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Symplectic singularities of varieties:
The method of algebraic restrictions

By W. Domitrz at Warsaw, S. Janeczko at Warsaw, and M. Zhitomirskii at Haifa

Abstract. We study germs of singular varieties in a symplectic space. In [Al], V.
Arnol’d discovered so called “ghost™ symplectic invariants which are induced purely by
singularity. We introduce algebraic restrictions of differential forms to singular varieties
and show that this ghost is exactly the invariants of the algebraic restriction of the sym-
plectic form. This follows from our generalization of Darboux-Givental’ theorem from
non-singular submanifolds to arbitrary quasi-homogeneous varieties in a symplectic space.
Using algebraic restrictions we introduce new symplectic invariants and explain their geo-
metric meaning. We prove that a quasi-homogeneous variety N is contained in a non-
singular Lagrangian submanifold if and only if the algebraic restriction of the symplectic
form to N vanishes. The method of algebraic restriction is a powerful tool for various
classification problems in a symplectic space. We illustrate this by complete solutions of
symplectic classification problem for the classical A, D, E singularities of curves, the Ss sin-
gularity, and for regular union singularities.

1. Introduction and main results
1.1. Starting points. The starting points for this paper are as follows:

e The classical Darboux-Givental’ theorem on non-singular submanifolds of a sym-
plectic manifold (proved by A. Givental’ and firstly published in [AG]).

e The works [A1], [A2] in which V. Arnol’d studied singular curves in symplectic and
contact spaces and introduced the local symplectic and contact algebras.

e The work [Z] developing the local contact algebra.

The work [Z] is based on the notion of the algebraic restriction of a contact structure
to a subset NV of a contact manifold. The present work is based on a similar notion of the
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algebraic restriction to N of a symplectic structure, and we show that like in the contact
case it is a powerful tool for the study of singular submanifolds of a symplectic manifold.

1.2. Darboux-Givental’ theorem. A diffeomorphism @ : (R*",0) — (R*",0) of a
symplectic space (R*",w) is called a symplectomorphism if it preserves the symplectic
form w: ®*w = w. Two subsets N;, N, = R*" are called symplectomorphic if there exists
a symplectomorphism which brings N, to N;.

Convention. Throughout the paper all objects are germs at 0 of a fixed category
which is either C* or real-analytic.

Theorem 1.1 (Darboux-Givental’ theorem, see [AG]). (i) Let N be a non-singular
submanifold of R*" and let wy, w; be symplectic forms on R*" with the same restriction
to TN. There exists a local diffeomorphism ® such that ®(x) = x for any xe N and
(I)*col = .

(i) (Corollary of (i)) Two equal-dimensional non-singular submanifolds Ny, N, of a
symplectic space (R*", w) are symplectomorphic if and only if the restrictions of the symplec-
tic form w to TN, and TN, are diffeomorphic.

Let Symp(R*")|r = {®| ;- : @ € Symp(R*")}, where Symp(R*") denotes the set of
all symplectic 2-forms on R?". Theorem 1.1 (ii) reduces the classification of germs of non-
singular r-dimensional submanifolds of a symplectic manifold with respect to the group of
symplectomorphisms to the classification of the set Symp(R*")|- with respect to the group
of all local diffeomorphisms of R”. This reduction is completed by an explicit description of
Symp(R2")

R"*

Theorem 1.2 (see [AG]). The set Symp(R>")|,. consists of closed 2-forms on R of
rank = 2(r — n).

1.3. The problem of symplectic classification of singular varieties. The present work
is devoted to the following problem.

Problem A. To classify with respect to the group of symplectomorphisms the class
of all varieties in a symplectic space (R*",®) which are diffeomorphic to a fixed singular
variety N.

We give a method for solving this problem for any quasi-homogeneous variety N
based on generalization of Theorem 1.1 from non-singular submanifolds to arbitrary
quasi-homogeneous varieties. We recall the definition of a quasi-homogeneous variety in
section 2.6. The simplest example is

(1.1) N=A,={xeR": xf1 - xI=x23=0}, k=1,
which is a cusp if k is even and the union of two non-singular curves if k is odd.

1.4. Arnold’s ghost invariant. A natural symplectic invariant of a singular variety N
is the restriction of the symplectic 2-form to the regular part N™& of N. This invariant is not
complete—there are other independent and much more involved invariants. To explain
this, in the work [A1], V. Arnol’d solved the classification Problem A for the simplest case
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when the restriction of the symplectic structure to N™® vanishes—case N = A,,. Arnol’d
proved that if / > 2 then there are exactly 2/ + 1 singularities (orbits). Describing this re-
sult Arnol’d wrote

“... something nontrivial remains from the symplectic structure at the singular points of
the curve. It would be interesting to describe this ghost of the symplectic structure in terms of
the local algebra of the singularity.”

1.5. Our approach. We believe that in the present paper this objective has been
reached: the ghost is exactly the singularity of the algebraic restriction of the symplectic
structure to Ai. The algebraic restrictions are introduced in the beginning of section 2.
The results of section 2 give a method (the method of algebraic restrictions) for solving
Problem A for many types of singularities. The main results are Theorems A—C (proved
in section 3) and D. Theorem A is the base for the method—it is a generalization of Theo-
rem 1.1 from non-singular submanifolds to arbitrary quasi-homogeneous varieties N: one
has to replace the pullback by the algebraic restriction. Theorem B states that the symplec-
tic form has zero algebraic restriction to N if and only if N is contained in a non-singular
Lagrangian submanifold. We introduce the index of non-isotropness and the symplectic
multiplicity of N and show how these symplectic invariants can be calculated using the al-
gebraic restrictions (Theorems C and D). In section 2 we also illustrate the method of alge-
braic restrictions showing that the results in [Al], devoted to Problem A with N = A, are
almost immediate corollaries of Theorems A—D. Of course these theorems can be applied
to many much more involved singularities. In the present work, using the method of alge-
braic restrictions, we continue [A1] solving Problem A for the case that N is one of the clas-
sical Dy, Es, E;, Eg singularities of planar curves (sections 4, 5), we also solve Problem A
for the case N = S5 = {x? — x3 — x3 = xax3 = x4 = 0} (section 6) and for the case that N
is a regular union singularity, i.e. N = Nj U --- U N, where N; is a non-singular submani-
fold and the sum ToN; + - - - + To N, is direct (section 7).

2. The method of algebraic restrictions

2.1. Definition of algebraic restrictions. Given a germ of a non-singular manifold M
denote by A”(M) the space of all germs at 0 of differential p-forms on M. Given a subset
N < M introduce the following subspaces of A”(M):

AL (M) ={we AP(M): w(x) =0 for any x € N},
AN, M) = {a+df:oaeAL(M),pe Al (M)}

The relation w(x) = 0 means that the p-form w annihilates any p-tuple of vectors in T, M,
i.e. all coefficients of w in some (and then any) local coordinate system vanish at the point x.

It is easy to check that in the case that N is a non-singular submanifold of R"” the
restriction of w to TN can be defined in the following algebraic way.

Proposition 2.1. If N is a non-singular submanifold of M then a p-form w on M has
zero restriction to TN if and only if @ € /] (N, M). Therefore the restriction of w to TN can
be defined as the equivalence class of ® in the space A (M), where the equivalence is as fol-
lows: w is equivalent to & if & — @ € ) (N, M).
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Proof. Take local coordinates x = (xy,...,xx), ¥y = (y1,..., ) on M such that N
is described by the equations x = 0. A p-form w has zero restriction to TN if and only if it
can be written in the form Y x;o; + Y dx; A ;, where o; are p-forms and g; are (p — 1)-
forms. It remains to note that dx; A i, = d(x;u;) — x;dp;. [

Note now that Proposition 2.1 involves no structure of N. Allowing N to be any sub-
set of M and calling the equivalence classes by algebraic restrictions (we believe this name
is natural) we get the following definition, generalizing the definition in [Z] of the algebraic
restriction to N of a 1-form.

Definition 2.2. Let N be a subset of M and let w € A”(M). The algebraic restriction
of w to N is the equivalence class of @ in A?(M), where the equivalence is as follows: w is
equivalent to @ if w — @ € /' (N, M).

Notation. The algebraic restriction of a p-form w on M to a subset N < M will be
denoted by [w],. Writing [®], = 0 (or saying that w has zero algebraic restriction to N) we
mean that [w], = [0]y, i.e. w € A (N, M).

It is clear that if @ € o/ (N, M) then dw € .« (N, M). This allows to define the dif-
ferential of an algebraic restriction: d[w]y = [dw],. Another well-defined operation is
the external multiplication: [w;]y A [w2]y = [@1 A ws]y, Where w; and w, are differential
forms of any degrees. This operation is well-defined due to the following almost obvious
proposition.

Proposition 2.3. Let N = R™ and let w be a p-form on R™ such that @]y = 0. Let u
be any g-form on R™. Then [w A p]y = 0.

Proof. 1t suffices to write w in the form a + df with « and § vanishing at any point
of N and to note that dfAu=d(fap) + (—=1)fadu. O

2.2. Example: algebraic restrictions of 2-forms to 4;. The set of algebraic restric-
tions of p-forms on R” to any variety N = R” is a vector space if p is fixed. Let us
calculate this space for the case p =2 and N = A; = (1.1). Since the functions x>3
have zero algebraic restriction to A then by Proposition 2.3 the algebraic restriction to
Ay of any 2-form can be represented by a 2-form of the form f(xi,x;)dx; Adx,. Let
H= x{‘“ x3. We will use again (several times) Proposition 2.3. Since [dH]| 4, =0 then
[dH ndx], = [dH A dxa],, = 0. It follows that if f(x1,x2) belongs to the gradlent ideal
of H then | f (x1,x2) dx; A dxz] 4, = 0. The gradient ideal is (xz,xl) Consequently the alge-

braic restriction to Ay of any 2- form on R?" can be represented by a 2-form of the form
k=1

> cixy dx; Adxy. It is easy to show that if such a 2-form has zero algebraic restriction to
i=0

Ay then ¢g = -+ - = ¢;—; = 0. We obtain:

The dimension of the space of algebraic restrictions to Ay of all 2-forms on R*" is equal
to k. This space is spanned by the algebraic restrictions

(2.1) [Ai]" = [x]dxi ndxa],,, i=0,...k—1.
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2.3. The action of the group of diffeomorphisms. Let M and M be non-singular
equal-dimensional manifolds and let ® : M — M be a local diffeomorphism. Let N be a
subset of M. It is clear that ®* ./ (N, M) = «/{ (®~'(N), M). Therefore the action of the
group of diffeomorphisms can be defined as follows: @ ([w]y) = [® ®]g-1(y), Where w is an
arbitrary p-form on M. Let N < M. Two algebraic restrictions [w], and [@]y are called
diffeomorphic if there exists a local diffeomorphism from M to M sending the first algebraic
restriction to the second one. This of course requires that the same diffeomorphism sends N
to V.

If M = M and N = N then the definition of diffeomorphic algebraic restrictions re-
duces to the following one: two algebraic restrictions [w], and [@], are diffeomorphic if
there exists a local symmetry ®@ of N (i.e. a local diffetomorphism preserving N) such that
(@7 ]y = (@]

2.4. Reduction theorem. Ifa set N = R™ is contained in a non-singular submanifold
M < R™ then the classification of algebraic restrictions to N of p-forms on R” reduces to
the classification of algebraic restrictions to N of p-forms on M. At first note that the alge-
braic restrictions [®], and [w|;,,]y can be identified:

Proposition 2.4. Let N be the germ at 0 of a subset of R™ contained in a non-singular
submanifold M < R™ and let w,, w, be p-forms on R™. Then [w]y = [wa]y if and only if

(o1 7u]y = @270y

Proof. Take local coordinates in which M ={xeR":x; =---=x,=0}. Then
[x1]y = -+ = [xs]y = 0 and Proposition 2.4 follows from Proposition 2.3. [

The following, less obvious statement, means that the orbits of the algebraic restric-
tions [w],y and ||,y also can be identified.

Theorem 2.5. Let Ni, Ny be subsets of R™ contained in equal-dimensional non-
singular submanifolds My, M, respectively. Let wy, w, be two p-forms. The algebraic restric-
tions [w1]y, and [wy]y, are diffeomorphic if and only if the algebraic restrictions (1|, ]y,
and [w2| 7y, ]y, are diffeomorphic.

Proof. The ““if” part follows from Proposition 2.4. To prove the “only if” part it
suffices to prove the following: the restrictions of any p-form w to TM; and TM; have dif-
feomorphic algebraic restrictions to any set N < M| n M,. This statement easily follows
from the following observations: (a) one can easily prove that there exists a local diffeomor-
phism of R” sending M| to M, and preserving pointwise the set M; N M, (and conse-
quently preserving pointwise N); (b) any local diffeomorphism @ preserving N pointwise
preserves the algebraic restriction to N of any p-form. The latter follows from Proposition
2.3 because @ has the form x; — x; + ¢,(x), where ¢,(x) are functions vanishing at points
of N. I

2.5. Example: classification of algebraic restrictions of 2-forms to 4;,. We continue
Example 2.2. The curve 4; has a symmetry of the form @ : (x;, x;) — (x1¢27 x2¢k+1) where
¢ = ¢(x1,x72) is any function such that ¢(0) = 1. In view of section 2.2 consider the sym-
metries
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D : (x1,%) = (x1(1+rx)% 0l + D)), reR, s> 1.
It is easy to calculate
O (x] dxi ndxa) = ((x + I +o(||(x1,x2)|177))) dxy Adxa,  F=r(2p+2s+k +3).
Along with results of section 2.2 this implies
(®)([A]7) € [A]” +F - [4]7 + span([4,]7"71 .. [4]F7).

Since r and s = 1 are arbitrary it follows that any algebraic restriction of the affine space
[41]7 + span([4]”F", ... [4]"") is diffeomorphic to [4;]?. Therefore any non-zero
algebraic restriction to 4; of a 2-form on R*" is diffeomorphic to r - [4;]”, where r =% 0
and pe{0,...,k—1}. The factor r can be reduced to 1 due to the scale symmetries
(x1,x2) — (2x1,%"1x5) and (x1,x2) — (x1,—x2). The algebraic restrictions [4x]' and
[4)])’ with i < j < k — 1 are not diffeomorphic because, as it is easy to prove, [4;]' cannot
be represented by a 2-form with zero i-jet. Therefore we obtain the following result:

Any non-zero algebraic restriction to Ay of a 2-form on R™ is diffeomorphic to one and
only one of the algebraic restrictions (2.1).

2.6. Relative cohomology groups. The name ‘‘algebraic restriction” was introduced
in [Z], but the differential subcomplex of the de Rham complex related to the spaces
A{ (N, M) and the corresponding relative cohomology groups

{we A (N,R") : do = 0}
{do:oe U (N,R™)}

HP(N,R™) =

were studied much earlier, see [R], [Sal], [B], [Se], [Grl], [Gr2]. See also the work [DJZ]
and other references there. The main purpose of the mentioned works was to express cer-
tain local properties of N in terms of vanishing of some of the relative cohomology groups.
In the present work we will use the main result in this direction which can be called the
relative Poincaré lemma.

Definition 2.6. The germ at 0 of a set N = R is called quasi-homogeneous if there
exist a local coordinate system xi, ..., X, and positive numbers A, ..., 4, such that the fol-
lowing holds: if a point with coordinates x; = a; belongs to N then for any 7€ [0, 1] the
point with coordinates x; = t%a; also belongs to N.

Theorem 2.7 (see [R]). If NcR™ is a quasi-homogeneous subset then
HP?(N,R™) = {0} forany p = 1.

2.7. Generalization of Darboux-Givental’ theorem. The method of algebraic restric-
tions is based on the following theorem.

Theorem A (cf. Theorem 1.1). (i) Let N be a quasi-homogeneous subset of R*". Let
wo, w1 be symplectic forms on R*" with the same algebraic restriction to N. There exists a
local diffeomorphism ® such that ®(x) = x for any x € N and ®*w, = wy.
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(i) (Corollary of (i)) Two quasi-homogeneous subsets N1, N, of a fixed symplectic
space (R*", w) are symplectomorphic if and only if the algebraic restrictions of the symplectic
form w to Ny and N, are diffeomorphic.

Theorem A generalizes Theorem 1.1 since any non-singular submanifold is quasi-
homogeneous and, as we explained in Proposition 2.1, the algebraic restriction of a p-
form w to a non-singular submanifold N can be identified with |,

Remark. Our proofs in section 3 show that in Theorem A and in its corollaries—
Theorems B, C, D below—the assumption that N is quasi-homogeneous can be replaced
by the condition H*(N,R*") = {0}. This condition follows from the quasi-homogeneity
of N (see Theorem 2.7), but in general it is weaker than the quasi-homogeneity. It is possi-
ble that H>(N,R*") = {0} but one of the other cohomology groups is not trivial and con-
sequently N is not quasi-homogeneous, see [Grl]. See also [DJZ] where there are examples
of non-quasi-homogeneous varieties N such that all cohomology groups are trivial. If
H?(N,R*") % {0} then the conclusion of Theorem A (i) remains the same if the symplectic
forms w1, w, satisfy the additional assumption that w; — w, has zero class in H>(N, RZ”).
The proof is the same as that of Theorem A (i) in section 3. Nevertheless, we believe that
for a certain class of varieties N such that H>(N, R*") + {0} the algebraic restriction [c]
remains to be a complete symplectic invariant unless [w], = 0.

2.8. Application to Problem A. Let us fix the following notations:

e [A*(R*")]y: the vector space consisting of algebraic restrictions to a subset
N < R*" of all 2-forms on R*".

o [AZCosd(R2m)] - the subspace of [A*(R>")], consisting of algebraic restrictions to
N of all closed 2-forms on R*".

e [Symp(R>")],: the open set in [A%°*/(R?")]  consisting of algebraic restrictions
to N of all symplectic 2-forms on R?".

Theorem A reduces Problem A for quasi-homogeneous N to the following

Problem B. To classify the algebraic restrictions of set [Symp(R*")] y With respect to
the group of symmetries of N.

In fact, assume that Problem B is solved, i.e. we have a final list of normal forms
[01]ys - - - [0s]y € [Symp(R*")], for algebraic restrictions, where 0; are certain 2-forms
(some of them might depend on parameters). The 2-forms 6; representing the algebraic re-
strictions might be not symplectic and even not closed. But we know that there exist sym-
plectic forms «; such that [w;]; = [0i] . Now, given a fixed symplectic space (R*", ) take
local diffeomorphisms ®; of R2" sending w; to wy (the existence of such diffeomorphisms
follows from the classical Darboux theorem). Consider the varieties N’ = @; Y(N). By The-
orem A the tuple N!,..., N®is a final list of normal forms for Problem A.

2.9. Arnold’s ghost invariant in terms of algebraic restrictions. As we mentioned in
section 1.4, for the case N = Ay = (1.1) Problem A was studied by V. Arnol’d in [Al]
(for even k). In fact, the classification results in [A1] and the ghost invariant are already
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obtained by our method in examples given in sections 2.2 and 2.5. Since A4 is contained in
a non-singular 2-manifold then Proposition 2.4 implies that the algebraic restriction to Ay
of any 2-form on R?" can be realized by a symplectic form provided n = 2. Therefore
the results of sections 2.2, 2.5 imply that in the classification Problem B with
N = A; = R*"2* there are exactly k + 1 orbits—the orbits of the k algebraic restrictions
(2.1) and the orbit of the zero algebraic restriction.

This complete solution of Problem B can be easily transferred to a solution of Prob-
lem A—the classification of symplectic Ax-singularities. The algebraic restrictions [4;]" are
represented by 2-forms which are not symplectic, but since they belong to [Symp(R>")] A
then they also can be represented by symplectic forms. For example the zero algebraic re-
striction can be represented by a symplectic form

0% = dxi Adxy +dxa Adxy + dxs Adxe + - -+ dxau1 Adxay
and [A;]" with i < k can be represented by the symplectic form
0" =xldx; Adxs+ 0%, 1<i<k—1.

Given a symplectic form w fix a local diffeomorphism ®; bringing the symplectic form ' to
w,i=0,1,...,k. Let A} = d)lfl (Ax). By Theorem A any singular curve in the symplectic
space (R*",w) which is diffeomorphic to A is symplectomorphic to one and only one of
the curves AY, ..., AF. This gives us the classification result obtained in [Al].

The geometric meaning of this classification, explained in [A1], is also one of the ap-
plications of the method of algebraic restrictions, as it will be showed below.

2.10. The geometric meaning of the zero algebraic restriction. Theorem 1.1 easily
implies that if Ny, N, are any diffeomorphic subsets of non-singular Lagrangian submani-
folds in a fixed symplectic space then N; and N, are symplectomorphic. How to check if a
subset of a symplectic manifold is contained in a non-singular Lagrangian submanifold?

Theorem B. A quasi-homogeneous set N of a symplectic space (R*", ) is contained
in a non-singular Lagrangian submanifold if and only if the symplectic form w has zero alge-
braic restriction to N.

Example 2.8. Let C be a curve in a symplectic space (R**=*, w) which is diffeomor-
phic to Ax. Let Af be the curve defined in section 2.9. By Theorem B the curve C is con-
tained in a non-singular Lagrangian submanifold if and only if it is symplectomorphic to
Af.

Arnol’d also introduced a symplectic invariant characterizing how far is a curve of the
class Aj from the closest non-singular Lagrangian submanifold. In the next subsection we
show that this invariant can be generalized and expressed in terms of algebraic restrictions.

2.11. Index of isotropness. In terms of algebraic restrictions one can express the fol-
lowing symplectic invariant. Given a differential form germ o with zero (k — 1)-jet and
non-zero k-jet we will say that k is the order of vanishing of w. If @(0) % 0 then the order
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of vanishing is 0. If @ = 0 or, in the C*-category, w has the zero Taylor expansion, then
the order of vanishing is co.

Definition 2.9. Let N be a subset of a symplectic space (R*", w). The index of iso-
tropness of N is the maximal order of vanishing of the 2-forms w|,, over all non-singular
submanifolds M containing N.

It is easy to prove that an equivalent definition is as follows: the index of isotropness
is the maximal order of tangency between non-singular submanifolds containing N and
non-singular isotropic submanifolds of the same dimension. The index of isotropness is
equal to 0 if N is not contained in any non-singular submanifold which is tangent to some
isotropic submanifold of the same dimension. If V is contained in a non-singular Lagran-
gian submanifold then the index of isotropness is co. (In the analytic category “if” can be
replaced by “if and only if”’.)

Theorem C. The index of isotropness of a quasi-homogeneous variety N in a symplec-
tic space (R*", w) is equal to the maximal order of vanishing of closed 2-forms representing
the algebraic restriction (] .

Example 2.10 (cf. results in [Al]). Let A; be the curves in a symplectic space
(R?", ) defined in section 2.9. By Theorem C the index of isotropness of A} is equal to i
if i <k —1 and the index of isotropness of AX (the curve which is contained in a non-
singular Lagrangian submanifold) is co.

2.12. Symplectic multiplicity. One more invariant which can be effectively described
in terms of algebraic restrictions is the symplectic multiplicity of a variety in a symplectic
space. This invariant, generalizing the symplectic defect of a parametrized curve [IJ1], is
defined below. At first let us fix the definition of a variety and one of equivalent definitions
of the (usual) multiplicity of a variety. Recall that the zero set of an ideal / in the ring of
function germs (R”,0) — R is the subset of R” consisting of points at which any function
in [ vanishes. The ideal has the property of zeros if it contains any function vanishing on its
zero set. Throughout the paper by a variety in R™ we mean the zero set of a k-generated
ideal having the property of zeros, k = 1.

Definition 2.11 (cf. [T], [AVG]). Denote by Var(k,m) the space of all varieties de-
scribed by k-generated ideals. Given N € Var(k,m) denote by (N) the orbit of N with re-
spect to the group of local diffeomorphisms. The multiplicity (or Tjurina number) of N is
the codimension of (N) in Var(k,m).

To make this definition precise one should associate with N a map germ
H : (R™,0) — (R*,0) whose k components are generators of the ideal of functions van-
ishing on N. Then the orbit (N) can be identified with the orbit of H with respect to the
V-equivalence, see [AVG]. Recall from [AVG] that the V-equivalence of two map germs
H,H : (R",0) — (R*,0) means the existence of a local diffeomorphism ® and a germ M
of a map from R™ to the manifold of non-singular k x k matrices such that H = M - H(®).

A variety N € Var(k, m) is called a complete intersection singularity if & is the depth
of the ideal of functions vanishing on N. (In the holomorphic category this means that k&
is the codimension of N in C™.) If N is not a complete intersection singularity then its
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multiplicity is co. This follows from the fact that the set of k-tuples of function germs gen-
erating an ideal of depth #+ k has infinite codimension in the space of all k-tuples of func-
tion germs.

In view of Definition 2.11 we define the symplectic multiplicity of a variety in a sym-
plectic space as follows.

Definition 2.12. Let N be a variety in a symplectic space (R*",w). Let (N) be the
orbit of N with respect to the group of local diffeomorphisms and let (N)™™" be the orbit
of N with respect to the group of local symplectomorphisms. The symplectic multiplicity of
N is the codimension of (N)™"™ in (N).

To make this definition precise take, as above, a map germ H : (R*",0) — (R*,0)
whose components generate the ideal of functions vanishing on N. Let (H), be the orbit
of H with respect to the V-equivalence and let (H), symp € the orbit of H with respect to
the V-symplectic-equivalence. The V'-symplectic-equivalence is defined in the same way as
the V-equivalence; the only difference is that we require that ® (the change of coordinates
in the source space) is a local symplectomorphism. The codimension of (N)®"" in (N) is
the codimension of (H) g, in (H)y.

The classical Darboux theorem implies another equivalent definition of the symplec-
tic multiplicity of N = (R*", w): it is the codimension of the orbit of @ with respect to the
group of local symmetries of N in the space of all closed 2-forms. Therefore Theorem A
implies the following statement.

Theorem D (Corollary of Theorem A). The symplectic multiplicity of a quasi-
homogeneous variety in a symplectic space (R*",w) is equal to the codimension of the orbit

of the algebraic restriction (], with respect to the group of local symmetries of N in the
space [A2,closed(R2n>]N‘

Example 2.13. Let 4] be the curves in a symplectic space (R, wy) defined in sec-
tion 2.9. In section 2.5 we proved that the algebraic restriction cg [Ak]o + -t [Ak]kf1
is diffeomorphic to [4,]” if and only if ¢; = -+ = ¢, = 0 and ¢, =+ 0. Therefore by Theo-
rem D the symplectic multiplicity of the curve A} is equal to i. This holds for all i < k (the
curve A,’j corresponds to the zero algebraic restriction, i.e. to the case ¢o = - -+ = ¢,—1 = 0).

2.13. The dimension of the space [AZ°d(R?")]y. In view of results of the previous
subsections it is worth to present several general results on the number

S(N) _ dim[AZ,closed(RZn)]N.

Theorem 2.14. Let N be a quasi-homogeneous variety in a symplectic space of dimen-
sion 2n such that s(N) < oo. The symplectic multiplicity of N does not exceed s(N). It is
equal to s(N) if and only if N is contained in a non-singular Lagrangian submanifold.

Proof. The first statement is a corollary of Theorem D. The second statement fol-
lows from Theorems B, D and the following statement: if a € [A*“**¢(R*")],, and a + 0
then the orbit of a with respect to the group of symmetries of N has dimension = 1. To
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prove this statement it suffices to note that in the quasi-homogeneous coordinates (see
Definition 2.6) the flow x; — e %’x; preserves N and brings a to a family of algebraic re-
strictions «; such ¢, — 0ast — co. [J

It is easy to prove that if N is a stratified submanifold of dimension = 2 (i.e. at least
one of the strata has dimension = 2) then the space consisting of the pullbacks to the regu-
lar part N™2 of N of all possible closed 2-forms on R*" is infinite-dimensional. Since two
2-forms on R?" with the same algebraic restriction to N have the same pullback to N ™ (see
Proposition 2.1) then we obtain

Proposition 2.15. If N is a stratified submanifold of dimension bigger than 1 then
$(N) = co.

Within 1-dimensional stratified submanifolds N consider at first the case that NV is a
complete intersection singularity.

Proposition 2.16 (real-analytic category; corollary of results by Greuel [Grl]). Let
N < R?" be a one-dimensional complete intersection singularity with finite Tjurina number
(multiplicity) ©(N). If N is quasi-homogeneous then s(N) = t(N).

In fact, Greuel proved a much more general statement in the holomorphic category
[Grl]: if N = C* is an isolated complete intersection singularity of dimension m then the
Milnor number of N is equal to the dimension of the space [A”(C*)],/d([A"(CF)]y).
Greuel also proved [Grl] that for any quasi-homogeneous isolated complete intersec-
tion singularity the Milnor number is equal to t(N). In the case m =1 these results
of Greuel imply that for any N satisfying the assumptions in Proposition 2.16 one has
7(N) = dim[Al([REZ”)]N/d([AO([Rz”)]N). Now we use one more time the quasi-homogeneity
of N. By Theorem 2.7 one has H?*(N,R*") = {0}. This implies that the space
A (R*)]y/d([A°(R*")]) is isomorphic to [AZdosed(2m)]  Consequently s(N) = 7(N).

We do not know a direct proof of Theorem 2.16. We neither know if the assumption
that N is quasi-homogeneous can be removed. Our results in section 4.1 show that it can be
removed if NV is a planar curve.

Conjecturally s(N) < o for any 1-dimensional stratified submanifold N = R*".

Example 2.17. Let Ni,...,N,, p =2 be non-singular 1-dimensional submani-
folds of R*" such that dim(7ToN; +---+ TyN,) = p. Let N = Ny U--- UN,. The ideal
of functions vanishing on N is k-generated with k= p(p —1)/2+2n— p. One has
k > codim N = 2n — 1 unless p = 2. Therefore if p = 3 then N is not a complete intersec-
tion singularity and the multiplicity of N is co. On the other hand s(N) < oo for any p. Our
results in section 7 imply that two closed 2-forms have the same algebraic restriction to NV if
and only if they have the same restriction to the p-space ToyNi + - -- + ToN,. Therefore

s(N) = p(p—1)/2.

2.14. Calculation of the set [Symp(R*")|y. The space [A?(R?")] y can be calculated
using Proposition 2.3, see section 6.1. In this subsection we present a simple way for trans-
itions [A?(R>")]y — [AZI(R>")],, — [Symp(R>")],. At first let us distinguish the case
where two or all of these spaces coincide.
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Proposition 2.18. Let N = R*. If N is contained in a non-singular 2-dimensional
submanifold then [A*“Y(R*M)]y = [A*(R*)]y. If N is contained in a non-singular
n-dimensional submanifold then [Symp(R*")], = [AZ9%(R2)] .

The first statement follows from Proposition 2.4 and the fact that any 2-form on a
2-manifold is closed. The second statement follows from Theorem 2.19 below.

This transition [AZ°*d(R>")], — [Symp(R>")], is equivalent to distinguishing
closed 2-forms @ on R?" whose algebraic restriction to N < R*" is realizable by a symplec-
tic structure, i.e. [0]y = [w], for some symplectic form w.

Theorem 2.19. Let N < R*". Let r be the minimal dimension of non-singular sub-
manifolds of R*" containing N. Let M be one of such r-dimensional submanifolds. The alge-
braic restriction [0)y of a closed 2-form 0 is realizable by a symplectic form on R2" if and only
if rank (0] 7, 5,) = 2r — 2n.

Theorem 2.19 is an almost obvious corollary of Theorem 1.2, Proposition 2.4 and the
following lemma.

Lemma 2.20. Let N < R™. Let W < ToR™ be the tangent space to some (and then
any) non-singular submanifold containing N of minimal dimension within such submanifolds.
If w is a p-form with zero algebraic restriction to N then w|,, = 0.

Proof. Fix a non-singular submanifold M containing N of minimal dimension with-
in such submanifolds (then W = TyM). By Proposition 2.4 the form w|,, also has zero
algebraic restriction to N and consequently it can be expressed in the form o + df, where
o and f are forms on M vanishing at any point of N. Since N is not contained in any non-
singular hypersurface of M then any function vanishing on N has zero 1-jet at 0. It follows
that df(0) = 0 and then (w|;,,)(0) =0. [

Now we give an algorithm for the transition [A%(R?*")], — [AZ9)(R?")], under the
assumptions that N is quasi-homogeneous and the space [A*(R>")] 18 finite-dimensional.
(See section 6.1 where this algorithm is realized for the case N = Ss5.) Take any basis

ap,...,a of [A*(R*")], and consider the algebraic restrictions daj, ..., da; € [A*(R*")] .
Let p be the dimension of the vector space over R spanned by these algebraic restrictions.
The case p = 0 is not excluded. Change the order in the tuple ay, ..., a; so that

(a) the algebraic restrictions day, . .., da, are linearly independent.

»

Replace now the algebraic restrictions a;, p < i < k by a; + ) kjja; with suitable k; € R so
that =1

(b) dayi1 = --- =day = 0.

Theorem 2.21. Let N be a quasi-homogeneous subset of R*" and let ay, ..., a; be

a basis of [A*(R®")]y satisfying (a) and (b). Then ay.1,...,ar is a basis of the space
[A2,closed(R2n)]N.
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Proof. To conclude that the algebraic restrictions a,i,...,ar span the space
[AZosed(R2")] . we do not need the assumption that N is quasi-homogeneous. In
fact, the algebraic restriction to N of any closed 2-form w can be expressed in the
form [w]y = cia1 + -+ crar, and taking the differential of this relation we obtain
0=cida; +---+cpday,. By (a), c1 =---=¢, =0, i.e. [w]y € span(ap;1,...,ax).

The quasi-homogeneity of N is required in order to prove that
Apity. .., € [AZ,closed(Rh)]N’

i.e. that the algebraic restrictions a;-, can be represented by closed 2-forms. In what follows
i=p+1,... k. Take any 2-forms w; representing «;. Since N is quasi-homogeneous then
by Theorem 2.7 the cohomology group H3(N,R™) vanishes. This means that any closed 3-
form with zero algebraic restriction to N, in particular the 3-forms dw;, is a differential of
some 2-form with zero algebraic restriction to N. Therefore dw; = d@;, where [@;], = 0.
The 2-form w; — @; is closed because dw; = d@;. It represents the algebraic restriction a;:
since [@;]y = 0 then a; = [w;]y = [w; — @]y. O

3. Proof of Theorems A, B, and C

In section 3.1 we reduce Theorem A (i) to the case that the symplectic forms w, and
) in this theorem satisfy the condition (wy — w;)(0) = 0. In this case Theorem A (i) can be
easily proved by the homotopy method (section 3.2). Theorem B is proved in section 3.3
using Theorem A, and Theorem C is proved in section 3.4 using Theorem B. Throughout
the proof we use the following lemma.

Lemma 3.1. Let w be a closed 2-form on R™ with zero algebraic restriction to
N cR"™ Let M = R™ be a non-singular submanifold containing N of minimal possible
dimension within such submanifolds. There exists a closed 2-form 0 on R™ such that
Ol rar = Olass 101y =0, and 6(0) = 0.

Proof. Let y= |y, By Lemma 2.20 one has u(0) =0. Let z: R*" — M be a
submersion which is the identity on M. Let 6 = n*u. Then 0 is a closed 2-form which van-
ishes at 0 and whose restriction to TM coincides with that of w. Since [w]y =0 and
®| 7y = 0|7y, then by Proposition 2.4 we obtain [0], =0. [

3.1. Reduction of Theorem A (i) to the case (w9 — w1)(0) = 0. Take a non-singular
submanifold M as in Lemma 3.1. By this lemma there exists a closed 2-form 6 such
that 0|, = @ol7u — @1l 724, [0]y = 0 and 6(0) = 0. Set @ = w; + 0. Then w,, w;, @ have
the following properties: (a) @ is symplectic (since 6(0) =0); (b) @|;y, = ol ()
@]y = [w1]y, (@ — ®1)(0) = 0. By Theorem 1.1 there exists a local diffeomorphism pre-
serving M pointwise (and consequently preserving N pointwise) and bringing @ to wy.
Therefore Theorem A (i) for the forms wy and w; will be proved if we prove it for the forms
w; and @.

3.2. Proof of Theorem A (i) in the case (w9 — @w1)(0) =0. We will prove the exis-
tence of a family of diffefomorphisms @, preserving pointwise N and bringing the form
w; = wy + t(w) — wp) to the form wy, for any ¢ € [0, 1]. This family will be found within
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. o dd ) . .
families satisfying the ODE 7[’ = V,(®,), ®y = id, where V; is a family of vector fields on

R?" vanishing at any point of N. (The latter implies that ®, preserves N pointwise.) Let &
be the Lie derivative along a vector field V. The requirement @, w, = wy is equivalent to
dw,

the condition %y, w, + - 0. Since w, is a closed 2-form we obtain the equation

(31) d(V,J(w0+t(a)1—wo))) = Wy — W

with respect to the family V, under the constraint that V, vanishes at points of V. Since N is
quasi-homogeneous then by Theorem 2.7, wy — w; = df, where f is a 1-form vanishing at
any point of N. Therefore to solve (3.1) it suffices to solve the equation

(32) VtJ (CO() + Z(a)1 — 600)) =p.

This equation can be treated as a square system of linear equations parametrized by
a point x e R> close to 0 and 7€ 0,1]. The assumption (wy— ;)(0) =0 implies
(wo + (w1 — @0))(0) = wo(0). The form wy is symplectic and consequently the 2-form
(a)o + t(ow — coo)) has maximal rank 2 for any ¢ at any point x close to 0. Therefore for
any such ¢ and x the matrix of the linear system (3.2) is non-degenerate and consequently
(3.2) has a unique solution V;. It vanishes at any point of N since so does the 1-form f.

3.3. Proof of Theorem B. The “if” part of Theorem B follows from Proposition 2.4.
Let us prove the “only if” part: if [w], = 0 then N is contained in a non-singular Lagran-
gian submanifold. Fix a non-singular submanifold M and a closed 2-form 6 as in Lemma
3.1. Since 6(0) = 0 then the form w — 6 is symplectic. The manifold M is isotropic with re-
spect to w — 6. By Theorem A (i) there exists a local diffeomorphism sending w — 6 to @
preserving N. It sends M to a non-singular submanifold M which contains N and which
is isotropic with respect to w.

3.4. Proof of Theorem C. We have to prove the following two statements:

(1) If M = (R*",w) is a non-singular submanifold containing N and such that the
restriction |, has zero k-jet, k = 0, then there exists a closed 2-form & on R*" with
zero k-jet such that [w]y = [@] .

(2) If @ is a closed 2-form on R*" with zero k-jet, k = 0, such that [w], = [@], then
there exists a non-singular submanifold M < R?" containing N such that the restriction
|y, has zero k-jet.

To prove the first statement fix a submersion 7 : R*” — M which is the identity on M
and set @ = 7*(w|yy,). Then @ is a closed 2-form on R?" with zero k-jet. The forms w and
@ have the same restriction to TM and by Proposition 2.4 the same algebraic restriction to
N. Therefore @ is a required closed 2-form.

To prove the second statement consider the form (w — @). It is symplectic and it has
zero algebraic restriction to N. By Theorem B, N is contained in a non-singular submani-
fold M such that (o — @)|;,, = 0. Since @ has zero k-jet then its restriction to 7M and
consequently the restriction of w to TM also has zero k-jet.
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4. Symplectic classification of singular planar quasi-homogeneous curves

By a singular planar quasi-homogeneous curve in R>” we mean a curve given in suit-
able coordinates by the equations

(4.1) N = {H(x;,x3) = x33 =0} = R*"
where the function germ H (xj, x;) satisfies the following conditions:
(1) H(0) =0, dH(0) = 0.

(2) The property of zeros: the ideal of functions on R? vanishing at any point of the
set { H = 0} is generated by H.

(3) The function H(xj,x;) is a quasi-homogeneous polynomial. This means that
there exist positive numbers 4;, 4> (weights of quasi-homogeneity) and a positive number
d (degree of quasi-homogeneity) such that H(xi, x;) is a linear combination of monomials
x{'x3? satisfying the condition o) + 0ndy = d.

The classical examples are the simple function germs Ay, Dy, E¢, E7, Es, see [AVG].
In section 4.1 we prove that the vector space [A%9(R?")], can be identified with the lo-
cal algebra of the function H(xj, x;). In section 4.2 we use this result and Theorems C and
D to give a simple way of calculating the index of isotropness and the symplectic multiplic-
ity of any planar quasi-homogeneous curve. In sections 4.3—4.4 we use the method of alge-
braic restrictions to present a complete symplectic classification of the Ay, Dy, Es, E;7, Eg
singularities.

4.1. The space of algebraic restrictions and the local algebra of H. Theorem 4.2 be-
low generalizes Example 2.2.

Definition 4.1 (see [AVG]). The factor space A°(R?)/(VH) is called the local algebra
of H and the dimension of this factor space is called the multiplicity of H.

Theorem 4.2 (cf. Theorem 2.16). Let N = {H(x1,x2) = x>3 = 0} be a planar quasi-
homogeneous curve where the function H = H(x1,x3) has a finite multiplicity u and let the
tuple fi, fo,..., f, be a basis of the local algebra of H" such that fi(0) % 0, f>2(0) = 0.

(i) [AZ9Y(RE)], is a p-dimensional vector space spanned by the algebraic restric-
tions a; = [fidx) ndxa)y, i=1,..., 1

(ii) If n = 2 then [Symp(R*")], = [A**Y(R?")],. The manifold [Symp(R?)] con-
sists of algebraic restrictions of the form {c1a; + - - - + c,a,, c1 + 0}.

The second statement is a corollary of the first one and results in section 2.14. The
first statement follows from Lemma 4.3 below and Proposition 2.4.

D After factorization of these function germs by the ideal (VH).
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Lemma 4.3. Let H(xy,x;) be a quasi-homogeneous polynomial with the property of
zeros. A 2-form f(x1, x2) dx| A dx; has zero algebraic restriction to the curve { H(xi, x;) = 0}
if and only if f € (VH).

Proof. Since the function H has the property of zeros then for some function germs
A(x1,x2), Bi(x1,x2), B2(x1,x2) one has

fdx) ndxy = HAdx) Adxy + d(H(Bl dx; + B> de)).

It is easy to see that this condition is equivalent to the condition f € (H,VH), where
(H,VH) is the ideal generated by the H and its first order partial derivatives. It is
clear that any quasi-homogeneous polynomial belongs to its gradient ideal, therefore
(VH,H) = (VH). [

Remark. If H is not quasi-homogeneous then, as we see from the proof of Lemma
4.3, the space [AZ°*d(R?")], can be identified with the space A°(R?)/(VH, H). The di-
mension 7 of the latter space is called the Tjurina number (or the multiplicity) of the curve
{H = 0} (see Definition 2.11). By Saito’s theorem [Sal], t < u.?

4.2. The index of isotropness and the symplectic multiplicity. The index of isotrop-
ness and the symplectic multiplicity are defined in sections 2.11 and 2.12.

Theorem 4.4. Let N ={H(x1,x2) =x>3=0} be a singular planar quasi-
homogeneous curve in a symplectic space (R*", ). Let u be the multiplicity of the function
H.

(i) The index of isotropness of N does not exceed (y— 1) unless N is contained in a
non-singular Lagrangian submanifold (in the latter case the index is o).

(i) The symplectic multiplicity of N does not exceed p. It is equal to u if and only if N
is contained in a non-singular Lagrangian submanifold.

The second statement is a direct corollary of Theorems 2.14 and 4.2. (It is also a di-
rect corollary of Theorems B and 4.2). The first statement follows from the following cor-
ollary of Theorems 2.5, C and Lemma 4.3 allowing to calculate the index of isotropness for
any planar quasi-homogeneous curve.

Notation. Given a 2-form o on R*" denote by F,, = F,, (x|, x») a function germ such
that the pullback of w to the 2-plane x>3 = 0 has the form F,, dx; A dx;.

Theorem 4.5 (Corollary of Theorems 2.5, C and Lemma 4.3). Let N be as in Theo-
rem 4.4. The index of isotropness of N is the maximal p such that F,, € (VH) + 4", where
A denotes the maximal ideal in the ring of function germs on R* (if F,, € (VH) then p = o,
if F,(0) % 0 then p = 0).

2 This means that if H is not quasi-homogeneous then the multiplicity of the curve {H = 0} is smaller
than the multiplicity of the function H. The number u — 7 is called the degree of non-quasi-homogeneity of H,
see [V].
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Proof of Theorem 4.4 (i). If N is not contained in a non-singular Lagrangian sub-
manifold then by Theorem B, [w], =+ 0 and then by Proposition 2.4 and Lemma 4.3 one
has F, ¢ (VH). Since .#* < (VH) (see [AVG]) then F,, ¢ (VH) + .#" and by Theorem
4.5 the index of isotropness does not exceed (. —1). [

The following theorem gives a simple way for the calculation of the symplectic
multiplicity of any planar quasi-homogeneous curve.

Theorem 4.6. Let N be as in Theorem 4.4. The symplectic multiplicity of N is equal to
dim A°(R?)/(VH, F,), where (VH, F,,) is the ideal generated by the function germs 0H |dx;,
oH / 5X2, Fw.

Example 4.7. Consider the curve

C:{pipr—p3=0,q1 = p3,q2 = 0} = (R*, w0 = dpy Adqy + dpy A dqs).

This is a planar quasi-homogeneous curve diffeomorphic to the curve Dy: in the local coor-
dinates x| = p1, X2 = pa, X3 = q1 — p3, X4 = ¢> it takes the form

2 3
H(x1,x2) =x{x2 —x; =x3 =x4 =0.

In the same coordinates the form wy takes the form dx A (dx; + 3x3 dxz) + dxy A dxy.
The restriction of this form to the 2-surface x3 = x4 =0 is 3x§ dx) Adx,. The ideal
(VH,3x3) = (x1x2,x} — 3x3,x3) coincides with the ideal (x;x2,x?,x3). By Theorems 4.5
and 4.6 the index of isotropness of C is equal to 2 and the symplectic multiplicity of C is
equal to 3.

The proof of Theorem 4.6 consists of several steps. At first we use Theorems D and
2.5 reducing Theorem 4.6 to the following proposition.

Proposition 4.8. Let H(xy, x;) be a quasi-homogeneous polynomial of finite multiplic-
ity having the property of zeros. The codimension in the space [Az(Rz)] (H=0} of the orbit of
the algebraic restriction [F(x1,X2) dxy A dxa](_gy with respect to the group of symmetries of
the curve {H = 0} is equal to the dimension of the factor space A°(R?)/(VH, F).

Notation. Given an algebraic restriction « € [A*(R>")],, denote by T'(a) the tangent
space at a to the orbit of a with respect to the group of symmetries of V.

Proposition 4.9. Let H be as in Proposition 4.8 and let a € [A*(R?)] (r—oy- Then
dim 7'(a) = dim(A°(R?) - a).

If a is represented by the 2-form F(xj,xy) dx; A dx; then by Theorem 4.2 one has
codim(A°(R?) - @) = dim A°(R?)/(VH, F). Therefore Proposition 4.9 and Theorem 4.2
imply Proposition 4.8 and consequently Theorem 4.6. The proof of Proposition 4.9 requires
certain techniques related to quasi-homogeneous algebraic restrictions, therefore it is post-
poned to section 5.

4.3. Symplectic A-D-E classification. Continuing results of section 2.9 we give a
complete solution of Problem A with N = {H (x|, x2) = x>3 =0} where H(xj,x;) is a
function representing one of the classical singularities Ay, Dx, Eg, E7, Eg, see Table 1. The-
orems A and 2.5 reduce Problem A to classification of algebraic restrictions of the space
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[A?(R?)] (#—oy With respect to the group of symmetries of the curve {H =0} = R?. This
classification involves functions and families of functions given in the second column of
Table 1.

H(X],Xz) E(x17x2)>i:0717"'7/’t

Ak:x{”l —x% Foz 1,

k=1 F=xli=1,. k-1,
F,.=0

Dk:xlzxz—xé‘_l =1,

k>4 F,-:bx1+x5,i:1,...,k—4,

Fi_ 3:(+1) X1+bx27 ,
Fk2:x2 Fkl—xzszZO

Eg : xl—xg F():l,Fl:iXQ-i-bX],FQ:X]—FbX%,
F; = x% + bx1x2, F4 = +x1x2, F5 = xlxg, Fg=0

E;: xl —xlxé’ Fr=1 F :xz—l—bxl,Fg:ixl—i—bx%,
F = x% + bx1xy, Fy = +x1x + bxg,
F5:X§,F6:)Cg, F7:O

Eg:xi—x3 Fozil,Fl :x2+bx1,F2:x1+b1x§+b2x§,
F; = +x2 + bx1x2, F4 = +X1X2 + bx2,
Fs = x2 + bx1x2, Fs = xlxz, F, = +x1x2, Fs=0

Table 1. Classification of the algebraic restrictions to Ay, Dy, Eg, E7, Es.

Theorem 4.10. Fix a function H = H(x1,xy) in Table 1. Let
Fi = [Fidx) ndxo] gy,
where the functions F; are given in the row of H.

(i) Any algebraic restriction a € [A*(R?)] (#—o} is diffeomorphic to one of the normal
forms F;, i =0,...,u, where u is the multiplicity of H.

(ii) The singularity classes defined by the normal forms %, . .., 7, are disjoint.
(i) The singularity class defined by the normal form Z; has codimension i.
(iv) The parameters b, by, b, in the normal forms are moduli.

The second statement is proved in section 4.4, the other statements in section 5. Let us
transfer the normal forms %; to symplectic normal forms following the algorithm in section
2.8. Fix any symplectic form, for example,

wo = dpy Adqy + -+ + dp, Adg,.

If n = 2 then the algebraic restriction [F;(x1, Xx2) dx; A dx;|, can be realized by the symplec-
tic form w; = Fidx; Adxy + dxy Adxs + dxy Adxg + dxs Adxg + - - - + dxap—1 A dxa, which
can be brought to wg by the change of coordinates
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P2
x1=p1, X2=py, x3=q — [ F(p,odt, xi=q,
0

X5 = p3, X6 = {3, ceey  Xop—1 = Pny, Xon = {qn-

The given change of coordinates brings N = (4.1) to the form
. n 2
42) N'= {H(Pl,pz) =q1— [ Fi(pr,0)dt = qz2 = pz3 = 0} < (R™, o).
0

Theorems A (ii), 2.5 and 4.10 imply the following complete symplectic classification of the
Ak, Dk, E(), E7, Eg singularities.

Theorem 4.11. Fix a function H = H(xy, x;) in Table 1. Any curve in the symplectic
space (Rzn,wo), n = 2, which is diffeomorphic to the curve N : H(x1,x2) = x=3 = 0 can be
reduced by a symplectomorphism to one and only one of the normal forms N', i =0,...,u,
given by (4.2), where F; are the functions in Table 1 and u is the multiplicity of H. The pa-
rameters b, by, by are symplectic moduli. The codimension of the symplectic singularity class
defined by the normal form N' in the class of all curves diffeomorphic to N is equal to i.

If n =1, i.e. in the 2-dimensional case, the symplectic classification is much simpler.
Theorems 4.2 (ii) and 4.10 along with Theorem A (ii) imply the following

Theorem 4.12. Let H(x1,x,) be one of the functions in Table 1. All curves in the sym-
plectic plane (R?,dp A dq) which are diffeomorphic to the curve {H = 0} are symplectomor-
phic unless H = Es. Any curve in (R, dp A dq) which is diffeomorphic to Es : {x; — x3 = 0}
is symplectomorphic to one of the curves p> + g°> = 0.

Remark. It is easy to prove that the curves p* + ¢° = 0 are not symplectomorphic.
The statement of Theorem 4.12 also follows from the works [V] and [Gi]. It is also con-
tained in the works [IJ1], [1J2] along with other results on classification of curves in R?
with respect to volume-preserving diffeomorphisms.

4.4. Distinguishing normal forms (proof of Theorem 4.10 (ii)). The normal form N’
in Theorem 4.11 corresponds to the normal form %; in Theorem 4.10. Using Table 1 and
Theorems 4.5 and 4.6 it is easy to calculate the index of isotropness and the symplectic mul-
tiplicity of all singularities, see Table 2. They do not depend on the parameters of the nor-
mal forms except for the case D}, 2 <i < k — 4, when the index of isotropness is different
for b 0 and for b = 0.

As we see from Table 2, either the index of isotropness or the symplectic multiplicity
distinguishes all normal forms except for the following two couples: (o) EZ and Ef; (B) E3
and E$. To distinguish these normal forms we will distinguish the corresponding normal
forms for algebraic restrictions:

() (33 + bx1x2) dxy A dxoly_gy and  [Exixodxi Adxo)iy_gy, H= X —x3;

(B) (x5 + bx1x3) dx Adxs|y_gy and [x13 dxi A dxaly_gy. H= X — X5
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These couples can be distinguished as follows. Let a = [F(x1,x2) dx1 Adxa]y_qy,
where H is any quasi-homogeneous polynomial. Consider the ideal (VH, F). We will say
that this ideal is associated with a. The associated ideals are invariantly related to algebraic
restrictions: if a, @ e [A*(R*")] are diffeomorphic then the associated ideals are diffeomor-
phic. This follows from Lemma 4.3 and the observation that any diffeomorphism sending a
2-form F dx A dxs to Fdx; Adx, sends the ideal generated by F to the ideal generated by
F. Therefore to distinguish the couples (), () it suffices to distinguish the couples of asso-
ciated ideals. In the case () the associated ideals are

IOSU =( lz,xg,xg + bx1x;) and I§2> = (xf,xg,xlxz).

In the case (f) they are 1,5” = (x7,x3,x3 + bx;x3) and Iﬁ(z) = (x7,x3,x1x3). It is easy to

)is not diffeomorphic to Iéz) and I/§1> is not diffeomorphic to Ilgz) (to prove this

Y and 19((2) and the 2-jets of func-

prove that Ig(c1

it suffices to consider the 2-jets of functions in the ideals IOE
tions in the ideals Ilgl) and 1 /52)).

normal index of | sympl. normal index of | sympl.
form isotr. multip. form isotr. multip.
Aj i i EY 0 0
0igk-1 E71 ) N
Ak © k E 1 3
D; 0 0 E} 2 4
D,l 1 2 E;t 7 5
Yeisioa|pTou || 1E P
Dk-3 1 k-2 Er ! ¢
Dl k-3 | k-2 & z ’
Dl k—2 | k-1 Eg 0 0
Df o0 k Eg 1 2
EY 0 0 £ ! 4
E; 1 2 E 2 4
o | |H HRE
E} 2 4 ES 3 6
E} 2 4 Eg 3 6
ES 3 5 E 4 7
E$ 0 6 E « 8

Table 2. Symplectic invariants of Ay, Dy, Es, E7, Eg singularities.
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5. Proof of Proposition 4.9 and Theorem 4.10

Throughout this section, including formulations of the statements, H = H(xj, xz) is a
quasi-homogeneous polynomial with respect to the weights 4;, 4>. Any quasi-homogeneity
should be understood as that with respect to the weights 41, 1. We also assume that H has
the property of zeros and a finite multiplicity .

Proposition 4.9 is proved in sections 5.1-5.3. The main ingredients are the structure
of the algebra of infinitesimal symmetries of the curve { H = 0} (section 5.1) and the quasi-
homogeneous algebraic restrictions (section 5.2). The same ingredients are used for the
proof of Theorem 4.10, statements (i), (iii), (iv) in sections 5.4—5.6 (Theorem 4.10 (ii) is al-
ready proved in section 4.4).

5.1. The infinitesimal symmetries of the curve {H = 0}. An infinitesimal symmetry
of the curve {H =0} is a vector field tangent to this curve. The space of all infinite-
simal symmetries is an algebra with respect to the Lie bracket. It will be denoted by
Symm™ ({H = 0}).® Consider the following Euler vector field £ and the Hamiltonian vec-
tor field # related to H via the volume form dx; A dx;:

E = )ulxl 6/6x1 + /12)(25/5)62, H = (6H/6x2)8/6x1 — (8H/6x1)5/8x2
The following lemma was used in many works, see for example [A1], [L].

Lemma 5.1.  Any vector field V € Symm™ ({H = 0}) has the form V = g\E + g2 #
for some functions g, ¢>.

Proof. Since H has the property of zeros then V' (H) = RH for some function R. One
has E(H) =0 - H, where 0 is the degree of quasi-homogeneity of H. Let V; = V' — RE /6.
Then Vi(H) = 0. Let V; = A0/0x) + Bd/0x,, then (A dx, — Bdx;) ndH = 0. Since H has
a finite multiplicity then the form dH has the division property (see, for example [M]) and
this relation implies 4 dx; — Bdx; = Ry dH for some function R;. This can be written in
the form V; = —R; - #. We obtain V' = R, - # — RE/J. []

By the following lemma the Hamiltonian part of the algebra Symm™ ({H = 0})
leads to the symmetries preserving any algebraic restriction in [AZ(RZ)] (H=0}- In what fol-
lows %) denotes the Lie derivative along the vector field V.

Lemma 5.2. %, (a) = 0 for any g € A°(R?) and any a e [AZ(IRZ)]{H:O}.

Proof. Let F(xi,x,) be any function. Let 0 = %, »(F dx; A dx;). We have to prove
[0]¢11—9y = 0. Note that #” | dx; A dx; = dH. This implies

0 =d(gF A | dx) ndxy) = d(gF dH) = d(—Hd(gF)). O

Recall that 7'(a) denotes the tangent space at a to the orbit of an algebraic restriction
a. Lemmas 5.1 and 5.2 imply the following statement.

3 Another notation for the same algebra is Derlog({H = 0}), see for example [Sa2].
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Proposition 5.3. Letae [Az([Rz)]{Hzo}. Then T(a) = {%,z(a),g € A°(R?)}.

5.2. Quasi-homogeneous algebraic restrictions. Now we will calculate the tangent
space T'(a) more explicitly. This requires working with quasi-homogeneous algebraic re-
strictions. The possibility to define quasi-homogeneous algebraic restrictions follows from
the following lemma.

Notation. Given a function F = F(xy,x;) denote by F) the quasi-homogeneous
part of degree 0 of its Taylor series with respect to the weights 4, 4.

Lemma 5.4. If [F dx; Adxa] _gy = O then [F©) dx; A dxa) gy = 0 for any .

Proof. Follows from Lemma 4.3 and the observation that 0H /dx;, 0H /0x, are also
quasi-homogeneous polynomials with respect to the weights Ay, A,. [

Lemma 5.4 allows to define quasi-homogeneous algebraic restrictions as follows.

Definition 5. 5 Let F = F(x1,x2) and a = [F dx; A dxz] (H—0y- The algebraic restric-
tion a®) = [F O=h1=2%2) dx| A dx;] (H=0} will be called the quasi-homogeneous degree d part of
a. If a = a'® then a is called quasi-homogeneous of degree o.

Why FO-4-%) not F© in the definition of ¢(®? This is so in order to have

Lemma 5.6. If an algebraic restriction a € [A*(R?)] (H0} IS quasi-homogeneous of de-
gree o then Lg(a) =0 - a.

Proof. Let a = [F dx, dx;](;_,. Calculate the Lie derivative
Sp(Fdxy Adxy) = d(E | Fdx) ndxy) = LeF dx) Adxy + FLE(dx) Adx).

It remains to note that Lg(dx; Adxy) = (A1 + A2)dxi Adxy and FeF = (0 — A1 — A)F
since F is quasi-homogeneous of degree d — A; — 4. [

Lemma 5.7. For any a € [A*(R? N0y the sum S @) is finite.
oeR

Proof. Obviously a9 =0 if § < 2+ 4, or if 0 % o4 + ondy for some positive
integers o), o. Therefore we have to prove that ¢ =0 for sufficiently big 6. Let
0 > A1 + Ja + u, where p is the multiplicity of H. Then a®) has the form [F dx; A dx,] (H=0}>
where the function F has zero u-jet. Any such function belongs to the gradient ideal (VH),
see [AVG]. By Lemma 4.3 one has ¢) = 0. []

5.3. Proof of Proposition 4.9. In view of Proposition 5.3 let us calculate the Lie
derivative % (a) for quasi-homogeneous g and a.

Lemma 5.8. If a € [A*(R?)] (H=0y and g € A°(R?) are quasi-homogeneous of degrees
o1 and 6, then %y (a) = (01 + d2)ga.

Proof. For any @ € A*(R?), and g € A°(R?) and any vector field ¥ on R? one has
Lyyo=g- (Lv(w)+ (Lr(9)) - w. Therefore Zyp(a) = g- Lg(a) + (ZLe(g)) - a. One has
YE(g) = 029. By Lemma 5.6, %g(a) =d1a. [J
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Consider the linear operator

0: [A2(R2)]{H:O} - [Az(Rz)]{H:O}’ Qa) = Y. 6-d.

JeR

It is well-defined by Lemma 5.7. Proposition 5.3 and Lemma 5.8 imply
Proposition 5.9. T(a) = O(A°(R?) - a).

Since a(®) = 0 (moreover a® = 0 for 6 < A; + 4,) the operator Q is non-singular and
consequently dim 7'(a) = dim(A°(R?) - a).

5.4. Proof of Theorem 4.10 (i). The normal forms in Theorem 4.10 follow from
Propositions 5.10 and 5.11 below. To formulate these propositions it is convenient to use
the following notation.

Notation. Denote by o(J) the subspace of the space [A?(R?)] (H—oy consisting of al-
gebraic restrictions without quasi-homogeneous terms of degree < 0.

Proposition 5.10. Let ay,...,a, be a basis of the space [A2(IR2)]{H:0} consisting of
quasi-homogeneous algebraic restrictions of degrees 0y < 0y < --- <0,. Let

a=cay+---+cuay.

If ag belongs to the affine space g-(ciay + -+ cs_1a5-1) + 0(d5) for some function g
such that g(0) =0 then a is diffeomorphic to an algebraic restriction in the affine space
cray + -+ cs_1d5-1 + 0(Js).

Proof. Let us show that a symmetry W of the curve {H = 0} reducing a to the re-
quired normal form is contained in the flow ®' of the vector field gE. Since g(0) = 0 and
the degrees of quasi-homogeneity of a>, are not less than J, then by Lemma 5.8 one has
Sypa e Zyp(ciar + -+ + ¢s—1a5-1) + 0(d5). Lemma 5.8 and the assumption of Proposition
5.10 imply % ga € 6,a, + 0(J;). It follows

d(®") a/dt e (@) (d;a, + 0(Jy)).
Note now that for any ¢ the diffeomorphism ®’ preserves the x; and the x,-axes and since
g(0) = 0 then @' has identity linear approximation. These properties imply that ®' pre-
serves the affine space d,a; + 0(d5) and consequently

d(®")*a/dt € 6;a; + 0(y).

Since @) = id it follows (®')*a = a + td,a; + 0(ds). Let ty = —c¢;/ds. Then ¥ = @ is the
required symmetry. []

To prove Theorem 4.10 (i) for all singularities except Dy it suffices to use the follow-
ing corollary of Proposition 5.10.

Proposition 5.11. Let ay,...,a, be a basis of the space [Az(IR2)]{H:0} consisting of
quasi-homogeneous algebraic restrictions of degrees 01 < 0, < --- < J,. Any algebraic re-
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striction of the form a = cpa, + - - - + c,a, with ¢, # 0 is diffeomorphic to an algebraic re-
striction of the form a = c,a, + Cpr1apr1 + - - + Cuay, where ¢; =0 for all i = p+ 1 such
that a; € A°(R?) - a,.

Proof. By Lemma 5.4 and the assumption J; < d;;; any algebraic restriction in the
space 0(ds) is a linear combination of a1, ..., a,. Therefore to prove Proposition 5.11 it
suffices to prove that if a; = g - a, for some function g then the algebraic restriction a is
diffeomorphic to an algebraic restriction in the affine space cja; + - -+ + ¢s—1a,-1 + 0(Jy).
This follows from Proposition 5.10 since g(0) = 0 (if we had ¢(0) % 0, then by Lemma
5.4, a, and a, would be proportional). []

The proof of Theorem 4.10 (i) requires, except Propositions 5.10 and 5.11, the follow-
ing lemma.

Lemma 5.12.  Let a = [x{'x3* dxi Adxo]yy_q, and ¢ % 0. Then c - a is diffeomorphic
to ta. If the curve {H = 0} admits a symmetry (x1,x2) — (—x1,X2) or (x1,x2) — (X1, —x2)
which changes the sign of the monomial x{"x3* then the algebraic restrictions +a are diffeo-

morphic.

Proof. The first statement follows from the fact that the group of symmetries of
the curve {H = 0} includes the scale transformations (xj,x;) — (¢ x7,2*2x;). The second
statement is obvious. []

Theorem 4.10 (i) for the Ay, Es, E7, Eg singularities (respectively Dy singularities) is a
direct corollary of Proposition 5.11 (respectively Proposition 5.10), Lemma 5.12, the obvi-
ous implication

geN'(RY)-f = [gdxi ndxa]py_gy € A'(R?) - [f dxi Adxa] gy
and the relations in the last column of Table 3. In this table we use the notation

[ (x1,x2)] = [f dx, Ade]{H:O}'

relations following
H A, A2 basis of [Az(Rz)]{HZO} from Lemma 4.3
x{‘“ - X3 2, k+1 | (1, [xi],. .., X
X12x2—x§_1 k—2,2 [1}?[X2},...,[X2/],[X1], [Xé] = (b[x1]+ [Xé]) 'xé_i
X R Y, | (e R, > )
¢ =[(k—1)/2] k%) = 22 [x]
X —x3 4,3 1], [xa], [x1],
[x3], [x1xa], [x1x3]
X —xix3 |32 [1], [x2], [xi], [x3], [x3] = 3x1 - [x1]
[X1X2], [XSL [Xg]
X% - XS 53 3 [”> [Xz}, [X1]7 [X%L
[X1X2], [X;L [Xlxg]a [X]X%]

Table 3. From Propositions 5.10, 5.11 to Theorem 4.10 (i).
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All relations in the last column of Table 3 are obvious corollaries of Lemma 4.3. In
the second column of Table 3 we give the weights 4;, 4, of quasi-homogeneity of the func-
tion H. In the third column we present a basis of the space [A?(R?")] v satisfying the as-
sumption of Proposition 5.11 for all singularities except D, with even k. For the latter sin-
gularities the basis in Table 3 satisfies the assumption of Proposition 5.10. The construction
of such a basis, for any H, is very simple. One has to take the monomial basis f1,..., f, of
the local algebra of H, to calculate the degrees of these monomials with respect to the
weights 41, 4, and to rearrange them so that the degrees form a non-decreasing sequence.
Then, replacing f; by the algebraic restriction [f;] we obtain a required basis.

Example 5.13. Consider the case H = Dy = x?x; — x5~!. Decompose an algebraic
restriction a € [A%(R?)] (#~0y by the basis in Table 3:

(5.1) a=co[l] +c1[xa] + -+ + cxa[x5 ] + o [x1).

Propositions 5.10, 5.11 and Lemma 5.12 imply that if the coefficients ¢; and « satisfy the
condition given in the first column of Table 4 then « is diffeomorphic to the normal form
in Theorem 4.10, which we present again in the second column of Table 4. Note that the
first column contains a// possible cases.

co*+0 Fo - (1]
co=--=c¢1=0,¢,%0,i<k—4 Fi : [bx1 + xj)]
o= —crq=0, %0 Ty (1) oy + bk ]
o= =c¢-4=0,0=0,c,3F0 Tt [X577]
o= =cr3=00%0,crs%0 i1 [
co=-=c2=00=0 T+ (0]

Table 4. The correspondence between the normal forms in Theorem 4.10 for the
case H = Dy and the coefficients in (5.1).

5.5. Proof of Theorem 4.10 (iii). Leta e [Az(Rz)]{HZO}. Take a basis [fi],...,[f,] of
[Az(IR2)]{H:0} as in Table 3. Let a = ¢i[fi] + - - - + ¢,[f,]. Tracing the proof of Theorem
4.10 (i) we can check that the normal form %; holds if exactly i of the coefficients
ci,...,c, are equal to 0 (see Example 5.13 where this follows from Table 4). By Theorem
4.10 (ii) “if” can be replaced by “if and only if .

5.6. Proof of Theorem 4.10 (iv). Any normal form with parameters in Theorem 4.10
has the form ag + b1a; + - - - + bya, where a; are algebraic restrictions, b; are parameters,
s < 2. To prove that the parameters are moduli we have to prove

(5.2) a; ¢ T(ap + biay + - - + bsay).
Proposition 5.9 allows to calculate this tangent space explicitly and to check (5.2) for each

of the normal forms in Theorem 4.10. As an example consider the most difficult case—the
only normal form with two parameters—the normal form
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T 2 3
Iy = [x1 + b1x2 + b2x2]

for the case H = Eg = x} — x3. We continue to use the notation [f] = [f dx; A dx2] (H=0}
from the previous subsection. We have to prove

(5.3) 3], 3] ¢ T(F).

By Proposition 5.9 one has
(5.4) T(F) —{Zr- [g-?z](r>,geA0(R2)},

where () denotes the quasi-homogeneous part of degree r with respect to the weights
A1 =35, A, = 3. Lemma 4.3 implies the relations

22 0g o 24 g 2
XT Xy T = X[X5 Ty = x1X,F2 =0

for any o = 0, and the relations
x17 = bix1x3] + ba[x1%3],  x2F = [x1x2] + bi[x3),
x%g"z = [xlxg}, X1X2%5 = by [xlxg], xgg"z = [xlxg].
These relations and (5.4) imply
T(F2) = span(5[x1] + 6b1[x3] + 9ba[x3], 8[x1x2] + 9b1[x3], [x1x3], [x1x3]).

Since the algebraic restrictions [x1], [x1x2], [x3], [x3], [x1x3], [x1x3] are linearly independent

(see the last row of Table 3) it is clear that (5.3) holds for any b, b,.

6. Symplectic Ss-singularities

Denote by (Ss) the class of varieties in a fixed symplectic space (R>",w) which are
diffeomorphic to

(6.1) Ss={xe R2"24 . xl2 — x% — x% = XX3 = x4 = 0}.

We will use the method of algebraic restrictions to obtain a complete classification of sym-
plectic singularities in (Ss). In section 6.1 we calculate the manifold [Symp(R*")] s, and
classify its algebraic restrictions. This allows us to decompose (Ss) onto symplectic singu-
larity classes, section 6.2. In section 6.3 we transfer the normal forms for algebraic restric-
tions to symplectic normal forms. In section 6.4 we give an equivalent definition of the sym-
plectic singularity classes in canonical terms. Some of the proofs are contained in sections
6.5, 6.6.

6.1. Algebraic restrictions and their classification. One has the relations

(62) [d(XQ)Cg,)]N = [)CZ dxs + x3 d)Q]N =0,
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(6.3) [d(x? — x5 —x3)]y =2 [x1dx1 — x2dx2 — x3dx3]y = 0.

Multiplying these relations by suitable 1-forms we obtain the relations in Table 5.

relation proof
1. [x2 dxy Adxs]y =0 (6.2) Adx;
2. [x3dxy Adxs]y =0 (6.2) A dxs
3. (X2 dxy Adx3]y =0 follows from rows 1. and 2. since
[x¥fly =[5 + X3y
4. [x1dx) Adxa]y =0 (6.3) A dx, along with row 2.
5. [x3 dx) Adxay]y =0 (6.3) A X3 dx
(since [x2x3]y = 0)
6. [x3 dx) Adxa]y =0 (6.2) A x3dx;
(since [xox3]y = 0)
7. [x1 dx; Adxs]y =0 (6.3) A dxs along with row 1.
8. | [xadxi Adx3]y = —[x3dx; Adxa)y (6.2) Adx;
9. | [xsdxi ndxs]y = —[x2dx; Adxa)y (6.3) Adx;

Table 5. Relations towards calculating [A?(R™)], for N = Ss.

Table 5 and Proposition 2.3 easily imply the following statements.
Proposition 6.1. Any 2-form with zero 1-jet has zero algebraic restriction to Ss.

Proposition 6.2. [A*(R*")]s is a 6-dimensional vector space spanned by the algebraic
restrictions to Ss of the 2-forms
(91 = dx1 /\de, 02 = dX2 A dX3, 03 = dX3 AN dxl, 94 = X2 dX1 /\dXz,
a1 ZX3dx1/\dx2, gy = X1 dXZ/\dX3.

Proposition 6.2 and results of section 2.14 (Theorems 2.19 and 2.21) imply the follow-
ing description of the space [A%°*!(R>")]¢s and the manifold [Symp(R>")] S5

Theorem 6.3. The space [A*>“1*Y(R*")¢s has dimension 5. It is spanned by the alge-
braic restrictions to Ss of the 2-forms

01,...,04,05:0'1—0'2.

If n=>3 then [Symp(RZ”)}Ss = [AZEY(R2IM) o5 The manifold [Symp(R4)]55 is an open
part of the 5-space [A27°1°Sed(R4)]Ss consisting of algebraic restrictions of the form

[C191 +---+ 6‘595]55 such that (6‘1,62, C3> + (0, 0,0).
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Remark. The fact that dim[A*9(R?")] s = 5 follows from Proposition 2.16 since
S5 is a complete intersection singularity of multiplicity 5.

Theorem 6.4. (i) Any algebraic restriction in [A*“**(R*")gs can be brought by a
symmetry of Ss to one of the normal forms [Ss|' given in the second column of Table 6.

(ii) The codimension in [A*>*Y(R>")|ss of the singularity class corresponding to the

normal form [Ss]" is equal to i.
(i) The singularity classes corresponding to the normal forms are disjoint.

(iv) The parameters ¢, ¢y, ¢2 of the normal forms [Ss)°, [Ss]?, [Ss]® are moduli.

normal forms for canonical
class algebraic restrictions cod | u®™ | ind | definition
(S5)0 [S5]O : [02 + 6191 + Czeg]ss, 0 2 0 CU|W + 0,
2n=4 (c1,¢2) *(0,0) kerw|y #+ 4[,45, 05
(Ss)? [S5]7 + [02 + cO4], 2| 3 | 0 |wy=+o0,
2nz4 kerw|, € {/, 45,45}
(Ss)° [S5] « 04 + cOs], 3 4 |1 |oly=0,
2nz6 [w]y £0
(Ss)° [Ss] : 0], 50 5 | o |loly=0
2n =6

Table 6. Classification of symplectic Ss singularities. cod—codimension of the classes;
1™ —symplectic multiplicity; ind—the index of isotropness; W —the tangent space to a non-singular
3-dimensional manifold containing N; /)", /", /5 —the lines in W associated to the tangent lines to
the strata of N.

6.2. Symplectic singularity classes. In the first column of Table 6 by (Ss)’ we denote
a subclass of (Ss) consisting of N € (Ss) such that the algebraic restriction [w]y is diffeomor-

phic to some algebraic restriction of the normal form [Ss)'. Theorem A, Theorem 6.4 and
Proposition 6.3 imply the following statement.

Proposition 6.5. The classes (Ss)i are symplectic singularity classes, i.e. they are
closed with respect to the action of the group of symplectomorphisms. The class (Ss) is the
disjoint union of the classes (Ss)°, (Ss)?, (S5)°, (Ss5)°. The classes (Ss)° and (Ss)* are non-
empty for any dimension 2n = 4 of the symplectic space; the classes (S5)3 and (Ss)° are
empty if n = 2 and not empty if n = 3.

The following theorem explains why the given stratification of (Ss) is natural.

Theorem 6.6. Fix i € {0,2,3,5}. All stratified submanifolds N € (Ss)' have the same
(a) symplectic multiplicity and (b) index of isotropness given in Table 6.

Proof. The part (a) follows from Theorems D and 6.4 and the fact that the codimen-
sion in [AZ€losed (2] s, of the orbit of an algebraic restriction a € [S5]" is equal to the sum
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of the number of moduli in the normal form [Ss5]’ and the codimension in [A% 4 (R?")]
of the class of algebraic restrictions defined by this normal form.

5

The part (b) for the normal form [Ss]° follows from Theorem B (or from Theorem C).
For the normal forms [Ss5]® and [S5]? it follows from Theorem C and Lemma 2.20. For
[S5]? the part (b) follows from Theorem C and Proposition 6.1. []

6.3. Symplectic normal forms. Let us transfer the normal forms [Ss]’ to symplectic
normal forms using Theorem A, i.e. realizing the algorithm in section 2.8. Fix a family o’
of symplectic forms on R>" realizing the family [Ss]’ of algebraic restrictions. We can fix,
for example

o’ = Or + 101 + 205 + dxy Adxy + dxs Adxg + - + dxap_1 Adxay, (Cl, Cz) + (O, 0),
@? = 0y + s + dxy Adxs + dxs Adxe + - - + dxon_1 A dXa;
@3 = 04 + cOs + dxi Adxa + dxs A dxs + dxy Adxg + dxg Adxg + -+ dxan_1 A dxan;

®> = dx) Adxs + dxa Adxs + dxy Adxe + dxg Adxg + - - + dxau_1 Adxap.

Corollary 6.7. Let w be a symplectic form on R*, n =3 (resp. n=2). Fix, for
i=0,2,3,5 (resp. for i = 0,2) a family ®" of local diffeomorphisms which bring the family
of symplectic forms ' to the symplectic form w: (®") w’ = w. Consider the families
Sh= (d)i)_l(S5). Any stratified submanifold of the symplectic space (R*",w) which is dif-
feomorphic to Ss can be reduced by a local symplectomorphism to one and only one of the
normal forms St, i=0,2,3,5 (resp. i =0,2). The parameters of the normal forms are
moduli.

Of course the normal forms SI depend on the choice of the diffeomorphisms @' in
Corollary 6.7 and of the symplectic forms @' realizing the algebraic restrictions. For exam-
ple, if w is expressed in Darboux coordinates, w = dp| Adqy + - - - + dp, A dg, then a suit-
able choice of w’ and ®' leads to the following normal forms:

S pi-pi—4=0, pp=0, qr=cpr+cq, ps3=q=3=0, (c1,c2) =% (0,0);
S pi—-pi—3=0, pgp=0, q1=cp3, ps3=q>3=0;
S3 pt—pi—pi=0, pp3=0, qi=p3/2, ¢ =cpips, =3 =pza=0;

S5 pl—pi—pi=0, pip3=0, gs1=ps4=0.

6.4. Canonical definition of the classes (Ss)'. The classes (S5)' can be distinguished
geometrically, without using any local coordinate system. Let N € (Ss). Then N is the
union of 4 non-singular 1-dimensional submanifolds (strata). Denote by 4 (N),...,/4(N)
the tangent lines at 0 to the strata. These lines span a 3-space W = W(N). Equivalently
W(N) is the tangent space at 0 to some (and then any) non-singular 3-manifold containing
N. The classes (Ss)’ can be distinguished in terms of the restriction w|,,, where w is the
symplectic form, and the following three lines in the 3-space W associated with the lines
fl(N),.. . ,/4(]\7)1
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(f =4 (N) = (4(N) @ L(N)) N (63(N) @ £4(N)),
ty =15 (N) = (4(N) @ 5(N)) 0 (6(N) @ 4a(N)),
5 =1{(N) = (4(N) @ /4(N)) 0 (/2(N) @ /3(N)).

The constructed lines 7", /', /; are well-defined 1-dimensional subspaces of the 3-space
W because W is spanned by any three of the lines 7 (N),...,7(N). For example, for
N =S5 = (6.1) it is easy to calculate

(6.4) /{'(N) = span(0/0x1), ¢, 3(N)=span(d/0xs + 0/0x3).

Theorem 6.8. A4 stratified submanifold N € (Ss) of a symplectic space (R*", ) be-
longs to the class (Ss)" if and only if the couple (N, w) satisfies the condition in the last col-
umn of Table 6, the row of (Ss)".

Remark. One can ask why this is a theorem, not the definition of (Ss)’. Of course
we could use the last column of Table 6 as the definition of the classes, but this way of ex-
position is not “honest’: the geometric characterization of the classes was obtained as a
result of analysis of normal forms for algebraic restrictions.

Proof of Theorem 6.8. The conditions on the pair (w, N) in the last column of Table
6 are disjoint. This fact and Theorem 6.4 (i) reduce Theorem 6.8 to the following statement:

the condition given in the last column of Table 6, the row of (Ss)’, are satisfied for any
N € (Ss)". This statement is a corollary of the following claims:

(1) Each of the conditions in the last column of Table 6 is invariant with respect to
the action of the group of diffeomorphisms in the space of pairs (w, N).

(2) Each of these conditions depends only on the algebraic restriction [w].

(3) Take the simplest 2-forms ' representing the normal forms [Sﬂi for alge-
braic restrictions: @” = 0, + ¢10; + 2603, ©* = 05 + cls, @ = 04 + ¢Os, > = 0. The pair
(v = w', Ss) satisfies the condition in the last column of Table 6, the row of (Ss)".

The first statement is obvious, the second one follows from Lemma 2.20. To
prove the third statement it suffices to note that in the case N =S5 = (6.1) one has
W = span(d/dxy,0/0x,,0/0x3) and the kernel of the restriction to W of the 2-form
0, + 101 + c205 is the line spanned by the vector d/0x; + ¢20/0xy — ¢10/0x3. This line
coincides with one of the lines (6.4) if any only if c; = ¢, =0. [J

Theorem 6.8 allows to distinguish the classes (Ss5)° U (S5)* and (S5)” U (S5)° in sim-
ple geometric terms: N € (S5)3 V) (Ss)5 if and only if w|,, = 0. The geometric distinguishing
of the classes (Ss)® and (Ss)° follows from Theorem B: N e (Ss)° if and only if N is con-
tained in a non-singular Lagrangian submanifold. The following theorem gives a simple
way to check the latter condition without using algebraic restrictions. Given a 2-form o
on a non-singular submanifold M of R*" such that ¢(0) = 0 and a vector v € TyM we de-
note by %,o the value at 0 of the Lie derivative of ¢ along a vector field V' on M such that
v = V(0). The assumption ¢(0) = 0 implies that the choice of V is irrelevant.
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Theorem 6.9. Let N € (Ss) be a stratified submanifold of a symplectic space (R*", w).
Let M? be any non-singular submanifold containing N and let o be the restriction of w to
TM3. Let v} €/ be non-zero vectors. The symplectic form w has zero algebraic restriction

to N if and only if 0(0) = 0 and L,:0(v3,03) = Lp;0(v3,v) = Lp:0(vf,03) = 0.

6.5. Proof of Theorem 6.4. We will prove statements (i) and (iv). Statements (ii) and
(iii) follow from Theorem 6.8 which was proved in section 6.4 (using only the part (i) of
Theorem 6.4). The first statement of Theorem 6.4 follows from the following lemmas.

Lemma 6.10. If (c1,c2,¢3) % (0,0,0) then the algebraic restriction of the form
[c10y + - - + ¢s0s], can be reduced by a linear symmetry of Ss to an algebraic restriction of
the same form with c; = 1.

Lemma 6.11.  The algebraic restriction of the form [c40s + C505]S5 with (ca, ¢s) + (0,0)
can be reduced by a linear symmetry of Ss to an algebraic restriction of the same form with
Cq4 = 1.

Lemma 6.12. The algebraic restriction of the form [c10) + 05 + ¢203 + 1104 + r20s] S5
can be reduced by a symmetry of Ss to the algebraic restriction [c10) + 0, + ¢205] Se-

Lemma 6.13.  The algebraic restriction of the form [0 + c404 + ¢50s] 55 can be reduced
by a symmetry of Ss to the algebraic restriction [0 + c404]..

Proof of Lemmas 6.10 and 6.11.  If ¢; & 0 in the case of Lemma 6.10 or ¢4 # 0 in the
case of Lemma 6.11 then the required normal forms are clear due to the scale symmetries
of S5 of the form x; — kx; and the involution x; — —xj. It is easy to check that a suitable
permutation of some of the four strata of Ss brings the case ¢; = 0 (resp. ¢4 = 0) to the case
¢+ 0 (resp. ca £0). O

To prove Lemmas 6.12 and 6.13 we use the non-linear symmetries of Ss generated by
the Euler vector field E = x10/0x| + x20/0x; + x20/0x3.

Notation. Denote by ‘Pj’ the flow of the vector field x;E, j = 1,2, 3.

Lemma 6.14. Let a; = [0]s, i=1,...,5. The algebraic restriction (P!

) a; has the
Sform given in Table T in the row of a; and the column of ¥;. ‘

¥ ¥ 3
a a ay +3tas | a; + tas
ar | ap — 2tas a a
as as asz +tas | az + 3tay
ag aa ag ag
as as as as

Table 7. The algebraic restrictions (‘Pj’)*a,-.
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Lemmas 6.12 and 6.13 are immediate corollaries of Lemma 6.14. In fact, Table 7 im-
plies that if ¢; # 0 (respectively ¢, #+ 0) then the algebraic restriction

c1ay + ap + c2a3 + ca4a4 + csas

reduces to the form cja; + a + c2az by the symmetry W{ o W5 (respectively W{ o W3) with
suitable ¢ and s. The table also implies that the algebraic restriction a; + csa4 + csas re-
duces to a, + cqa4 by the symmetry | with a suitable 7.

Proof of Lemma 6.14. The calculation of algebraic restrictions (‘Pj’)*ai is based on
the observation that if w; is a 2-form representing the algebraic restriction ¢; then by
Proposition 6.1, (‘Pj’ )“a; depends only on the 1-jet of w and the 2-jet of ¥;. For example
JPY) X1 — X1+ ix3, xa — xa + 1x1X2, X3 — X3 + £x1x3 and consequently

jl(‘l’{)*az = [dxy A doxs + 2ty dxy A dxz — txs dxy Adxg + txp dxy A dxs] g, .

Using the relation [xydxs]g, = —[x3dxs]s, (since [xax3]g, =0) we obtain that
(W{)"ay = a» — 2tas. The other boxes in Table 7 can be filled in by similar simple calcula-
tions (using some relations in Table 5, for example [x| dx| A dx;]g. =0). [

Now we will prove statement (iv) of Theorem 6.4. The fact that the parameters ¢; and
¢ are moduli in the normal form [S5]0 and the parameter ¢ is a modulus in the normal
form [S5]3 follows from the reduction Theorem 2.5 and the structure of the group of linear
symmetries of Ss treated as a stratified submanifold of R3—it is easy to see that it consists
of the scale transformations x; — kx; and the permutations of the strata.

Remark. The existence of two moduli in the symplectic classification of stratified
submanifolds N € (Ss) follows from the existence of two moduli in the classification of 5-
tuples of lines (one-dimensional subspaces) in a 3-space with respect to the group of linear
transformations of this space. One should associate to N the 3-space W (N) and the lines
H(N),...,04(N), kerw|,, = W(N), see section 6.4.

It remains to prove that ¢ is a modulus in the normal form [Ss]*. As above, Theorem
2.5 allows us to treat Ss as a stratified submanifold of R*. Any symmetry ® of Ss preserv-
ing each of the four strata has the form x; — kx;, therefore ® brings the algebraic restric-
tion [0, + ¢ - O4] s, to an algebraic restriction of the form (k205 4 1404 + 1505 s~ Therefore it
suffices to prove that ¢ is an invariant with respect to the symmetries of S5 of the form

(6.5) D:x; — X1+ ¢(x), X2 = x2+ Ph(x), X3 = X3+ ¢3(x),

where ¢, are functions with zero 1-jet. Using Table 5 we obtain

_ P
- axlaxz

¢
(3)(1(3)63

(0) +

(I)*[92+C'04}S5:[024—(6’—1’)944—?'05]&, r (O)

(the number 7 also can be calculated, but we do not need it). Now, to prove that ¢ is a

modulus, we have to show that r =0 for any symmetry ® of Ss of form (6.5). The

fact that @ preserves the strata x; = +x,, x3 = 0 and x; = +x3, x = 0 implies that ¢; be-

longs to the ideal (x3,x? — x3) and ¢, belongs to the ideal (x3,x? — x?). It follows that
by gy~ O

axlaxz N 8x1 8x3

(0) = 0 and consequently r = 0.
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6.6. Proof of Theorem 6.9. By Proposition 2.4 and Lemma 2.20 it suffices to prove
that if a closed 2-form ¢ on R? vanishes at 0 then ¢ has zero algebraic restriction to
Ss = {x} — x3 — x3 = xpx3 = 0} = R? if and only if

(6.6) Ly0(v3,03) = Loyo(vy,vp) = Lp:o(vf,v5) = 0.
Let 0 = A3( ) dx1 Adxy 4+ A1(x) dxy Adxs + Az(x) dxz Adx;. Then, by the closeness of a,
04 0A 04
one has -— (O) + 0—2 (0) + 6—3 (0) = 0. Using (6.4) it is easy to calculate that the intersec-

tion of thls condition and (6.6) gives

(6.7) ‘2—’2@

0A2
aXQ

043

oy 25
0X3

5)63 5x2 (0) =0

0) +=—(0) =

Let us show that (6.7) is equivalent to the condition [g],, = 0. By Proposition 6.1,

[a]y = 0 if and only if [j'o]y = 0. The functions x7 — x3 — x3 and x,x3 have zero 1-jet.
Therefore o], = 0 if and only if there exist r1, ..., 76 € R such that

jlo = d(xf — x% x3) A (rydxy + radxy + rydxs) + d(xx3) A (radxy + s dx; + re dxs).

This relation is a system of 9 linear equations with respect to 6 unknowns ry, ..., r¢. It is
easy to check that it is solvable if and only if the condition (6.7) holds.

7. Classification of symplectic regular union singularities
By a regular union singularity in R*” we mean the union
(7.1) N=Nu---UN;, s=2

of germs of s non-singular submanifolds of R*" (in what follows—strata) such that the di-
mension of the space

(7.2) W =TyN; + -+ TyN;

is equal to the sum of the dimensions of the strata, i.e. the sum (7.2) is direct. If the num-
ber of strata and their dimensions are fixed then all such N are diffeomorphic. The set
[Symp(R*")],; can be explicitly described (section 7.1). Using this description and Theorem
A we classify all symplectic regular union singularities with three 1-dimensional strata (sec-
tion 7.2), with two 2-dimensional isotropic strata (section 7.3), and with two 2-dimensional
symplectic strata (section 7.4).

7.1. Algebraic restrictions. At first we describe the space [A%“*!(R?")] .. Through-
out subsection 7.1, N is an arbitrary regular union singularity (7.1).

Theorem 7.1. Two closed 2-forms wy, @, have the same algebraic restriction to N if
and only if they have the same restriction to the tangent bundle to each of the strata N; and
w1 and w; have the same restriction to the space W.
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It follows that [A%1°*(R?")]; is a finite dimensional vector space if and only if each
of the strata N; is 1-dimensional. Theorem 7.1 makes clear how to parametrize the space of
algebraic restrictions, see sections 7.2, 7.3, 7.4.

The minimal dimension of a non-singular manifold containing N is the sum of the
dimensions of the strata. Therefore Theorem 2.19 implies:

Proposition 7.2. Let m =dim N + --- +dim Ny. If m < n then
[Symp(R¥")]y = [A**=(R2")] .

If m > n then an algebraic restriction [w]y € [A*9Y(R*")], belongs to [Symp(R>")], if
and only if rank w(0) = 2(m — n).

Note that Theorem A, Theorem 7.1 and Proposition 7.2 reduce the problem of clas-
sification of symplectic regular union singularities with isotropic strata to simple linear al-
gebra problems, see sections 7.2 and 7.3.

Theorem 7.1 and Theorem C imply the following corollary on the index of isotrop-
ness of a regular union singularity.

Proposition 7.3. Let N be a regular union singularity (7.1) in a symplectic space
(R*", ). Let W = TyR*" be the space (1.2). If @|y + 0 then the index of isotropness of N
is equal to 0. If w|y, = 0 then it is equal to the minimum of orders of vanishing of the 2-forms
olry, i=1,...,s In particular, if the strata N; are isotropic then the index is either 0 (if
wly + 0) or o (if oy, = 0).

Proof of Theorem 7.1. Fix a non-singular submanifold M containing N of dimen-
sion dim N + - -+ + dim N;. Theorem 7.1 follows from Proposition 2.4 and the following
statement: a closed 2-form ¢ on M has zero algebraic restriction to N if and only if (a)
olpy, =0, i=1,...,5 and (b) ¢(0) = 0. The implication [g], =0 = (a),(b) follows from
Lemma 2.20. In what follows we prove the implication (a),(b) = [o], = 0. It is easy to
show that (a) and (b) imply that ¢ is a differential of a 1-form « such that (c) o has zero
l-jet and (d) a|7y, =0, i=1,...,s. Therefore it suffices to prove that (c) and (d) imply
[a]y = 0. To prove this statement take local coordinates x%l), s Xinyy ey X] ey Xy, ONL
M such that the stratum A, is described by vanishing of all coordinates except x;’, ... ,qu?,.
(here m; = dim N;). It is easy to see that any 1-form « satisfying (c) and (d) belongs to the
ideal in the external algebra of differential forms generated by 0-forms (functions)

XD p=1m, q=1,..m,

which vanish at any point of N, and 1-forms
(7.3) x[(fl) x[(,’) dxt(]j), JFi, piL,pp=1,....my q=1,...m.

By Proposition 2.3 it remains to prove that the 1-forms (7.3) have zero algebraic restriction
to N. This follows from the relation

@) . () g4 () — @ 0 DY — () (D) @D — () (D) g4
xl’ll xplz dxq] - d(xpll xplz xq]) xPll xq] dxplz xplz xq] dxpll'

7.2. Regular union of 3 one-dimensional submanifolds. By Theorem 7.1 the algebraic
restrictions of closed 2-forms to a regular union N of three 1-dimensional submanifolds can
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be identified with 2-forms on the 3-space W spanned by the tangent lines ¢, 7, /3 to the
strata of V. The action of the group of symmetries of N reduces to the action of the group
of linear transformations of W preserving the set /; U/, U /3. Therefore the problem of
classification of algebraic restrictions to N of closed 2-forms reduces to the following simple
problem of linear algebra:

Let 4, /5, 43 be linearly independent 1-dimensional subspaces of a 3-dimensional
space . One has to classify 2-forms ¢ on W with respect to the group of linear transfor-
mations preserving £ U 4> U /3.

It is easy to prove that in this problem there are exactly 4 orbits, of codimension 0, 1,
2, 3. The orbit of codimension 0 consists of non-zero 2-forms whose kernel does not belong
to any of the 2-spaces /| + £, £} + /3, {» + ¢3. The orbit of codimension 1 consists of non-
zero 2-forms whose kernel belongs to one of these 2-spaces but does not coincide with any
of the lines /1, /5, /3. The orbit of codimension 2 consists of non-zero 2-forms whose kernel
coincides with one of the lines /), /3, /3. The orbit of codimension 3 is one “point”—the
zero 2-form.

Theorem 7.1 allows to bring this simple classification to the classification of algebraic
restrictions given in the first column of Table 8, where

N*:xlxz = X1X3 = X2X3 = X>4 =0

is the normal form with respect to the group diffeomorphisms serving for all regular unions
of three 1-dimensional submanifolds. The algebraic restriction to N of any closed 2-form w
is diffeomorphic to one and only one of the algebraic restrictions a’. The normal form a’
holds if and only if the pair (w, N) satisfies the condition given in the last column of Table
8. The orbit of a’ with respect to the group of symmetries of N* has codimension i in the
space [A2,closed(R2n)]N*.

normal forms for

algebraic restrictions symplectic normal forms geometric condition
a® = [dx; dx3 + dxs dx) N°: gy = p1 + pa, oly * 0,
+ dxy dx] . Pig1 = qip2 = p2g> =0, kerw|y & ToN; + ToN;
P=3=q>3=0 for any i, j € {1,2,3}
al = [dx3 dx) + dx; dxz) - N':q = p1, w|Q=|=O,
Pqr = qi1p2 = pap1 =0, kerwl|y, = ToN; + TyN;,
P=3=(q>3 = 0 kera)|W + T()]\/vi7 T()Nj
for some 7, j € {1, 2,3}
a? = [dxy dxy] . N?:pigi=qpr=pap1 =0, | 0|y 0,
pP=3 ZQzZZO kerw|W: T()N,'
for some i € {1,2,3}
at = [0]y. N*:pipy=pps=pip1 =0, | 0|y, =0
pz4=4qz1=0

Table 8. Classification of symplectic regular union singularities with three 1-dimensional strata.
W denotes the 3-space spanned by the tangent lines at 0 to the strata.
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This classification of algebraic restrictions can be transferred to the following sym-
plectic classification using Theorems A and D and Proposition 7.2, 7.3.

Theorem 7.4. Any regular union singularity N with three 1-dimensional strata in the
symplectic space (R*",wy = dpy Adqy + - -+ + dp, Adq,), n =3 (resp. n =2) is symplecto-
morphic to one and only one of the varieties N°, N', N>, N* (resp. N°, N', N?) given in
Table 8. The normal form N' has symplectic multiplicity i. It holds if and only if the pair
(w = wy, N) satisfies the condition in the last column of the table. The index of isotropness
of N°, N', N2 is equal to 0, of N3>—to 0.

7.3. Regular union of two 2-dimensional isotropic submanifolds. In this subsec-
tion we obtain symplectic classification of all regular union singularities N with two
2-dimensional isotropic strata. (In this case we will say that N is isotropic.) Like in the
previous subsection, Theorem 7.1 reduces the classification of algebraic restrictions to the
following problem of linear algebra:

Let L, L, be transversal 2-dimensional subspaces of a 4-dimensional space Q. One
has to classify 2-forms ¢ on Q which annihilate L; and L, with respect to the group of
linear transformations preserving L, U L,.

It is easy to show that in this classification problem the rank of ¢ is a complete
invariant—two 2-forms with the given above properties are equivalent if and only if they
have the same rank. By Theorem 7.1 we obtain the classification of algebraic restrictions in
Table 9, where

(7.4) N™:X|X3 = X1X4 = X2X3 = X2X4 = X5 =0

is the normal form with respect to the group diffeomorphisms serving for all regular unions
of two 2-dimensional submanifolds. The algebraic restriction to N of any closed 2-form
annihilating the tangent bundles to the strata of N is diffeomorphic to one and only one
of the algebraic restrictions a’. The orbit of ' has codimension i in the space of algebraic
restrictions to N* of closed 2-forms annihilating the tangent bundles to the strata of N*.
The normal form @' holds if and only if the pair (w, N) satisfies the condition in the third
column of Table 9.

normal forms for geometric

algebraic restrictions symplectic normal forms condition codim

a® = [dx) dxs +dxydxs)y. | N°: {ps3 =¢=1 =0} rankw|,, =4 0
U{pz1 =¢23=0}

al = [dx) dx3) - N': (for 2n = 6 only) rank |, =2 1

{p=3 =qz1 =0}
Uipz1 = =gz4=0}
a*=[0]y. N*: (for 2n = 8 only) oy =0 4
{pz3=¢=1=0}
U{p1=p2=pzs=qz1 =0}

Table 9. Classification of symplectic regular union singularities with two 2-dimensional isotropic strata.
W denotes the 4-space spanned by the tangent planes at 0 to the strata.
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Using Theorem A and Proposition 7.2, 7.3 we can transfer the obtained classification
of algebraic restrictions to the following symplectic classification.

Theorem 7.5. Any regular union singularity N with two isotropic 2-dimensional strata
in symplectic space (R*",wo = dp) Adqy + - - - + dp, Adq,) is symplectomorphic to one and
only one of the varieties N°, N', N* in Table 9. The orbit of N' has codimension i in the class
of all regular union singularities with two 2-dimensional isotropic strata. The normal form N'
holds if and only if the pair (v = wq, N) satisfies the condition given in the last column of
Table 9. The index of isotropness of N°, N is equal to 0, of N*—o0.

7.4. Regular union of two 2-dimensional symplectic submanifolds. In this subsection
we classify regular union singularities with two 2-dimensional symplectic strata in a sym-
plectic space (R*", ). Note that in this case the index of isotropness of N is equal to 0.
The symplectic classification of such N involves the following invariant. Recall that two
germs of submanifolds N, N, of a symplectic space (R*", ) are called w-orthogonal if
w(v,u) = 0 for any vectors v € TyNy, u € TyN,.

Definition 7.6. The index of non-orthogonality between 2-dimensional symplectic
submanifolds N; and N, of a symplectic space (R*", w) is the number

o=a(Ny,Ny) =1 (0 A ) (v, 02, u1,u2)

2 - w(vy,02) - o(uy,u)
where v1, v, is a basis of Ty N; and u;, u, is a basis of TyN,.
The following obvious statement explains this definition.

Proposition 7.7. The index o(Ny, N,) is well-defined, i.e. it does not depend on the
choice of the bases of TyN, and TyN,. It is equal to 0 if and only if there exists a non-zero
vector u € ToN, such that w(v,u) = 0 for any v € ToN,. It is equal to 1 if and only if the 4-
form w A w has zero restriction to the space Q = ToN| + TyN.

In other words, a(N;, N2) =0 if the space ToN; has non-trivial intersection with
the w-orthogonal complement to TyN, in the space Q. In particular, if N; and N, are
w-orthogonal then o(Ny, Ny) = 0.

Proposition 7.8. Let N = Ny U N, be the regular union of two 2-dimensional symplec-
tic submanifolds of a symplectic space (R*", ). Let o be the index of non-orthogonality be-
tween Ny and N,. If Ny and N, are not w-orthogonal then the algebraic restriction )]y is
diffeomorphic to the algebraic restriction

a” = [dx) Adxy + dxz A dxy + dxy Adxs + adxy Adxaly.,

where N* = (7.4). If Ny and N, are w-orthogonal then o), is diffeomorphic to the algebraic
restriction

a®t = [dx) Adxy + dxs Adxa) ..

The orbit of a* has codimension 4 in [A*“4(R>")] ...
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Theorems A, D and Propositions 7.7, 7.8 imply the following corollary.

Theorem 7.9. Let wy =dpy Adgy + -+ + dp, Adg,. Let N = Ny U N, be the regular
union singularity with two 2-dimensional symplectic strata in the symplectic space (R*", wy).
If N1 and N, are not wg-orthogonal then N has symplectic multiplicity 1 and is symplecto-
morphic to the variety

N*:{q1 = p2,p1 = p=3 = q=3 =0} U {p2 = aq1, p>3 = q=> = 0},

where o is the index of non-orthogonality between N1 and N,. If Ny and N, are wq-orthogonal
then N has symplectic multiplicity 4 and is symplectomorphic to

NL:{pl =41 :Pg3:q23:0}u{p22:q§2:0}

If n = 3 then any of the normal forms is realizable and if n = 2—any except the normal form
N

It follows that the index of non-orthogonality distinguishes all normal forms except
N+t and N°—for each of them the index is equal to 0. These normal forms can be distin-
guished as follows. Intersect the w-orthogonal complement to the tangent space to Ny with
the tangent space to N,. If the index of non-orthogonality is equal to 0 then the dimension
of the intersection is either 1 or 2. It is 1 if N is symplectomorphic to N° and it is 2 if N is
symplectomorphic to N-*.

Proof of Proposition 7.8. By Theorem 7.1 the algebraic restriction to N* = (7.4) of
any closed 2-form can be expressed in the form

(7.5) (@] - = [f (x1,X2) dxi Adxy + g(x3,X4) dxz A dxy

+ crdx) Adxs + cadxy Adxy + c3dxy Adxs + cadxy Adxa] ..

Therefore [w], is diffeomorphic to (7.5). The condition that the strata are symplectic
with respect to w depends only on the algebraic restriction [w], and is equivalent to
the condition f(0) 0, ¢(0)+0. This condition allows to reduce f(xj,x;) and
g(x3,x4) to 1 by a symmetry of N* of the form (xi,x2) — (¢;(x1,x2),d5(x1,x2)),
(x3,x4) = (¥1(x3,x4),¥5(x3,x4)). We obtain the normal form

[dx1 Adxy + dxz Adxg + ¢y dxy Adxs + cadxy Adxg + c3dxa Adxs + cqadxy A dX4]N*

with real parameters c¢j, ¢, ¢3, ¢4. The condition that the strata are w-orthogonal
is also a property of the algebraic restriction [w]y.. It holds if and only if
cp=cy=c3=c4=0. In this case we obtain the normal form a'. If the strata are
not w-orthogonal then at least one of the numbers cy,...,cs is different from O.
The case ¢; =0 can be transferred to the case ¢; +0 by one of the symmetries
(X1, X2, X3, X4) — (—X2,X1,X3,X4), (X1,X2,X3,X4) — (X1,X2, —X4,X3). The scale symmetry
(x1, X2, X3, x4) — (7' X1, €1x2, X3, x4) reduces ¢; to 1. Now we can reduce ¢, and c¢3 to 0
by the symmetry (xj,x2,X3,X4) — (X1 — ¢3X2,X2,X3 — C2X4,X4). We obtain the normal
form @, and it remains to note that in this normal form « is exactly the index of non-
orthogonality between the strata of N. [
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