let LV

be the Lie derivative along a vector field V . The requirement F�
t ot ¼ o0 is equivalent to

the condition LVt
ot þ

dot

dt
¼ 0. Since ot is a closed 2-form we obtain the equation

d
�
Vt c

�
o0 þ tðo1 � o0Þ

��
¼ o0 � o1ð3:1Þ

with respect to the family Vt under the constraint that Vt vanishes at points of N. Since N is
quasi-homogeneous then by Theorem 2.7, o0 � o1 ¼ db, where b is a 1-form vanishing at
any point of N. Therefore to solve (3.1) it su‰ces to solve the equation

Vt c
�
o0 þ tðo1 � o0Þ

�
¼ b:ð3:2Þ

This equation can be treated as a square system of linear equations parametrized by
a point x A R2n close to 0 and t A ½0; 1�. The assumption ðo0 � o1Þð0Þ ¼ 0 implies�
o0 þ tðo1 � o0Þ

�
ð0Þ ¼ o0ð0Þ. The form o0 is symplectic and consequently the 2-form�

o0 þ tðo1 � o0Þ
�

has maximal rank 2n for any t at any point x close to 0. Therefore for
any such t and x the matrix of the linear system (3.2) is non-degenerate and consequently
(3.2) has a unique solution Vt. It vanishes at any point of N since so does the 1-form b.

3.3. Proof of Theorem B. The ‘‘if ’’ part of Theorem B follows from Proposition 2.4.
Let us prove the ‘‘only if ’’ part: if ½o�N ¼ 0 then N is contained in a non-singular Lagran-
gian submanifold. Fix a non-singular submanifold M and a closed 2-form y as in Lemma
3.1. Since yð0Þ ¼ 0 then the form o� y is symplectic. The manifold M is isotropic with re-
spect to o� y. By Theorem A (i) there exists a local di¤eomorphism sending o� y to o

preserving N. It sends M to a non-singular submanifold ~MM which contains N and which
is isotropic with respect to o.

3.4. Proof of Theorem C. We have to prove the following two statements:

(1) If M H ðR2n;oÞ is a non-singular submanifold containing N and such that the
restriction ojTM has zero k-jet, k f 0, then there exists a closed 2-form ~oo on R2n with
zero k-jet such that ½o�N ¼ ½ ~oo�N .

(2) If ~oo is a closed 2-form on R2n with zero k-jet, k f 0, such that ½o�N ¼ ½ ~oo�N then
there exists a non-singular submanifold M HR2n containing N such that the restriction
ojTM has zero k-jet.

To prove the first statement fix a submersion p : R2n ! M which is the identity on M

and set ~oo ¼ p�ðojTMÞ. Then ~oo is a closed 2-form on R2n with zero k-jet. The forms o and
~oo have the same restriction to TM and by Proposition 2.4 the same algebraic restriction to
N. Therefore ~oo is a required closed 2-form.

To prove the second statement consider the form ðo� ~ooÞ. It is symplectic and it has
zero algebraic restriction to N. By Theorem B, N is contained in a non-singular submani-
fold M such that ðo� ~ooÞjTM ¼ 0. Since ~oo has zero k-jet then its restriction to TM and
consequently the restriction of o to TM also has zero k-jet.
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4. Symplectic classification of singular planar quasi-homogeneous curves

By a singular planar quasi-homogeneous curve in R2n we mean a curve given in suit-

able coordinates by the equations

N ¼ fHðx1; x2Þ ¼ xf3 ¼ 0gHR2nð4:1Þ

where the function germ Hðx1; x2Þ satisfies the following conditions:

(1) Hð0Þ ¼ 0, dHð0Þ ¼ 0.

(2) The property of zeros: the ideal of functions on R2 vanishing at any point of the
set fH ¼ 0g is generated by H.

(3) The function Hðx1; x2Þ is a quasi-homogeneous polynomial. This means that
there exist positive numbers l1, l2 (weights of quasi-homogeneity) and a positive number
d (degree of quasi-homogeneity) such that Hðx1; x2Þ is a linear combination of monomials
xa1

1 xa2

2 satisfying the condition a1l1 þ a2l2 ¼ d.

The classical examples are the simple function germs Ak, Dk, E6, E7, E8, see [AVG].
In section 4.1 we prove that the vector space ½L2; closedðR2nÞ�N can be identified with the lo-
cal algebra of the function Hðx1; x2Þ. In section 4.2 we use this result and Theorems C and
D to give a simple way of calculating the index of isotropness and the symplectic multiplic-
ity of any planar quasi-homogeneous curve. In sections 4.3–4.4 we use the method of alge-
braic restrictions to present a complete symplectic classification of the Ak, Dk, E6, E7, E8

singularities.

4.1. The space of algebraic restrictions and the local algebra of H . Theorem 4.2 be-
low generalizes Example 2.2.

Definition 4.1 (see [AVG]). The factor space L0ðR2Þ=ð‘HÞ is called the local algebra

of H and the dimension of this factor space is called the multiplicity of H.

Theorem 4.2 (cf. Theorem 2.16). Let N ¼ fHðx1; x2Þ ¼ xf3 ¼ 0g be a planar quasi-

homogeneous curve where the function H ¼ Hðx1; x2Þ has a finite multiplicity m and let the

tuple f1; f2; . . . ; fm be a basis of the local algebra of H1) such that f1ð0Þ3 0, ff2ð0Þ ¼ 0.

(i) ½L2; closedðR2nÞ�N is a m-dimensional vector space spanned by the algebraic restric-

tions ai ¼ ½ fi dx15dx2�N , i ¼ 1; . . . ; m.

(ii) If nf 2 then ½SympðR2nÞ�N ¼ ½L2; closedðR2nÞ�N. The manifold ½SympðR2Þ�N con-

sists of algebraic restrictions of the form fc1a1 þ � � � þ cmam; c1 3 0g:

The second statement is a corollary of the first one and results in section 2.14. The
first statement follows from Lemma 4.3 below and Proposition 2.4.

1) After factorization of these function germs by the ideal ð‘HÞ.
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Lemma 4.3. Let Hðx1; x2Þ be a quasi-homogeneous polynomial with the property of

zeros. A 2-form f ðx1; x2Þ dx15dx2 has zero algebraic restriction to the curve fHðx1; x2Þ ¼ 0g
if and only if f A ð‘HÞ.

Proof. Since the function H has the property of zeros then for some function germs
Aðx1; x2Þ, B1ðx1; x2Þ, B2ðx1; x2Þ one has

f dx15dx2 ¼ HA dx15dx2 þ d
�
HðB1 dx1 þ B2 dx2Þ

�
:

It is easy to see that this condition is equivalent to the condition f A ðH;‘HÞ, where
ðH;‘HÞ is the ideal generated by the H and its first order partial derivatives. It is
clear that any quasi-homogeneous polynomial belongs to its gradient ideal, therefore
ð‘H;HÞ ¼ ð‘HÞ. r

Remark. If H is not quasi-homogeneous then, as we see from the proof of Lemma
4.3, the space ½L2; closedðR2nÞ�N can be identified with the space L0ðR2Þ=ð‘H;HÞ. The di-
mension t of the latter space is called the Tjurina number (or the multiplicity) of the curve

fH ¼ 0g (see Definition 2.11). By Saito’s theorem [Sa1], t < m.2)

4.2. The index of isotropness and the symplectic multiplicity. The index of isotrop-
ness and the symplectic multiplicity are defined in sections 2.11 and 2.12.

Theorem 4.4. Let N ¼ fHðx1; x2Þ ¼ xf3 ¼ 0g be a singular planar quasi-

homogeneous curve in a symplectic space ðR2n;oÞ. Let m be the multiplicity of the function

H.

(i) The index of isotropness of N does not exceed ðm� 1Þ unless N is contained in a

non-singular Lagrangian submanifold (in the latter case the index is y).

(ii) The symplectic multiplicity of N does not exceed m. It is equal to m if and only if N

is contained in a non-singular Lagrangian submanifold.

The second statement is a direct corollary of Theorems 2.14 and 4.2. (It is also a di-
rect corollary of Theorems B and 4.2). The first statement follows from the following cor-
ollary of Theorems 2.5, C and Lemma 4.3 allowing to calculate the index of isotropness for
any planar quasi-homogeneous curve.

Notation. Given a 2-form o on R2n denote by Fo ¼ Foðx1; x2Þ a function germ such
that the pullback of o to the 2-plane xf3 ¼ 0 has the form Fo dx15dx2.

Theorem 4.5 (Corollary of Theorems 2.5, C and Lemma 4.3). Let N be as in Theo-

rem 4.4. The index of isotropness of N is the maximal p such that Fo A ð‘HÞ þM p, where

M denotes the maximal ideal in the ring of function germs on R2 (if Fo A ð‘HÞ then p ¼ y,
if Foð0Þ3 0 then p ¼ 0).

2) This means that if H is not quasi-homogeneous then the multiplicity of the curve fH ¼ 0g is smaller

than the multiplicity of the function H. The number m� t is called the degree of non-quasi-homogeneity of H,

see [V].
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Proof of Theorem 4.4 (i). If N is not contained in a non-singular Lagrangian sub-
manifold then by Theorem B, ½o�N 3 0 and then by Proposition 2.4 and Lemma 4.3 one
has Fo B ð‘HÞ. Since MmH ð‘HÞ (see [AVG]) then Fo B ð‘HÞ þMm and by Theorem
4.5 the index of isotropness does not exceed ðm� 1Þ. r

The following theorem gives a simple way for the calculation of the symplectic
multiplicity of any planar quasi-homogeneous curve.

Theorem 4.6. Let N be as in Theorem 4.4. The symplectic multiplicity of N is equal to

dimL0ðR2Þ=ð‘H;FoÞ, where ð‘H;FoÞ is the ideal generated by the function germs qH=qx1,
qH=qx2, Fo.

Example 4.7. Consider the curve

C : fp2
1p2 � p3

2 ¼ 0; q1 ¼ p3
2 ; q2 ¼ 0gH ðR4;o0 ¼ dp15dq1 þ dp25dq2Þ:

This is a planar quasi-homogeneous curve di¤eomorphic to the curve D4: in the local coor-
dinates x1 ¼ p1, x2 ¼ p2, x3 ¼ q1 � p3

2 , x4 ¼ q2 it takes the form

Hðx1; x2Þ ¼ x2
1x2 � x3

2 ¼ x3 ¼ x4 ¼ 0:

In the same coordinates the form o0 takes the form dx15ðdx3 þ 3x2
2 dx2Þ þ dx25dx4.

The restriction of this form to the 2-surface x3 ¼ x4 ¼ 0 is 3x2
2 dx15dx2. The ideal

ð‘H; 3x2
2Þ ¼ ðx1x2; x

2
1 � 3x2

2 ; x2
2Þ coincides with the ideal ðx1x2; x2

1 ; x2
2Þ. By Theorems 4.5

and 4.6 the index of isotropness of C is equal to 2 and the symplectic multiplicity of C is
equal to 3.

The proof of Theorem 4.6 consists of several steps. At first we use Theorems D and
2.5 reducing Theorem 4.6 to the following proposition.

Proposition 4.8. Let Hðx1; x2Þ be a quasi-homogeneous polynomial of finite multiplic-

ity having the property of zeros. The codimension in the space ½L2ðR2Þ�fH¼0g of the orbit of

the algebraic restriction ½Fðx1; x2Þ dx15dx2�fH¼0g with respect to the group of symmetries of

the curve fH ¼ 0g is equal to the dimension of the factor space L0ðR2Þ=ð‘H;FÞ.

Notation. Given an algebraic restriction a A ½L2ðR2nÞ�N denote by TðaÞ the tangent
space at a to the orbit of a with respect to the group of symmetries of N.

Proposition 4.9. Let H be as in Proposition 4.8 and let a A ½L2ðR2Þ�fH¼0g. Then

dim TðaÞ ¼ dim
�
L0ðR2Þ � a

�
.

If a is represented by the 2-form Fðx1; x2Þ dx15dx2 then by Theorem 4.2 one has
codim

�
L0ðR2Þ � a

�
¼ dimL0ðR2Þ=ð‘H;FÞ. Therefore Proposition 4.9 and Theorem 4.2

imply Proposition 4.8 and consequently Theorem 4.6. The proof of Proposition 4.9 requires
certain techniques related to quasi-homogeneous algebraic restrictions, therefore it is post-
poned to section 5.

4.3. Symplectic A-D-E classification. Continuing results of section 2.9 we give a
complete solution of Problem A with N ¼ fHðx1; x2Þ ¼ xf3 ¼ 0g where Hðx1; x2Þ is a
function representing one of the classical singularities Ak, Dk, E6, E7, E8, see Table 1. The-
orems A and 2.5 reduce Problem A to classification of algebraic restrictions of the space
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½L2ðR2Þ�fH¼0g with respect to the group of symmetries of the curve fH ¼ 0gHR2. This
classification involves functions and families of functions given in the second column of
Table 1.

Theorem 4.10. Fix a function H ¼ Hðx1; x2Þ in Table 1. Let

Fi ¼ ½Fi dx15dx2�fH¼0g;

where the functions Fi are given in the row of H.

(i) Any algebraic restriction a A ½L2ðR2Þ�fH¼0g is di¤eomorphic to one of the normal

forms Fi, i ¼ 0; . . . ; m, where m is the multiplicity of H.

(ii) The singularity classes defined by the normal forms F0; . . . ;Fm are disjoint.

(iii) The singularity class defined by the normal form Fi has codimension i.

(iv) The parameters b, b1, b2 in the normal forms are moduli.

The second statement is proved in section 4.4, the other statements in section 5. Let us
transfer the normal forms Fi to symplectic normal forms following the algorithm in section
2.8. Fix any symplectic form, for example,

o0 ¼ dp15dq1 þ � � � þ dpn5dqn:

If nf 2 then the algebraic restriction ½Fiðx1; x2Þ dx15dx2�N can be realized by the symplec-
tic form oi ¼ Fi dx15dx2 þ dx15dx3 þ dx25dx4 þ dx55dx6 þ � � � þ dx2n�15dx2n which
can be brought to o0 by the change of coordinates

Hðx1; x2Þ Fiðx1; x2Þ, i ¼ 0; 1; . . . ; m

Ak : xkþ1
1 � x2

2

k f 1
F0 ¼ 1,
Fi ¼ xi

1, i ¼ 1; . . . ; k � 1,
Fk ¼ 0

Dk : x2
1x2 � xk�1

2

k f 4
F0 ¼ 1,
Fi ¼ bx1 þ xi

2, i ¼ 1; . . . ; k � 4,

Fk�3 ¼ ðG1Þk
x1 þ bxk�3

2 ,
Fk�2 ¼ xk�3

2 , Fk�1 ¼ xk�2
2 , Fk ¼ 0

E6 : x3
1 � x4

2 F0 ¼ 1, F1 ¼Gx2 þ bx1, F2 ¼ x1 þ bx2
2,

F3 ¼ x2
2 þ bx1x2, F4 ¼Gx1x2, F5 ¼ x1x2

2 , F6 ¼ 0

E7 : x3
1 � x1x3

2 F0 ¼ 1, F1 ¼ x2 þ bx1, F2 ¼Gx1 þ bx2
2,

F3 ¼ x2
2 þ bx1x2, F4 ¼Gx1x2 þ bx3

2,
F5 ¼ x3

2, F6 ¼ x4
2, F7 ¼ 0

E8 : x3
1 � x5

2 F0 ¼G1, F1 ¼ x2 þ bx1, F2 ¼ x1 þ b1x2
2 þ b2x3

2,
F3 ¼Gx2

2 þ bx1x2, F4 ¼Gx1x2 þ bx3
2 ,

F5 ¼ x3
2 þ bx1x2

2, F6 ¼ x1x2
2 , F7 ¼Gx1x3

2, F8 ¼ 0

Table 1. Classification of the algebraic restrictions to Ak , Dk , E6, E7, E8.
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x1 ¼ p1; x2 ¼ p2; x3 ¼ q1 �
Ðp2

0

Fiðp1; tÞ dt; x4 ¼ q2;

x5 ¼ p3; x6 ¼ q3; . . . ; x2n�1 ¼ pn; x2n ¼ qn:

The given change of coordinates brings N ¼ ð4:1Þ to the form

N i ¼
�

Hðp1; p2Þ ¼ q1 �
Ðp2

0

Fiðp1; tÞ dt ¼ qf2 ¼ pf3 ¼ 0

�
H ðR2n;o0Þ:ð4:2Þ

Theorems A (ii), 2.5 and 4.10 imply the following complete symplectic classification of the
Ak, Dk, E6, E7, E8 singularities.

Theorem 4.11. Fix a function H ¼ Hðx1; x2Þ in Table 1. Any curve in the symplectic

space ðR2n;o0Þ, nf 2, which is di¤eomorphic to the curve N : Hðx1; x2Þ ¼ xf3 ¼ 0 can be

reduced by a symplectomorphism to one and only one of the normal forms N i, i ¼ 0; . . . ; m,
given by (4.2), where Fi are the functions in Table 1 and m is the multiplicity of H. The pa-

rameters b, b1, b2 are symplectic moduli. The codimension of the symplectic singularity class

defined by the normal form N i in the class of all curves di¤eomorphic to N is equal to i.

If n ¼ 1, i.e. in the 2-dimensional case, the symplectic classification is much simpler.
Theorems 4.2 (ii) and 4.10 along with Theorem A (ii) imply the following

Theorem 4.12. Let Hðx1; x2Þ be one of the functions in Table 1. All curves in the sym-

plectic plane ðR2; dp5dqÞ which are di¤eomorphic to the curve fH ¼ 0g are symplectomor-

phic unless H ¼ E8. Any curve in ðR2; dp5dqÞ which is di¤eomorphic to E8 : fx3
1 � x5

2 ¼ 0g
is symplectomorphic to one of the curves p3 G q5 ¼ 0.

Remark. It is easy to prove that the curves p3 G q5 ¼ 0 are not symplectomorphic.
The statement of Theorem 4.12 also follows from the works [V] and [Gi]. It is also con-
tained in the works [IJ1], [IJ2] along with other results on classification of curves in R2

with respect to volume-preserving di¤eomorphisms.

4.4. Distinguishing normal forms (proof of Theorem 4.10 (ii)). The normal form N i

in Theorem 4.11 corresponds to the normal form Fi in Theorem 4.10. Using Table 1 and
Theorems 4.5 and 4.6 it is easy to calculate the index of isotropness and the symplectic mul-
tiplicity of all singularities, see Table 2. They do not depend on the parameters of the nor-
mal forms except for the case Di

k, 2e ie k � 4, when the index of isotropness is di¤erent
for b3 0 and for b ¼ 0.

As we see from Table 2, either the index of isotropness or the symplectic multiplicity
distinguishes all normal forms except for the following two couples: ðaÞ E3

6 and E4
6 ; ðbÞ E5

8

and E6
8 . To distinguish these normal forms we will distinguish the corresponding normal

forms for algebraic restrictions:

ðaÞ ½ðx2
2 þ bx1x2Þ dx15dx2�fH¼0g and ½Gx1x2 dx15dx2�fH¼0g; H ¼ x3

1 � x4
2 ;

ðbÞ ½ðx3
2 þ bx1x2

2Þ dx15dx2�fH¼0g and ½x1x2
2 dx15dx2�fH¼0g; H ¼ x3

1 � x5
2 :
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These couples can be distinguished as follows. Let a ¼ ½Fðx1; x2Þ dx15dx2�fH¼0g,
where H is any quasi-homogeneous polynomial. Consider the ideal ð‘H;FÞ. We will say
that this ideal is associated with a. The associated ideals are invariantly related to algebraic
restrictions: if a; ~aa A ½L2ðR2nÞ�N are di¤eomorphic then the associated ideals are di¤eomor-
phic. This follows from Lemma 4.3 and the observation that any di¤eomorphism sending a
2-form F dx15dx2 to ~FF dx15dx2 sends the ideal generated by F to the ideal generated by
~FF . Therefore to distinguish the couples ðaÞ, ðbÞ it su‰ces to distinguish the couples of asso-
ciated ideals. In the case ðaÞ the associated ideals are

I ð1Þa ¼ ðx2
1 ; x

3
2 ; x

2
2 þ bx1x2Þ and I ð2Þa ¼ ðx2

1 ; x
3
2 ; x1x2Þ.

In the case ðbÞ they are I
ð1Þ
b ¼ ðx2

1 ; x
4
2 ; x

3
2 þ bx1x2

2Þ and I
ð2Þ
b ¼ ðx2

1 ; x
4
2 ; x1x2

2Þ. It is easy to

prove that I
ð1Þ
a is not di¤eomorphic to I

ð2Þ
a and I

ð1Þ
b is not di¤eomorphic to I

ð2Þ
b (to prove this

it su‰ces to consider the 2-jets of functions in the ideals I
ð1Þ
a and I

ð2Þ
a and the 2-jets of func-

tions in the ideals I
ð1Þ
b and I

ð2Þ
b ).

normal
form

index of
isotr.

sympl.
multip.

Ai
k

0e ie k � 1
i i

Ak
k y k

D0
k 0 0

D1
k 1 2

Di
k

2e ie k � 4
b3 0 : 1
b ¼ 0 : i

i þ 1

Dk�3
k 1 k � 2

Dk�2
k k � 3 k � 2

Dk�1
k k � 2 k � 1

Dk
k y k

E0
6 0 0

E1
6 1 2

E2
6 1 3

E3
6 2 4

E4
6 2 4

E5
6 3 5

E6
6 y 6

normal
form

index of
isotr.

sympl.
multip.

E0
7 0 0

E1
7 1 2

E2
7 1 3

E3
7 2 4

E4
7 2 5

E5
7 3 5

E6
7 4 6

E7
7 y 7

E0
8 0 0

E1
8 1 2

E2
8 1 4

E3
8 2 4

E4
8 2 5

E5
8 3 6

E6
8 3 6

E7
8 4 7

E8
8 y 8

Table 2. Symplectic invariants of Ak , Dk , E6, E7, E8 singularities.

216 Domitrz, Janeczko and Zhitomirskii, Singularities of varieties



5. Proof of Proposition 4.9 and Theorem 4.10

Throughout this section, including formulations of the statements, H ¼ Hðx1; x2Þ is a
quasi-homogeneous polynomial with respect to the weights l1, l2. Any quasi-homogeneity
should be understood as that with respect to the weights l1, l2. We also assume that H has
the property of zeros and a finite multiplicity m.

Proposition 4.9 is proved in sections 5.1–5.3. The main ingredients are the structure
of the algebra of infinitesimal symmetries of the curve fH ¼ 0g (section 5.1) and the quasi-
homogeneous algebraic restrictions (section 5.2). The same ingredients are used for the
proof of Theorem 4.10, statements (i), (iii), (iv) in sections 5.4–5.6 (Theorem 4.10 (ii) is al-
ready proved in section 4.4).

5.1. The infinitesimal symmetries of the curve {H F 0}. An infinitesimal symmetry
of the curve fH ¼ 0g is a vector field tangent to this curve. The space of all infinite-
simal symmetries is an algebra with respect to the Lie bracket. It will be denoted by
SymminfðfH ¼ 0gÞ.3) Consider the following Euler vector field E and the Hamiltonian vec-
tor field H related to H via the volume form dx15dx2:

E ¼ l1x1q=qx1 þ l2x2q=qx2; H ¼ ðqH=qx2Þq=qx1 � ðqH=qx1Þq=qx2:

The following lemma was used in many works, see for example [A1], [L].

Lemma 5.1. Any vector field V A SymminfðfH ¼ 0gÞ has the form V ¼ g1E þ g2H
for some functions g1, g2.

Proof. Since H has the property of zeros then VðHÞ ¼ RH for some function R. One
has EðHÞ ¼ d � H, where d is the degree of quasi-homogeneity of H. Let V1 ¼ V � RE=d.
Then V1ðHÞ ¼ 0. Let V1 ¼ Aq=qx1 þ Bq=qx2, then ðA dx2 � B dx1Þ5dH ¼ 0. Since H has
a finite multiplicity then the form dH has the division property (see, for example [M]) and
this relation implies A dx2 � B dx1 ¼ R1 dH for some function R1. This can be written in
the form V1 ¼ �R1 �H. We obtain V ¼ R1 �H� RE=d. r

By the following lemma the Hamiltonian part of the algebra SymminfðfH ¼ 0gÞ
leads to the symmetries preserving any algebraic restriction in ½L2ðR2Þ�fH¼0g. In what fol-
lows LV denotes the Lie derivative along the vector field V .

Lemma 5.2. LgHðaÞ ¼ 0 for any g A L0ðR2Þ and any a A ½L2ðR2Þ�fH¼0g.

Proof. Let Fðx1; x2Þ be any function. Let y ¼ LgHðF dx15dx2Þ. We have to prove
½y�fH¼0g ¼ 0. Note that H c dx15dx2 ¼ dH. This implies

y ¼ dðgFH c dx15dx2Þ ¼ dðgF dHÞ ¼ d
�
�HdðgFÞ

�
: r

Recall that TðaÞ denotes the tangent space at a to the orbit of an algebraic restriction
a. Lemmas 5.1 and 5.2 imply the following statement.

3) Another notation for the same algebra is DerlogðfH ¼ 0gÞ, see for example [Sa2].
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Proposition 5.3. Let a A ½L2ðR2Þ�fH¼0g. Then TðaÞ ¼ fLgEðaÞ; g A L0ðR2Þg.

5.2. Quasi-homogeneous algebraic restrictions. Now we will calculate the tangent
space TðaÞ more explicitly. This requires working with quasi-homogeneous algebraic re-
strictions. The possibility to define quasi-homogeneous algebraic restrictions follows from
the following lemma.

Notation. Given a function F ¼ Fðx1; x2Þ denote by F ðdÞ the quasi-homogeneous
part of degree d of its Taylor series with respect to the weights l1, l2.

Lemma 5.4. If ½F dx15dx2�fH¼0g ¼ 0 then ½F ðdÞ dx15dx2�fH¼0g ¼ 0 for any d.

Proof. Follows from Lemma 4.3 and the observation that qH=qx1, qH=qx2 are also
quasi-homogeneous polynomials with respect to the weights l1, l2. r

Lemma 5.4 allows to define quasi-homogeneous algebraic restrictions as follows.

Definition 5.5. Let F ¼ Fðx1; x2Þ and a ¼ ½F dx15dx2�fH¼0g. The algebraic restric-
tion aðdÞ ¼ ½F ðd�l1�l2Þ dx15dx2�fH¼0g will be called the quasi-homogeneous degree d part of

a. If a ¼ aðdÞ then a is called quasi-homogeneous of degree d.

Why F ðd�l1�l2Þ, not F ðdÞ in the definition of aðdÞ? This is so in order to have

Lemma 5.6. If an algebraic restriction a A ½L2ðR2Þ�fH¼0g is quasi-homogeneous of de-

gree d then LEðaÞ ¼ d � a.

Proof. Let a ¼ ½F dx1 dx2�fH¼0g. Calculate the Lie derivative

LEðF dx15dx2Þ ¼ dðE cF dx15dx2Þ ¼ LEF dx15dx2 þ FLEðdx15dx2Þ:

It remains to note that LEðdx15dx2Þ ¼ ðl1 þ l2Þ dx15dx2 and LEF ¼ ðd� l1 � l2ÞF
since F is quasi-homogeneous of degree d� l1 � l2. r

Lemma 5.7. For any a A ½L2ðR2Þ�fH¼0g the sum
P
d AR

aðdÞ is finite.

Proof. Obviously aðdÞ ¼ 0 if d < l1 þ l2 or if d3 a1l1 þ a2l2 for some positive
integers a1, a2. Therefore we have to prove that aðdÞ ¼ 0 for su‰ciently big d. Let
d > l1 þ l2 þ m, where m is the multiplicity of H. Then aðdÞ has the form ½F dx15dx2�fH¼0g,

where the function F has zero m-jet. Any such function belongs to the gradient ideal ð‘HÞ,
see [AVG]. By Lemma 4.3 one has aðdÞ ¼ 0. r

5.3. Proof of Proposition 4.9. In view of Proposition 5.3 let us calculate the Lie
derivative LgEðaÞ for quasi-homogeneous g and a.

Lemma 5.8. If a A ½L2ðR2Þ�fH¼0g and g A L0ðR2Þ are quasi-homogeneous of degrees

d1 and d2 then LgEðaÞ ¼ ðd1 þ d2Þga.

Proof. For any o A L2ðR2Þ, and g A L0ðR2Þ and any vector field V on R2 one has
LgVo ¼ g �

�
LV ðoÞ

�
þ
�
LV ðgÞ

�
� o. Therefore LgEðaÞ ¼ g �LEðaÞ þ

�
LEðgÞ

�
� a. One has

LEðgÞ ¼ d2g. By Lemma 5.6, LEðaÞ ¼ d1a. r
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Consider the linear operator

Q : ½L2ðR2Þ�fH¼0g ! ½L2ðR2Þ�fH¼0g; QðaÞ ¼
P
d AR

d � aðdÞ:

It is well-defined by Lemma 5.7. Proposition 5.3 and Lemma 5.8 imply

Proposition 5.9. TðaÞ ¼ Q
�
L0ðR2Þ � a

�
.

Since að0Þ ¼ 0 (moreover aðdÞ ¼ 0 for d < l1 þ l2) the operator Q is non-singular and
consequently dim TðaÞ ¼ dim

�
L0ðR2Þ � a

�
.

5.4. Proof of Theorem 4.10 (i). The normal forms in Theorem 4.10 follow from
Propositions 5.10 and 5.11 below. To formulate these propositions it is convenient to use
the following notation.

Notation. Denote by oðdÞ the subspace of the space ½L2ðR2Þ�fH¼0g consisting of al-
gebraic restrictions without quasi-homogeneous terms of degreee d.

Proposition 5.10. Let a1; . . . ; am be a basis of the space ½L2ðR2Þ�fH¼0g consisting of

quasi-homogeneous algebraic restrictions of degrees d1 e d2 e � � �e dm. Let

a ¼ c1a1 þ � � � þ cmam:

If as belongs to the a‰ne space g � ðc1a1 þ � � � þ cs�1as�1Þ þ oðdsÞ for some function g

such that gð0Þ ¼ 0 then a is di¤eomorphic to an algebraic restriction in the a‰ne space

c1a1 þ � � � þ cs�1as�1 þ oðdsÞ.

Proof. Let us show that a symmetry C of the curve fH ¼ 0g reducing a to the re-
quired normal form is contained in the flow F t of the vector field gE. Since gð0Þ ¼ 0 and
the degrees of quasi-homogeneity of afs are not less than ds then by Lemma 5.8 one has
LgEa A LgEðc1a1 þ � � � þ cs�1as�1Þ þ oðdsÞ. Lemma 5.8 and the assumption of Proposition
5.10 imply LgEa A dsas þ oðdsÞ. It follows

dðF tÞ�a=dt A ðF tÞ�
�
dsas þ oðdsÞ

�
:

Note now that for any t the di¤eomorphism F t preserves the x1 and the x2-axes and since
gð0Þ ¼ 0 then F t has identity linear approximation. These properties imply that F t pre-
serves the a‰ne space dsas þ oðdsÞ and consequently

dðF tÞ�a=dt A dsas þ oðdsÞ:

Since F0 ¼ id it follows ðF tÞ�a ¼ a þ tdsas þ oðdsÞ: Let t0 ¼ �cs=ds. Then C ¼ F t0 is the
required symmetry. r

To prove Theorem 4.10 (i) for all singularities except Dk it su‰ces to use the follow-
ing corollary of Proposition 5.10.

Proposition 5.11. Let a1; . . . ; am be a basis of the space ½L2ðR2Þ�fH¼0g consisting of

quasi-homogeneous algebraic restrictions of degrees d1 < d2 < � � � < dm. Any algebraic re-
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striction of the form a ¼ cpap þ � � � þ cmam with cp 3 0 is di¤eomorphic to an algebraic re-

striction of the form ~aa ¼ cpap þ ~ccpþ1apþ1 þ � � � þ ~ccmam, where ~cci ¼ 0 for all if p þ 1 such

that ai A L0ðR2Þ � ap.

Proof. By Lemma 5.4 and the assumption di < diþ1 any algebraic restriction in the
space oðdsÞ is a linear combination of asþ1; . . . ; am. Therefore to prove Proposition 5.11 it
su‰ces to prove that if as ¼ g � ap for some function g then the algebraic restriction a is
di¤eomorphic to an algebraic restriction in the a‰ne space c1a1 þ � � � þ cs�1as�1 þ oðdsÞ.
This follows from Proposition 5.10 since gð0Þ ¼ 0 (if we had gð0Þ3 0, then by Lemma
5.4, ap and as would be proportional). r

The proof of Theorem 4.10 (i) requires, except Propositions 5.10 and 5.11, the follow-
ing lemma.

Lemma 5.12. Let a ¼ ½xa1

1 xa2

2 dx15dx2�fH¼0g and c3 0. Then c � a is di¤eomorphic

toGa. If the curve fH ¼ 0g admits a symmetry ðx1; x2Þ ! ð�x1; x2Þ or ðx1; x2Þ ! ðx1;�x2Þ
which changes the sign of the monomial xa1

1 xa2

2 then the algebraic restrictions Ga are di¤eo-

morphic.

Proof. The first statement follows from the fact that the group of symmetries of
the curve fH ¼ 0g includes the scale transformations ðx1; x2Þ ! ðtl1 x1; t

l2x2Þ. The second
statement is obvious. r

Theorem 4.10 (i) for the Ak, E6, E7, E8 singularities (respectively Dk singularities) is a
direct corollary of Proposition 5.11 (respectively Proposition 5.10), Lemma 5.12, the obvi-
ous implication

g A L0ðR2Þ � f ) ½g dx15dx2�fH¼0g A L0ðR2Þ � ½ f dx15dx2�fH¼0g

and the relations in the last column of Table 3. In this table we use the notation

½ f ðx1; x2Þ� ¼ ½ f dx15dx2�fH¼0g:

H l1, l2 basis of ½L2ðR2Þ�fH¼0g

relations following
from Lemma 4.3

xkþ1
1 � x2

2 2, k þ 1 ½1�; ½x1�; . . . ; ½xk�1
1 �

x2
1x2 � xk�1

2 k � 2, 2 ½1�; ½x2�; . . . ; ½xl
2 �; ½x1�,

½xlþ1
2 �; ½xlþ2

2 �; . . . ; ½xk�2
2 �,

l ¼ ½ðk � 1Þ=2�

½x j
2� ¼ ðb½x1� þ ½xi

2�Þ � x
j�i
2

ðb A R; j > iÞ;
½xk�2

2 � ¼ 2x2

k�1
½x1�

x3
1 � x4

2 4, 3 ½1�, ½x2�, ½x1�,
½x2

2 �, ½x1x2�, ½x1x2
2 �

x3
1 � x1x3

2 3, 2 ½1�, ½x2�, ½x1�, ½x2
2 �,

½x1x2�, ½x3
2 �, ½x4

2 �
½x3

2 � ¼ 3x1 � ½x1�

x3
1 � x5

2 5, 3 ½1�, ½x2�, ½x1�, ½x2
2 �,

½x1x2�, ½x3
2 �, ½x1x2

2 �, ½x1x3
2 �

Table 3. From Propositions 5.10, 5.11 to Theorem 4.10 (i).
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All relations in the last column of Table 3 are obvious corollaries of Lemma 4.3. In
the second column of Table 3 we give the weights l1, l2 of quasi-homogeneity of the func-
tion H. In the third column we present a basis of the space ½L2ðR2nÞ�N satisfying the as-
sumption of Proposition 5.11 for all singularities except Dk with even k. For the latter sin-
gularities the basis in Table 3 satisfies the assumption of Proposition 5.10. The construction
of such a basis, for any H, is very simple. One has to take the monomial basis f1; . . . ; fm of
the local algebra of H, to calculate the degrees of these monomials with respect to the
weights l1, l2 and to rearrange them so that the degrees form a non-decreasing sequence.
Then, replacing fi by the algebraic restriction ½ fi� we obtain a required basis.

Example 5.13. Consider the case H ¼ Dk ¼ x2
1x2 � xk�1

2 . Decompose an algebraic
restriction a A ½L2ðR2Þ�fH¼0g by the basis in Table 3:

a ¼ c0½1� þ c1½x2� þ � � � þ ck�2½xk�2
2 � þ a � ½x1�:ð5:1Þ

Propositions 5.10, 5.11 and Lemma 5.12 imply that if the coe‰cients ci and a satisfy the
condition given in the first column of Table 4 then a is di¤eomorphic to the normal form
in Theorem 4.10, which we present again in the second column of Table 4. Note that the
first column contains all possible cases.

5.5. Proof of Theorem 4.10 (iii). Let a A ½L2ðR2Þ�fH¼0g. Take a basis ½ f1�; . . . ; ½ fm� of

½L2ðR2Þ�fH¼0g as in Table 3. Let a ¼ c1½ f1� þ � � � þ cm½ fm�. Tracing the proof of Theorem
4.10 (i) we can check that the normal form Fi holds if exactly i of the coe‰cients
c1; . . . ; cm are equal to 0 (see Example 5.13 where this follows from Table 4). By Theorem
4.10 (ii) ‘‘if ’’ can be replaced by ‘‘if and only if ’’.

5.6. Proof of Theorem 4.10 (iv). Any normal form with parameters in Theorem 4.10
has the form a0 þ b1a1 þ � � � þ bsas where ai are algebraic restrictions, bi are parameters,
se 2. To prove that the parameters are moduli we have to prove

ai B Tða0 þ b1a1 þ � � � þ bsasÞ:ð5:2Þ

Proposition 5.9 allows to calculate this tangent space explicitly and to check (5.2) for each
of the normal forms in Theorem 4.10. As an example consider the most di‰cult case—the
only normal form with two parameters—the normal form

c0 3 0 F0 : ½1�

c0 ¼ � � � ¼ ci�1 ¼ 0, ci 3 0, ie k � 4 Fi : ½bx1 þ xi
2�

c0 ¼ � � � ¼ ck�4 ¼ 0, a3 0 Fk�3 : ½ðG1Þk�1x1 þ bxk�3
2 �

c0 ¼ � � � ¼ ck�4 ¼ 0, a ¼ 0, ck�3 3 0 Fk�2 : ½xk�3
2 �

c0 ¼ � � � ¼ ck�3 ¼ 0, a3 0, ck�2 3 0 Fk�1 : ½xk�2
2 �

c0 ¼ � � � ¼ ck�2 ¼ 0, a ¼ 0 Fk : ½0�

Table 4. The correspondence between the normal forms in Theorem 4.10 for the

case H ¼ Dk and the coe‰cients in (5.1).
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F2 ¼ ½x1 þ b1x2
2 þ b2x3

2 �

for the case H ¼ E8 ¼ x3
1 � x5

2. We continue to use the notation ½ f � ¼ ½ f dx15dx2�fH¼0g
from the previous subsection. We have to prove

½x2
2 �; ½x3

2 � B TðF2Þ:ð5:3Þ

By Proposition 5.9 one has

TðF2Þ ¼
�P

r

r � ½g �F2�ðrÞ; g A L0ðR2Þ
�
;ð5:4Þ

where ðrÞ denotes the quasi-homogeneous part of degree r with respect to the weights
l1 ¼ 5, l2 ¼ 3. Lemma 4.3 implies the relations

xf2
1 xa

2F2 ¼ xa
1 xf4

2 F2 ¼ x1x2
2F2 ¼ 0

for any af 0, and the relations

x1F2 ¼ b1½x1x2
2 � þ b2½x1x3

2 �; x2F2 ¼ ½x1x2� þ b1½x3
2 �;

x2
2F2 ¼ ½x1x2

2 �; x1x2F2 ¼ b1½x1x3
2 �; x3

2F2 ¼ ½x1x3
2 �:

These relations and (5.4) imply

TðF2Þ ¼ spanð5½x1� þ 6b1½x2
2 � þ 9b2½x3

2 �; 8½x1x2� þ 9b1½x3
2 �; ½x1x2

2 �; ½x1x3
2 �Þ:

Since the algebraic restrictions ½x1�, ½x1x2�, ½x2
2 �, ½x3

2 �, ½x1x2
2 �, ½x1x3

2 � are linearly independent
(see the last row of Table 3) it is clear that (5.3) holds for any b1, b2.

6. Symplectic S5-singularities

Denote by ðS5Þ the class of varieties in a fixed symplectic space ðR2n;oÞ which are
di¤eomorphic to

S5 ¼ fx A R2nf4 : x2
1 � x2

2 � x2
3 ¼ x2x3 ¼ xf4 ¼ 0g:ð6:1Þ

We will use the method of algebraic restrictions to obtain a complete classification of sym-
plectic singularities in ðS5Þ. In section 6.1 we calculate the manifold ½SympðR2nÞ�S5

and
classify its algebraic restrictions. This allows us to decompose ðS5Þ onto symplectic singu-
larity classes, section 6.2. In section 6.3 we transfer the normal forms for algebraic restric-
tions to symplectic normal forms. In section 6.4 we give an equivalent definition of the sym-
plectic singularity classes in canonical terms. Some of the proofs are contained in sections
6.5, 6.6.

6.1. Algebraic restrictions and their classification. One has the relations

½dðx2x3Þ�N ¼ ½x2 dx3 þ x3 dx2�N ¼ 0;ð6:2Þ
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½dðx2
1 � x2

2 � x2
3Þ�N ¼ 2 � ½x1 dx1 � x2 dx2 � x3 dx3�N ¼ 0:ð6:3Þ

Multiplying these relations by suitable 1-forms we obtain the relations in Table 5.

Table 5 and Proposition 2.3 easily imply the following statements.

Proposition 6.1. Any 2-form with zero 1-jet has zero algebraic restriction to S5.

Proposition 6.2. ½L2ðR2nÞ�S5 is a 6-dimensional vector space spanned by the algebraic

restrictions to S5 of the 2-forms

y1 ¼ dx15dx2; y2 ¼ dx25dx3; y3 ¼ dx35dx1; y4 ¼ x2 dx15dx2;

s1 ¼ x3 dx15dx2; s2 ¼ x1 dx25dx3:

Proposition 6.2 and results of section 2.14 (Theorems 2.19 and 2.21) imply the follow-
ing description of the space ½L2; closedðR2nÞ�S5 and the manifold ½SympðR2nÞ�S5

.

Theorem 6.3. The space ½L2; closedðR2nÞ�S 5 has dimension 5. It is spanned by the alge-

braic restrictions to S5 of the 2-forms

y1; . . . ; y4; y5 ¼ s1 � s2:

If nf 3 then ½SympðR2nÞ�S5
¼ ½L2; closedðR2nÞ�S5 . The manifold ½SympðR4Þ�S5

is an open

part of the 5-space ½L2; closedðR4Þ�S5 consisting of algebraic restrictions of the form

½c1y1 þ � � � þ c5y5�S5
such that ðc1; c2; c3Þ3 ð0; 0; 0Þ.

relation proof

1. ½x2 dx25dx3�N ¼ 0 ð6:2Þ5dx2

2. ½x3 dx25dx3�N ¼ 0 ð6:2Þ5dx3

3. ½x2
1 dx25dx3�N ¼ 0 follows from rows 1. and 2. since

½x2
1 �N ¼ ½x2

2 þ x2
3 �N

4. ½x1 dx15dx2�N ¼ 0 ð6:3Þ5dx2 along with row 2.

5. ½x2
2 dx15dx2�N ¼ 0 ð6:3Þ5x2 dx1

(since ½x2x3�N ¼ 0)

6. ½x2
3 dx15dx2�N ¼ 0 ð6:2Þ5x3 dx1

(since ½x2x3�N ¼ 0)

7. ½x1 dx15dx3�N ¼ 0 ð6:3Þ5dx3 along with row 1.

8. ½x2 dx15dx3�N ¼ �½x3 dx15dx2�N ð6:2Þ5dx1

9. ½x3 dx15dx3�N ¼ �½x2 dx15dx2�N ð6:3Þ5dx1

Table 5. Relations towards calculating ½L2ðRmÞ�N for N ¼ S5.
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Remark. The fact that dim½L2; closedðR2nÞ�S 5 ¼ 5 follows from Proposition 2.16 since
S5 is a complete intersection singularity of multiplicity 5.

Theorem 6.4. (i) Any algebraic restriction in ½L2; closedðR2nÞ�S5 can be brought by a

symmetry of S5 to one of the normal forms ½S5� i given in the second column of Table 6.

(ii) The codimension in ½L2; closedðR2nÞ�S 5 of the singularity class corresponding to the

normal form ½S5� i is equal to i.

(iii) The singularity classes corresponding to the normal forms are disjoint.

(iv) The parameters c, c1, c2 of the normal forms ½S5�0, ½S5�2, ½S5�3 are moduli.

6.2. Symplectic singularity classes. In the first column of Table 6 by ðS5Þ i we denote

a subclass of ðS5Þ consisting of N A ðS5Þ such that the algebraic restriction ½o�N is di¤eomor-

phic to some algebraic restriction of the normal form ½S5� i. Theorem A, Theorem 6.4 and
Proposition 6.3 imply the following statement.

Proposition 6.5. The classes ðS5Þ i
are symplectic singularity classes, i.e. they are

closed with respect to the action of the group of symplectomorphisms. The class ðS5Þ is the

disjoint union of the classes ðS5Þ0, ðS5Þ2, ðS5Þ3, ðS5Þ5
. The classes ðS5Þ0

and ðS5Þ2
are non-

empty for any dimension 2nf 4 of the symplectic space; the classes ðS5Þ3
and ðS5Þ5

are

empty if n ¼ 2 and not empty if nf 3.

The following theorem explains why the given stratification of ðS5Þ is natural.

Theorem 6.6. Fix i A f0; 2; 3; 5g. All stratified submanifolds N A ðS5Þ i
have the same

(a) symplectic multiplicity and (b) index of isotropness given in Table 6.

Proof. The part (a) follows from Theorems D and 6.4 and the fact that the codimen-
sion in ½L2; closedðR2nÞ�S5

of the orbit of an algebraic restriction a A ½S5� i is equal to the sum

class
normal forms for
algebraic restrictions cod msym ind

canonical
definition

ðS5Þ0

2nf 4
½S5�0 : ½y2 þ c1y1 þ c2y3�S5

,
ðc1; c2Þ3 ð0; 0Þ

0 2 0 ojW 3 0,
kerojW 3 l�

1 ; l
�
2 ; l

�
3

ðS5Þ2

2nf 4
½S5�2 : ½y2 þ cy4�S5

2 3 0 ojW 3 0,
kerojW A fl�

1 ; l
�
2 ; l

�
3 g

ðS5Þ3

2nf 6
½S5�3 : ½y4 þ cy5�S5

3 4 1 ojW ¼ 0,
½o�N 3 0

ðS5Þ5

2nf 6
½S5�5 : ½0�S5

5 5 y ½o�N ¼ 0

Table 6. Classification of symplectic S5 singularities. cod—codimension of the classes;

m sym—symplectic multiplicity; ind—the index of isotropness; W —the tangent space to a non-singular

3-dimensional manifold containing N; l�
1 , l�

2 , l�
3 —the lines in W associated to the tangent lines to

the strata of N.
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of the number of moduli in the normal form ½S5� i and the codimension in ½L2; closedðR2nÞ�S5

of the class of algebraic restrictions defined by this normal form.

The part (b) for the normal form ½S5�5 follows from Theorem B (or from Theorem C).
For the normal forms ½S5�0 and ½S5�2 it follows from Theorem C and Lemma 2.20. For
½S5�3 the part (b) follows from Theorem C and Proposition 6.1. r

6.3. Symplectic normal forms. Let us transfer the normal forms ½S5� i to symplectic
normal forms using Theorem A, i.e. realizing the algorithm in section 2.8. Fix a family o i

of symplectic forms on R2n realizing the family ½S5� i of algebraic restrictions. We can fix,
for example

o0 ¼ y2 þ c1y1 þ c2y3 þ dx15dx4 þ dx55dx6 þ � � � þ dx2n�15dx2n; ðc1; c2Þ3 ð0; 0Þ;

o2 ¼ y2 þ cy4 þ dx15dx4 þ dx55dx6 þ � � � þ dx2n�15dx2n;

o3 ¼ y4 þ cy5 þ dx15dx4 þ dx25dx5 þ dx35dx6 þ dx75dx8 þ � � � þ dx2n�15dx2n;

o5 ¼ dx15dx4 þ dx25dx5 þ dx35dx6 þ dx75dx8 þ � � � þ dx2n�15dx2n:

Corollary 6.7. Let o be a symplectic form on R2n, nf 3 (resp. n ¼ 2). Fix, for

i ¼ 0; 2; 3; 5 (resp. for i ¼ 0; 2Þ a family F i of local di¤eomorphisms which bring the family

of symplectic forms o i to the symplectic form o: ðF iÞ�o i ¼ o. Consider the families

S i
5 ¼ ðF iÞ�1ðS5Þ. Any stratified submanifold of the symplectic space ðR2n;oÞ which is dif-

feomorphic to S5 can be reduced by a local symplectomorphism to one and only one of the

normal forms S i
5, i ¼ 0; 2; 3; 5 (resp. i ¼ 0; 2). The parameters of the normal forms are

moduli.

Of course the normal forms S i
5 depend on the choice of the di¤eomorphisms F i in

Corollary 6.7 and of the symplectic forms o i realizing the algebraic restrictions. For exam-
ple, if o is expressed in Darboux coordinates, o ¼ dp15dq1 þ � � � þ dpn5dqn then a suit-
able choice of o i and F i leads to the following normal forms:

S0
5 : p2

1 � p2
2 � q2

2 ¼ 0; p2q2 ¼ 0; q1 ¼ c1p2 þ c2q2; pf3 ¼ qf3 ¼ 0; ðc1; c2Þ3 ð0; 0Þ;

S2
5 : p2

1 � p2
2 � q2

2 ¼ 0; p2q2 ¼ 0; q1 ¼ cp2
2 ; pf3 ¼ qf3 ¼ 0;

S3
5 : p2

1 � p2
2 � p2

3 ¼ 0; p2 p3 ¼ 0; q1 ¼ p2
2=2; q2 ¼ cp1 p3; qf3 ¼ pf4 ¼ 0;

S5
5 : p2

1 � p2
2 � p2

3 ¼ 0; p2 p3 ¼ 0; qf1 ¼ pf4 ¼ 0:

6.4. Canonical definition of the classes (S5)i. The classes ðS5Þ i can be distinguished
geometrically, without using any local coordinate system. Let N A ðS5Þ. Then N is the
union of 4 non-singular 1-dimensional submanifolds (strata). Denote by l1ðNÞ; . . . ; l4ðNÞ
the tangent lines at 0 to the strata. These lines span a 3-space W ¼ W ðNÞ. Equivalently
W ðNÞ is the tangent space at 0 to some (and then any) non-singular 3-manifold containing
N. The classes ðS5Þ i can be distinguished in terms of the restriction ojW , where o is the
symplectic form, and the following three lines in the 3-space W associated with the lines
l1ðNÞ; . . . ; l4ðNÞ:

225Domitrz, Janeczko and Zhitomirskii, Singularities of varieties



l�
1 ¼ l�

1 ðNÞ ¼
�
l1ðNÞl l2ðNÞ

�
X
�
l3ðNÞl l4ðNÞ

�
;

l�
2 ¼ l�

2 ðNÞ ¼
�
l1ðNÞl l3ðNÞ

�
X
�
l2ðNÞl l4ðNÞ

�
;

l�
3 ¼ l�

3 ðNÞ ¼
�
l1ðNÞl l4ðNÞ

�
X
�
l2ðNÞl l3ðNÞ

�
:

The constructed lines l�
1 , l�

2 , l�
3 are well-defined 1-dimensional subspaces of the 3-space

W because W is spanned by any three of the lines l1ðNÞ; . . . ; l4ðNÞ. For example, for
N ¼ S5 ¼ ð6:1Þ it is easy to calculate

l�
1 ðNÞ ¼ spanðq=qx1Þ; l�

2;3ðNÞ ¼ spanðq=qx2 G q=qx3Þ:ð6:4Þ

Theorem 6.8. A stratified submanifold N A ðS5Þ of a symplectic space ðR2n;oÞ be-

longs to the class ðS5Þ i
if and only if the couple ðN;oÞ satisfies the condition in the last col-

umn of Table 6, the row of ðS5Þ i
.

Remark. One can ask why this is a theorem, not the definition of ðS5Þ i. Of course
we could use the last column of Table 6 as the definition of the classes, but this way of ex-
position is not ‘‘honest’’: the geometric characterization of the classes was obtained as a
result of analysis of normal forms for algebraic restrictions.

Proof of Theorem 6.8. The conditions on the pair ðo;NÞ in the last column of Table
6 are disjoint. This fact and Theorem 6.4 (i) reduce Theorem 6.8 to the following statement:
the condition given in the last column of Table 6, the row of ðS5Þ i, are satisfied for any
N A ðS5Þ i. This statement is a corollary of the following claims:

(1) Each of the conditions in the last column of Table 6 is invariant with respect to
the action of the group of di¤eomorphisms in the space of pairs ðo;NÞ.

(2) Each of these conditions depends only on the algebraic restriction ½o�N .

(3) Take the simplest 2-forms o i representing the normal forms ½S5� i for alge-
braic restrictions: o0 ¼ y2 þ c1y1 þ c2y3, o2 ¼ y2 þ cy4, o3 ¼ y4 þ cy5, o5 ¼ 0: The pair
ðo ¼ o i;S5Þ satisfies the condition in the last column of Table 6, the row of ðS5Þ i.

The first statement is obvious, the second one follows from Lemma 2.20. To
prove the third statement it su‰ces to note that in the case N ¼ S5 ¼ ð6:1Þ one has
W ¼ spanðq=qx1; q=qx2; q=qx3Þ and the kernel of the restriction to W of the 2-form
y2 þ c1y1 þ c2y3 is the line spanned by the vector q=qx1 þ c2q=qx2 � c1q=qx3. This line
coincides with one of the lines (6.4) if any only if c1 ¼ c2 ¼ 0. r

Theorem 6.8 allows to distinguish the classes ðS5Þ0 W ðS5Þ2 and ðS5Þ3 W ðS5Þ5 in sim-
ple geometric terms: N A ðS5Þ3 W ðS5Þ5 if and only if ojW ¼ 0. The geometric distinguishing

of the classes ðS5Þ3 and ðS5Þ5 follows from Theorem B: N A ðS5Þ5 if and only if N is con-
tained in a non-singular Lagrangian submanifold. The following theorem gives a simple
way to check the latter condition without using algebraic restrictions. Given a 2-form s

on a non-singular submanifold M of R2n such that sð0Þ ¼ 0 and a vector v A T0M we de-
note by Lvs the value at 0 of the Lie derivative of s along a vector field V on M such that
v ¼ Vð0Þ. The assumption sð0Þ ¼ 0 implies that the choice of V is irrelevant.
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Theorem 6.9. Let N A ðS5Þ be a stratified submanifold of a symplectic space ðR2n;oÞ.
Let M 3 be any non-singular submanifold containing N and let s be the restriction of o to

TM 3. Let v�
i A l�

i be non-zero vectors. The symplectic form o has zero algebraic restriction

to N if and only if sð0Þ ¼ 0 and Lv�
1
sðv�

2 ; v
�
3 Þ ¼ Lv�

2
sðv�

3 ; v
�
1Þ ¼ Lv�

3
sðv�

1 ; v�
2Þ ¼ 0.

6.5. Proof of Theorem 6.4. We will prove statements (i) and (iv). Statements (ii) and
(iii) follow from Theorem 6.8 which was proved in section 6.4 (using only the part (i) of
Theorem 6.4). The first statement of Theorem 6.4 follows from the following lemmas.

Lemma 6.10. If ðc1; c2; c3Þ3 ð0; 0; 0Þ then the algebraic restriction of the form

½c1y1 þ � � � þ c5y5�S5
can be reduced by a linear symmetry of S5 to an algebraic restriction of

the same form with c2 ¼ 1.

Lemma 6.11. The algebraic restriction of the form ½c4y4 þ c5y5�S5
with ðc4; c5Þ3 ð0; 0Þ

can be reduced by a linear symmetry of S5 to an algebraic restriction of the same form with

c4 ¼ 1.

Lemma 6.12. The algebraic restriction of the form ½c1y1 þ y2 þ c2y3 þ r1y4 þ r2y5�S5

can be reduced by a symmetry of S5 to the algebraic restriction ½c1y1 þ y2 þ c2y3�S5
.

Lemma 6.13. The algebraic restriction of the form ½y2 þ c4y4 þ c5y5�S5
can be reduced

by a symmetry of S5 to the algebraic restriction ½y2 þ c4y4�S5
.

Proof of Lemmas 6.10 and 6.11. If c2 3 0 in the case of Lemma 6.10 or c4 3 0 in the
case of Lemma 6.11 then the required normal forms are clear due to the scale symmetries
of S5 of the form xi ! kxi and the involution x1 ! �x1. It is easy to check that a suitable
permutation of some of the four strata of S5 brings the case c2 ¼ 0 (resp. c4 ¼ 0) to the case
c2 3 0 (resp. c4 3 0). r

To prove Lemmas 6.12 and 6.13 we use the non-linear symmetries of S5 generated by
the Euler vector field E ¼ x1q=qx1 þ x2q=qx2 þ x2q=qx3.

Notation. Denote by Ct
j the flow of the vector field xjE, j ¼ 1; 2; 3.

Lemma 6.14. Let ai ¼ ½yi�S5
, i ¼ 1; . . . ; 5. The algebraic restriction ðC t

j Þ
�
ai has the

form given in Table 7 in the row of ai and the column of Cj .

C t
1 C t

2 Ct
3

a1 a1 a1 þ 3ta4 a1 þ ta5

a2 a2 � 2ta5 a2 a2

a3 a3 a3 þ ta5 a3 þ 3ta4

a4 a4 a4 a4

a5 a5 a5 a5

Table 7. The algebraic restrictions ðC t
j Þ

�
ai.
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Lemmas 6.12 and 6.13 are immediate corollaries of Lemma 6.14. In fact, Table 7 im-
plies that if c1 3 0 (respectively c2 3 0) then the algebraic restriction

c1a1 þ a2 þ c2a3 þ c4a4 þ c5a5

reduces to the form c1a1 þ a2 þ c2a3 by the symmetry C t
1 �Cs

2 (respectively C t
1 �Cs

3) with
suitable t and s. The table also implies that the algebraic restriction a2 þ c4a4 þ c5a5 re-
duces to a2 þ c4a4 by the symmetry C t

1 with a suitable t.

Proof of Lemma 6.14. The calculation of algebraic restrictions ðC t
j Þ

�
ai is based on

the observation that if oi is a 2-form representing the algebraic restriction ai then by
Proposition 6.1, ðC t

j Þ
�
ai depends only on the 1-jet of o and the 2-jet of Cj. For example

j2Ct
1 : x1 ! x1 þ tx2

1, x2 ! x2 þ tx1x2, x3 ! x3 þ tx1x3 and consequently

j1ðCt
1Þ

�
a2 ¼ ½dx25dx3 þ 2tx1 dx25dx3 � tx3 dx15dx2 þ tx2 dx15dx3�S5

:

Using the relation ½x2 dx3�S5
¼ �½x3 dx2�S5

(since ½x2x3�S5
¼ 0) we obtain that

ðCt
1Þ

�
a2 ¼ a2 � 2ta5. The other boxes in Table 7 can be filled in by similar simple calcula-

tions (using some relations in Table 5, for example ½x1 dx15dx3�S5
¼ 0). r

Now we will prove statement (iv) of Theorem 6.4. The fact that the parameters c1 and
c2 are moduli in the normal form ½S5�0 and the parameter c is a modulus in the normal
form ½S5�3 follows from the reduction Theorem 2.5 and the structure of the group of linear
symmetries of S5 treated as a stratified submanifold of R3—it is easy to see that it consists
of the scale transformations xi ! kxi and the permutations of the strata.

Remark. The existence of two moduli in the symplectic classification of stratified
submanifolds N A ðS5Þ follows from the existence of two moduli in the classification of 5-
tuples of lines (one-dimensional subspaces) in a 3-space with respect to the group of linear
transformations of this space. One should associate to N the 3-space WðNÞ and the lines
l1ðNÞ; . . . ; l4ðNÞ, kerojW HWðNÞ, see section 6.4.

It remains to prove that c is a modulus in the normal form ½S5�2. As above, Theorem
2.5 allows us to treat S5 as a stratified submanifold of R3. Any symmetry F of S5 preserv-
ing each of the four strata has the form xi ! kxi, therefore F brings the algebraic restric-
tion ½y2 þ c � y4�S5

to an algebraic restriction of the form ½k2y2 þ r4y4 þ r5y5�S5
. Therefore it

su‰ces to prove that c is an invariant with respect to the symmetries of S5 of the form

F : x1 ! x1 þ f1ðxÞ; x2 ! x2 þ f2ðxÞ; x3 ! x3 þ f3ðxÞ;ð6:5Þ

where fi are functions with zero 1-jet. Using Table 5 we obtain

F�½y2 þ c � y4�S5
¼ ½y2 þ ðc � rÞy4 þ ~rr � y5�S5

; r ¼ q2f3

qx1qx2
ð0Þ þ q2f2

qx1qx3
ð0Þ

(the number ~rr also can be calculated, but we do not need it). Now, to prove that c is a
modulus, we have to show that r ¼ 0 for any symmetry F of S5 of form (6.5). The
fact that F preserves the strata x1 ¼Gx2, x3 ¼ 0 and x1 ¼Gx3, x2 ¼ 0 implies that f3 be-
longs to the ideal ðx3; x

2
1 � x2

2Þ and f2 belongs to the ideal ðx3; x2
1 � x2

3Þ. It follows that
q2f3

qx1qx2
ð0Þ ¼ q2f2

qx1qx3
ð0Þ ¼ 0 and consequently r ¼ 0.
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6.6. Proof of Theorem 6.9. By Proposition 2.4 and Lemma 2.20 it su‰ces to prove
that if a closed 2-form s on R3 vanishes at 0 then s has zero algebraic restriction to
S5 ¼ fx2

1 � x2
2 � x2

3 ¼ x2x3 ¼ 0gHR3 if and only if

Lv�
1
sðv�

2 ; v
�
3Þ ¼ Lv�

2
sðv�

3 ; v�
1Þ ¼ Lv�

3
sðv�

1 ; v
�
2 Þ ¼ 0:ð6:6Þ

Let s ¼ A3ðxÞ dx15dx2 þ A1ðxÞ dx25dx3 þ A2ðxÞ dx35dx1: Then, by the closeness of s,

one has
qA1

qx1
ð0Þ þ qA2

qx2
ð0Þ þ qA3

qx3
ð0Þ ¼ 0. Using (6.4) it is easy to calculate that the intersec-

tion of this condition and (6.6) gives

qA1

qx1
ð0Þ ¼ qA2

qx2
ð0Þ þ qA3

qx3
ð0Þ ¼ qA2

qx3
ð0Þ þ qA3

qx2
ð0Þ ¼ 0:ð6:7Þ

Let us show that (6.7) is equivalent to the condition ½s�N ¼ 0. By Proposition 6.1,

½s�N ¼ 0 if and only if ½ j1s�N ¼ 0. The functions x2
1 � x2

2 � x2
3 and x2x3 have zero 1-jet.

Therefore ½s�N ¼ 0 if and only if there exist r1; . . . ; r6 A R such that

j1s ¼ dðx2
1 � x2

2 � x2
3Þ5ðr1 dx1 þ r2 dx2 þ r3 dx3Þ þ dðx2x3Þ5ðr4 dx1 þ r5 dx2 þ r6 dx3Þ:

This relation is a system of 9 linear equations with respect to 6 unknowns r1; . . . ; r6. It is
easy to check that it is solvable if and only if the condition (6.7) holds.

7. Classification of symplectic regular union singularities

By a regular union singularity in R2n we mean the union

N ¼ N1 W � � �WNs; sf 2ð7:1Þ

of germs of s non-singular submanifolds of R2n (in what follows—strata) such that the di-
mension of the space

W ¼ T0N1 þ � � � þ T0Nsð7:2Þ

is equal to the sum of the dimensions of the strata, i.e. the sum (7.2) is direct. If the num-
ber of strata and their dimensions are fixed then all such N are di¤eomorphic. The set
½SympðR2nÞ�N can be explicitly described (section 7.1). Using this description and Theorem
A we classify all symplectic regular union singularities with three 1-dimensional strata (sec-
tion 7.2), with two 2-dimensional isotropic strata (section 7.3), and with two 2-dimensional
symplectic strata (section 7.4).

7.1. Algebraic restrictions. At first we describe the space ½L2; closedðR2nÞ�N . Through-
out subsection 7.1, N is an arbitrary regular union singularity (7.1).

Theorem 7.1. Two closed 2-forms o1, o2 have the same algebraic restriction to N if

and only if they have the same restriction to the tangent bundle to each of the strata Ni and

o1 and o2 have the same restriction to the space W.
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It follows that ½L2; closedðR2nÞ�N is a finite dimensional vector space if and only if each
of the strata Ni is 1-dimensional. Theorem 7.1 makes clear how to parametrize the space of
algebraic restrictions, see sections 7.2, 7.3, 7.4.

The minimal dimension of a non-singular manifold containing N is the sum of the
dimensions of the strata. Therefore Theorem 2.19 implies:

Proposition 7.2. Let m ¼ dim N1 þ � � � þ dim Ns. If me n then

½SympðR2nÞ�N ¼ ½L2; closedðR2nÞ�N :

If m > n then an algebraic restriction ½o�N A ½L2; closedðR2nÞ�N belongs to ½SympðR2nÞ�N if

and only if rankoð0Þf 2ðm � nÞ:

Note that Theorem A, Theorem 7.1 and Proposition 7.2 reduce the problem of clas-
sification of symplectic regular union singularities with isotropic strata to simple linear al-
gebra problems, see sections 7.2 and 7.3.

Theorem 7.1 and Theorem C imply the following corollary on the index of isotrop-
ness of a regular union singularity.

Proposition 7.3. Let N be a regular union singularity (7.1) in a symplectic space

ðR2n;oÞ. Let W HT0R
2n be the space (7.2). If ojW 3 0 then the index of isotropness of N

is equal to 0. If ojW ¼ 0 then it is equal to the minimum of orders of vanishing of the 2-forms

ojTNi
, i ¼ 1; . . . ; s. In particular, if the strata Ni are isotropic then the index is either 0 (if

ojW 3 0) or y (if ojW ¼ 0).

Proof of Theorem 7.1. Fix a non-singular submanifold M containing N of dimen-
sion dim N1 þ � � � þ dim Ns. Theorem 7.1 follows from Proposition 2.4 and the following
statement: a closed 2-form s on M has zero algebraic restriction to N if and only if (a)
sjTNi

¼ 0, i ¼ 1; . . . ; s and (b) sð0Þ ¼ 0. The implication ½s�N ¼ 0 ) (a),(b) follows from
Lemma 2.20. In what follows we prove the implication (a),(b) ) ½s�N ¼ 0. It is easy to
show that (a) and (b) imply that s is a di¤erential of a 1-form a such that (c) a has zero
1-jet and (d) ajTNi

¼ 0, i ¼ 1; . . . ; s. Therefore it su‰ces to prove that (c) and (d) imply

½a�N ¼ 0. To prove this statement take local coordinates x
ð1Þ
1 ; . . . ; x

ð1Þ
m1 ; . . . ; x

ðsÞ
1 ; . . . ; x

ðsÞ
ms on

M such that the stratum Ni is described by vanishing of all coordinates except x
ðiÞ
1 ; . . . ; x

ðiÞ
mi

(here mi ¼ dim Ni). It is easy to see that any 1-form a satisfying (c) and (d) belongs to the
ideal in the external algebra of di¤erential forms generated by 0-forms (functions)

xðiÞ
p � xð jÞ

q ; j 3 i; p ¼ 1; . . . ;mi; q ¼ 1; . . . ;mj;

which vanish at any point of N, and 1-forms

xðiÞ
p1

� xðiÞ
p2

dxð jÞ
q ; j 3 i; p1; p2 ¼ 1; . . . ;mi; q ¼ 1; . . . ;mj:ð7:3Þ

By Proposition 2.3 it remains to prove that the 1-forms (7.3) have zero algebraic restriction
to N. This follows from the relation

xðiÞ
p1

� xðiÞ
p2

dxð jÞ
q ¼ dðxðiÞ

p1
� xðiÞ

p2
� xð jÞ

q Þ � xðiÞ
p1

� xð jÞ
q dxðiÞ

p2
� xðiÞ

p2
� xð jÞ

q dxðiÞ
p1
:

7.2. Regular union of 3 one-dimensional submanifolds. By Theorem 7.1 the algebraic
restrictions of closed 2-forms to a regular union N of three 1-dimensional submanifolds can
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be identified with 2-forms on the 3-space W spanned by the tangent lines l1, l2, l3 to the
strata of N. The action of the group of symmetries of N reduces to the action of the group
of linear transformations of W preserving the set l1 W l2 W l3. Therefore the problem of
classification of algebraic restrictions to N of closed 2-forms reduces to the following simple
problem of linear algebra:

Let l1, l2, l3 be linearly independent 1-dimensional subspaces of a 3-dimensional
space W . One has to classify 2-forms s on W with respect to the group of linear transfor-
mations preserving l1 W l2 W l3.

It is easy to prove that in this problem there are exactly 4 orbits, of codimension 0, 1,
2, 3. The orbit of codimension 0 consists of non-zero 2-forms whose kernel does not belong
to any of the 2-spaces l1 þ l2, l1 þ l3, l2 þ l3. The orbit of codimension 1 consists of non-
zero 2-forms whose kernel belongs to one of these 2-spaces but does not coincide with any
of the lines l1, l2, l3. The orbit of codimension 2 consists of non-zero 2-forms whose kernel
coincides with one of the lines l1, l2, l3. The orbit of codimension 3 is one ‘‘point’’—the
zero 2-form.

Theorem 7.1 allows to bring this simple classification to the classification of algebraic
restrictions given in the first column of Table 8, where

N � : x1x2 ¼ x1x3 ¼ x2x3 ¼ xf4 ¼ 0

is the normal form with respect to the group di¤eomorphisms serving for all regular unions
of three 1-dimensional submanifolds. The algebraic restriction to N of any closed 2-form o

is di¤eomorphic to one and only one of the algebraic restrictions ai. The normal form ai

holds if and only if the pair ðo;NÞ satisfies the condition given in the last column of Table
8. The orbit of ai with respect to the group of symmetries of N � has codimension i in the
space ½L2; closedðR2nÞ�N � .

normal forms for
algebraic restrictions symplectic normal forms geometric condition

a0 ¼ ½dx2 dx3 þ dx3 dx1

þ dx1 dx2�N �

N 0 : q2 ¼ p1 þ p2,
p1q1 ¼ q1 p2 ¼ p2q2 ¼ 0,
pf3 ¼ qf3 ¼ 0

ojW 3 0,
kerojQ ST0Ni þ T0Nj

for any i; j A f1; 2; 3g

a1 ¼ ½dx3 dx1 þ dx1 dx2�N � N 1 : q2 ¼ p1,
p1q1 ¼ q1 p2 ¼ p2 p1 ¼ 0,
pf3 ¼ qf3 ¼ 0

ojQ 3 0,
kerojW HT0Ni þ T0Nj,
kerojW 3T0Ni;T0Nj

for some i; j A f1; 2; 3g

a2 ¼ ½dx1 dx2�N � N 2 : p1q1 ¼ q1 p2 ¼ p2 p1 ¼ 0,
pf3 ¼ qf2 ¼ 0

ojQ 3 0,
kerojW ¼ T0Ni

for some i A f1; 2; 3g

a3 ¼ ½0�N � N 3 : p1 p2 ¼ p2 p3 ¼ p3p1 ¼ 0,
pf4 ¼ qf1 ¼ 0

ojW ¼ 0

Table 8. Classification of symplectic regular union singularities with three 1-dimensional strata.

W denotes the 3-space spanned by the tangent lines at 0 to the strata.
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This classification of algebraic restrictions can be transferred to the following sym-
plectic classification using Theorems A and D and Proposition 7.2, 7.3.

Theorem 7.4. Any regular union singularity N with three 1-dimensional strata in the

symplectic space ðR2n;o0 ¼ dp15dq1 þ � � � þ dpn5dqnÞ, nf 3 (resp. n ¼ 2) is symplecto-

morphic to one and only one of the varieties N 0, N 1, N 2, N 3 (resp. N 0, N 1, N 2) given in

Table 8. The normal form N i has symplectic multiplicity i. It holds if and only if the pair

ðo ¼ o0;NÞ satisfies the condition in the last column of the table. The index of isotropness

of N 0, N 1, N 2 is equal to 0, of N 3—to y.

7.3. Regular union of two 2-dimensional isotropic submanifolds. In this subsec-
tion we obtain symplectic classification of all regular union singularities N with two
2-dimensional isotropic strata. (In this case we will say that N is isotropic.) Like in the
previous subsection, Theorem 7.1 reduces the classification of algebraic restrictions to the
following problem of linear algebra:

Let L1, L2 be transversal 2-dimensional subspaces of a 4-dimensional space Q. One
has to classify 2-forms s on Q which annihilate L1 and L2 with respect to the group of
linear transformations preserving L1 WL2.

It is easy to show that in this classification problem the rank of s is a complete
invariant—two 2-forms with the given above properties are equivalent if and only if they
have the same rank. By Theorem 7.1 we obtain the classification of algebraic restrictions in
Table 9, where

N � : x1x3 ¼ x1x4 ¼ x2x3 ¼ x2x4 ¼ xf5 ¼ 0ð7:4Þ

is the normal form with respect to the group di¤eomorphisms serving for all regular unions
of two 2-dimensional submanifolds. The algebraic restriction to N of any closed 2-form
annihilating the tangent bundles to the strata of N is di¤eomorphic to one and only one
of the algebraic restrictions ai. The orbit of ai has codimension i in the space of algebraic
restrictions to N � of closed 2-forms annihilating the tangent bundles to the strata of N �.
The normal form ai holds if and only if the pair ðo;NÞ satisfies the condition in the third
column of Table 9.

normal forms for
algebraic restrictions symplectic normal forms

geometric
condition codim

a0 ¼ ½dx1 dx3 þ dx2 dx4�N � N 0 : fpf3 ¼ qf1 ¼ 0g
W fpf1 ¼ qf3 ¼ 0g

rankojW ¼ 4 0

a1 ¼ ½dx1 dx3�N � N 1: (for 2nf 6 only)
fpf3 ¼ qf1 ¼ 0g
W fpf1 ¼ q2 ¼ qf4 ¼ 0g

rankojW ¼ 2 1

a4 ¼ ½0�N � N 4: (for 2nf 8 only)
fpf3 ¼ qf1 ¼ 0g
W fp1 ¼ p2 ¼ pf5 ¼ qf1 ¼ 0g

ojW ¼ 0 4

Table 9. Classification of symplectic regular union singularities with two 2-dimensional isotropic strata.

W denotes the 4-space spanned by the tangent planes at 0 to the strata.
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Using Theorem A and Proposition 7.2, 7.3 we can transfer the obtained classification
of algebraic restrictions to the following symplectic classification.

Theorem 7.5. Any regular union singularity N with two isotropic 2-dimensional strata

in symplectic space ðR2n;o0 ¼ dp15dq1 þ � � � þ dpn5dqnÞ is symplectomorphic to one and

only one of the varieties N 0, N 1, N 4 in Table 9. The orbit of N i has codimension i in the class

of all regular union singularities with two 2-dimensional isotropic strata. The normal form N i

holds if and only if the pair ðo ¼ o0;NÞ satisfies the condition given in the last column of

Table 9. The index of isotropness of N 0, N 1 is equal to 0, of N 4—y.

7.4. Regular union of two 2-dimensional symplectic submanifolds. In this subsection
we classify regular union singularities with two 2-dimensional symplectic strata in a sym-
plectic space ðR2n;oÞ. Note that in this case the index of isotropness of N is equal to 0.
The symplectic classification of such N involves the following invariant. Recall that two
germs of submanifolds N1, N2 of a symplectic space ðR2n;oÞ are called o-orthogonal if
oðv; uÞ ¼ 0 for any vectors v A T0N1, u A T0N2.

Definition 7.6. The index of non-orthogonality between 2-dimensional symplectic
submanifolds N1 and N2 of a symplectic space ðR2n;oÞ is the number

a ¼ aðN1;N2Þ ¼ 1 � ðo5oÞðv1; v2; u1; u2Þ
2 � oðv1; v2Þ � oðu1; u2Þ

where v1, v2 is a basis of T0N1 and u1, u2 is a basis of T0N2.

The following obvious statement explains this definition.

Proposition 7.7. The index aðN1;N2Þ is well-defined, i.e. it does not depend on the

choice of the bases of T0N1 and T0N2. It is equal to 0 if and only if there exists a non-zero

vector u A T0N1 such that oðv; uÞ ¼ 0 for any v A T0N2. It is equal to 1 if and only if the 4-

form o5o has zero restriction to the space Q ¼ T0N1 þ T0N2.

In other words, aðN1;N2Þ ¼ 0 if the space T0N1 has non-trivial intersection with
the o-orthogonal complement to T0N2 in the space Q. In particular, if N1 and N2 are
o-orthogonal then aðN1;N2Þ ¼ 0.

Proposition 7.8. Let N ¼ N1 WN2 be the regular union of two 2-dimensional symplec-

tic submanifolds of a symplectic space ðR2n;oÞ. Let a be the index of non-orthogonality be-

tween N1 and N2. If N1 and N2 are not o-orthogonal then the algebraic restriction ½o�N is

di¤eomorphic to the algebraic restriction

aa ¼ ½dx15dx2 þ dx35dx4 þ dx15dx3 þ a dx25dx4�N � ;

where N � ¼ ð7:4Þ. If N1 and N2 are o-orthogonal then ½o�N is di¤eomorphic to the algebraic

restriction

a? ¼ ½dx15dx2 þ dx35dx4�N � :

The orbit of a? has codimension 4 in ½L2; closedðR2nÞ�N � .
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Theorems A, D and Propositions 7.7, 7.8 imply the following corollary.

Theorem 7.9. Let o0 ¼ dp15dq1 þ � � � þ dpn5dqn. Let N ¼ N1 WN2 be the regular

union singularity with two 2-dimensional symplectic strata in the symplectic space ðR2n;o0Þ.
If N1 and N2 are not o0-orthogonal then N has symplectic multiplicity 1 and is symplecto-

morphic to the variety

N a : fq1 ¼ p2; p1 ¼ pf3 ¼ qf3 ¼ 0gW fp2 ¼ aq1; pf3 ¼ qf2 ¼ 0g;

where a is the index of non-orthogonality between N1 and N2. If N1 and N2 are o0-orthogonal

then N has symplectic multiplicity 4 and is symplectomorphic to

N? : fp1 ¼ q1 ¼ pf3 ¼ qf3 ¼ 0gW fpf2 ¼ qf2 ¼ 0g:

If nf 3 then any of the normal forms is realizable and if n ¼ 2—any except the normal form

N 1.

It follows that the index of non-orthogonality distinguishes all normal forms except
N? and N 0—for each of them the index is equal to 0. These normal forms can be distin-
guished as follows. Intersect the o-orthogonal complement to the tangent space to N1 with
the tangent space to N2. If the index of non-orthogonality is equal to 0 then the dimension
of the intersection is either 1 or 2. It is 1 if N is symplectomorphic to N 0 and it is 2 if N is
symplectomorphic to N?.

Proof of Proposition 7.8. By Theorem 7.1 the algebraic restriction to N � ¼ ð7:4Þ of
any closed 2-form can be expressed in the form

½o�N � ¼ ½ f ðx1; x2Þ dx15dx2 þ gðx3; x4Þ dx35dx4ð7:5Þ

þ c1 dx15dx3 þ c2 dx15dx4 þ c3 dx25dx3 þ c4 dx25dx4�N � :

Therefore ½o�N is di¤eomorphic to (7.5). The condition that the strata are symplectic
with respect to o depends only on the algebraic restriction ½o�N and is equivalent to
the condition f ð0Þ3 0, gð0Þ3 0. This condition allows to reduce f ðx1; x2Þ and
gðx3; x4Þ to 1 by a symmetry of N � of the form ðx1; x2Þ !

�
f1ðx1; x2Þ; f2ðx1; x2Þ

�
,

ðx3; x4Þ !
�
c1ðx3; x4Þ;c2ðx3; x4Þ

�
: We obtain the normal form

½dx15dx2 þ dx35dx4 þ c1 dx15dx3 þ c2 dx15dx4 þ c3 dx25dx3 þ c4 dx25dx4�N �

with real parameters c1, c2, c3, c4. The condition that the strata are o-orthogonal
is also a property of the algebraic restriction ½o�N � . It holds if and only if
c1 ¼ c2 ¼ c3 ¼ c4 ¼ 0. In this case we obtain the normal form a?. If the strata are
not o-orthogonal then at least one of the numbers c1; . . . ; c4 is di¤erent from 0.
The case c1 ¼ 0 can be transferred to the case c1 3 0 by one of the symmetries
ðx1; x2; x3; x4Þ 7! ð�x2; x1; x3; x4Þ, ðx1; x2; x3; x4Þ 7! ðx1; x2;�x4; x3Þ. The scale symmetry
ðx1; x2; x3; x4Þ ! ðc�1

1 x1; c1x2; x3; x4Þ reduces c1 to 1. Now we can reduce c2 and c3 to 0
by the symmetry ðx1; x2; x3; x4Þ ! ðx1 � c3x2; x2; x3 � c2x4; x4Þ. We obtain the normal
form aa, and it remains to note that in this normal form a is exactly the index of non-
orthogonality between the strata of N. r
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