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1. INTRODUCTION

Let M be a smooth 2n-dimensional manifold, endowed with a nondegenerate, closed
2-form . The 2-form @ is called symplectic and the pair (M, ®) is a symplectic manifold.
We introduce the canonical symplectic structure @ on 7'M using the vector bundle morphism
B:TM > u— o(u,-) € T*M, namely the pullback of the Liouville symplectic form d0 de-
fined on the cotangent bundle T*M, @ = B*d6. A smooth vector field X : M — TM is said
to be Hamiltonian if the form @(X,-) is exact. A function H : M — R is called Hamilto-
nian for X if o(X,-) = —dH(-). If X is Hamiltonian, then its image X (M) C TM is a La-
grangian submanifold of (TM, @) generated by H. In local Darboux coordinates, M = R?",
ow=Y" dyiNdx;,and @ =B*d0 =YY" | (dyi Ndx;—dx; ANdy;), where (q,9) = ((x,y), (%,y))
are coordinates on TR?" = R¥" xR

To generalize this notion, we introduce a concept of a Hamiltonian system as a general
Lagrangian submanifold N of the symplectic tangent bundle (TM, ®). If T |y: N — M is sin-
gular, where 7 is tangent bundle projection, we also call N an implicit Hamiltonian system
(cf. [12], [7]). Important property of such systems around singularities is their solvabil-
ity, i.e. existence of smooth local curve y: (—¢&,€) — M such that its tangent lifting J(¢)
belongs to N around each point of N. An immediate necessary condition for solvability
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is tangential solvability condition, which is satisfied if ¢ € d(7 |v),(T,N) for each point
v=(q,q) € N. It is proved (cf. [7]) that, for certain naturally generic implicit Hamilto-
nian systems, they are solvable if they fulfill this tangential solvability condition. Another
generalization following P.A.M. Dirac (cf. [3]) is provided by constrained Lagrangian sub-
manifolds (cf. [11]) as Hamiltonian systems. The generalized Hamiltonian function for such
system is a generating family (Morse family) for the corresponding Lagrangian submanifold
Ly; F(x,y,A) =YX a;(x,y)4; + h(x,y) over the constraint K defined by smooth functions
a;j(x,y) = 0. The condition of solvability {g—i,F } =0 for (x,y,A) € S x R?" defines the sec-
tion of L, which is tangent to K. The general sections of L;, give the vector fields which are
Hamiltonian on the constrained submanifold.

In this work we concentrate on the vector fields of symplectic space (M, ®), which are
Hamiltonian on a subvariety of M. As we do not exclude singularities, our approach is local
and we consider mainly germs of subvarieties and germs of vector fields. We find the spaces
of vector fields, which are Hamiltonian on symplectic, isotropic and coisotropic submani-
folds of (M, ®) and we provide the classification of Hamiltonian vector fields on singular
varieties: planar curves of type Ax, Dy, Eg, E7, Eg, regular union of three 1-dimensional sub-
manifolds, regular union of two 2-dimensional isotropic submanifolds, and regular union
of two 2-dimensional symplectic submanifolds. We use the Mathematica package Exterior
Differential Calculus for calculations.

2. HAMILTONIAN SYSTEMS ON SUBMANIFOLDS

Let K be a submanifold of R?" and / : K — R be a smooth function on K. The notion
of generalized Hamiltonian system (generalized Hamiltonian dynamics) was introduced by
P.AM. Dirac in [3]. A generalized Hamiltonian system is the following sub-bundle L; of
TR?" over K (cf. [13]):

Ly={veTR": w(v,u) = —dh(u) Vyerk}. (1)

It is easy to see that L, is a Lagrangian submanifold of (TR?", @).

In local coordinates, the generalized Hamiltonian system (1) can be written, using gener-
ating family F : R?* x R* — R, in the following way:

k
F(x,y,l) = ZW(%)’)M —|—H(X,y), (2)
=1

where K is defined as a zero-level set of the mapping a : (x,y) — (ai(x,y),...,ax(x,y)),
H(x,y) is an arbitrary smooth extension of the function 2 : K — R and a is a maximal rank
map-germ.
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The generalized Hamiltonian system L is given by an immersion ¢ : Cr — L C (TR*", @)
defined by

oF oF
¢(x7ya)t) = (x7y7a_y(x7y7l)7_g(xvyal>)v (x7y7)t) S CF'

Since g—)l;(x,y, A) = ay(x,y), we have Cr = K x R¥. Then L can be described as

JoF JoF
= (p(CF) = {(x,y,8_y(x,y,l)7_§(x,y,}t)) € TRZ" : (X,y,l) €KX Rk}

L is a skew-conormal bundle to K and its smooth sections are called Hamiltonian sys-
tems on K with Hamiltonian H. This may be extended to Hamiltonian system on M taking
Hamiltonian function

=

Z (x,y)a;(x,y) 4+ H(x,y)

for some smooth functions A;(x,y).

Vector fields, which are Hamiltonian on K are given in the form:

0 a0 SNOH 0 OH 0
7y)axl axl (Xy yz +Z ayz 7y)axl a (xay)a_) (3)

i=1 Xi i

£ L

If we consider the functions A;(x,y) which are smooth solutions of the system of linear
equations (cf. [8]),

k
Z{ai,aj}(x,y)lj:{H,ai}(x,y), i=1,....k, 4)
=1

then the vector fields (3) are the logarithmic Hamiltonian vector fields over K.

3. HAMILTONIAN VECTOR FIELDS ON SINGULAR
VARIETIES

Let (M, ®) be a symplectic manifold. Let N be a subset of M.

Definition 1. A smooth vector field X on M is called Hamiltonian on N if there exists
a smooth function H on M such that

(X|w)|x = —dH|y, for every x € N. (5)
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Example 2. Let (R>", ay) be the standard symplectic space. Let N C (R*" wy) be the germ
of a hypersurface with isolated singularity at 0. Assume that the ideal of smooth function-
germs vanishing on N is generated by a smooth function-germ g on R**. Let H be a smooth
function-germ on R*" and let Xy be a Hamiltonian vector field-germ on (R*", wy) with
a Hamiltonian H i.e. Xy|w = —dH. Let Y be a smooth vector field-germ on R*". Then
the vector field-germ gY + Xy is Hamiltonian on N.

A smooth k-form B on M vanishes on N if |, = 0 for every x € N.

Definition 3. A smooth k-form o on M has zero algebraic restriction to N if there exist
a smooth k-form B on M vanishing on N and a smooth (k — 1)-form v on M vanishing on N
such that

a=pf+dy. (6)

Let .A](‘) (N,M) denote the space of smooth k-forms with zero algebraic restriction to N.
Since d(AL(N,M)) C ASTH(N,M), the complex (A4(N,M),d) is a subcomplex of the de
Rham complex on M. We denote by H*(N,M) the cohomology groups of the complex
(Ao (N, M), d).

Proposition 4. A smooth vector field X on M is Hamiltonian on N if and only if there exists
a smooth function H on M such that X | @ + dH has zero algebraic restriction to N.

Proof. Definition 1 is equivalent to the following condition:

k
X|o+dH =) fioy, (7)

i=1
where oy, -, 04 are smooth 1-forms on M, H, fi,---, f; are smooth functions on M such
that fi|y = --- = fx[v = 0. But this implies that X |® + dH has zero algebraic restriction to

N.

On the other hand, if there exists a smooth function H on M such that X |0 + dH has zero
algebraic restriction to N, then

k
X|o+dH =Y fio;+dg, (8)
i=1
where &y, --- , oy are smooth 1-forms on M, H, fi,-- -, fx,g are smooth functions on M such
that f1|y = -+ = fi|nv = g|nv = 0. But this can be written in the following way:
k
X]o+d(H-g) =Y fio, ©)
i=1
which implies that X is Hamiltonian on N. [

The above definition and proposition are the motivation for the following definition of the
symplectic vector field on N:
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Definition 5. A smooth vector field X on M is called symplectic on N if Lx® has zero
algebraic restriction to N.

It is obvious that a vector field, which is Hamiltonian on N, is symplectic on N. The
inverse implication is not always true. The necessary and sufficient conditions are given in
the following proposition:

Proposition 6. The vector field-germ X is Hamiltonian on N if and only if X is symplectic
on N and Lx ® define the zero cohomology class in H*(N,M).

Corollary 7. If H*(N,M) = {0}, then any symplectic vector field-germ on N is Hamiltonian
onN.

Definition 8. The germ at 0 of a set N C R" is called quasi-homogeneous if there exist
a local coordinate system xi, ..., x,, and positive numbers Ay, ..., A, such that the following
holds: if a point with coordinates x; = a; belongs to N, then for any t € [0, 1] the point with
coordinates x; = thi a; also belongs to N.

It was proved that if N is quasi-homogeneous, then H*(N, M) = {0} for k > 0. (e.g. see
[4]). It implies the following proposition:

Proposition 9. If N is quasi-homogeneous, then any symplectic vector field-germ on N is
Hamiltonian on N.

4. GERMS OF HAMILTONIAN VECTOR FIELDS ON
SMOOTH SUBMANIFOLDS

If S is a smooth submanifold of M, then a smooth k-form & on M has zero algebraic
restriction to M if and only if the pullback of & to M vanishes. Thus, we obtain the following
result:

Corollary 10. Let S be a smooth submanifold of M. Let 1 : S — M be an embedding of S.
A smooth vector field X on M is Hamiltonian on S if and only if there exists a smooth function
H on M such that

"(X|w)=d(Hot). (10)

Thus, by the above corollary we obtain the following:
o(X(x),v) = —dH(v), for every x € S, and for every v € T,S. (11)

It means that if the vector field X is Hamiltonian on a smooth submanifold S of M, then X is
a section of the bundle L.
By Poincare Lemma and Corollary 10 we have

Proposition 11. Let S be a smooth submanifold of M. Let 1 : S — M be an embedding of S.
A smooth vector field X on M is Hamiltonian on S if and only if d(1*(X |@)) = 0.
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4.1. SYMPLECTIC SUBMANIFOLDS

Let S be the germ of a symplectic submanifold of dimension 2k of the symplectic man-
ifold (R*", @ = Y ,dxi Ady;). Then, by the Darboux-Givental Theorem (see [1]), S is
symplectomorphic to

S():{(x,y) ER2”’Xi:yi:Of0ri:k+l,-~~ ’n}_

If (£,5) = (x1,-- , %, y1,---,y) and 1 : § > (%,7) — (%,0,7,0) € R?", then a smooth vector

field-germ
X = i‘,fi(x,y)i Jrgi(x,y)i
i=1 axi ayl
at 0 on R?" is Hamiltonian on Sy if d(1*(X | @) = 0.

It implies that d(Zle fi(%,0,¥,0)dy; — gi(%,0,¥,0)dx;) = 0. Thus, the vector field-germ

on Sp is Hamiltonian on a symplectic manifold (So,1*® = Y'*_, dx; Ady;). Let us notice that
X|x(ry) = (X |(xy)), where 7 : R?" 5 (x,y) = (%,) € So. Since ot = Ids,, we obtain the
following proposition:

Proposition 12. A smooth vector field-germ X on (R*", @) is Hamiltonian on the symplectic
submanifold-germ Sy, if the vector field-germ (X o1) on Sy is Hamiltonian on the symplec-
tic manifold (Sp,1* ).

4.2. COISOTROPIC SUBMANIFOLDS

Let C be the germ of a coisotropic submanifold of codimension k of the symplectic man-
ifold (R**, ® = Y ,dx; Ndy;). Then, by the Darboux-Givental Theorem (see [1]), C is
symplectomorphic to

Co={(x,y) eR¥|x;=0fori=1,--- ,k}.
If ¥ = (xge1,---,x) and 1 : Cp 3 (%,y) — (0,%,y) € R?", then a smooth vector field-germ

1 d Jd
X = i;fi(x,y)g—xi +gi(x,y)a—yi

at 0 on R?" is Hamiltonian on Cy if d(1*(X | @) = 0. It implies that the 1-form-germ

k

fi(0,%y)dyi— Y. gi(0,%y)dx;
1 i=k+n

agE

U X|o) =

~.
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on Cy is exact. Hence, there exists a smooth function-germ on Cy such that g;(0,%,y) =
—g—z(i,y) for i =k+ l,---,nand f;j(0,%,y) = g—;‘i(i,y) fori=1,---,n. Thus, we obtain the
following proposition:

Proposition 13. A smooth vector field-germ

X = Zn‘,fi(x,y)i +gz-(x,y)i
i—1 8x,- 8 i
n (R o= YL dx; ANdy;) is Hamiltonian on the coisotropic submanifold-germ

COZ{()C,)’)€R2n|)€i:0f0ri:1,"',k},

if there exists a smooth function germ h on Cy such that g;(0,%,y) = —%(}Z,y) fori=k+
l,---,nand f;(0,%,y) = g—;(i,y)fori: l,---,n

4.3. ISOTROPIC SUBMANIFOLDS

Let I be the germ of an isotropic submanifold of dimension k of the symplectic manifold
(]RZ”, ® =Y ,dx;A\dy;). Then, by the Darboux-Givental Theorem (see [1]), / is symplec-
tomorphic to

Io={(x,y) eR*"y=0, x;=0fori=k+1,---,n}.
If ¥ = (x1,---,x;) and 1 : [y > X — (#,0) € R?", then a smooth vector field-germ

X =Y Al g+ )5

i

at 0 on R?" is Hamiltonian on Iy if d(1*(X |@) = 0. It implies that the 1-form-germ

>
g
||
M»

gi(%,0)dx;
1

1

on Iy is exact. Hence, there exists a smooth function-germ on Iy such that g;(%,0) = g;l( X)
fori=1,--- k. Thus, we obtain the following proposition:

Proposition 14. A smooth vector field-germ

i —|—g,(x )’)aa

i
n (R*, o= Y, dx; Ady;) is Hamiltonian on the isotropic submanifold
Ip={(x,y) €R™|y=0, x; =0fori=k+1,--,n},

if there exists a smooth function-germ h on Iy such that g;(%,0) = ( X)fori=1,--- k.
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In particular by Proposition 11 we obtain

Corollary 15. If C is a regular curve (1-dimensional smooth submanifold), then any smooth
vector field-germ on R¥" is Hamiltonian.

Proof. Any smooth 1-form on C is closed. [

5. GERMS OF HAMILTONIAN VECTOR FIELDS ON
SINGULAR CURVES

In this section we describe germs of Hamiltonian vector fields on singular curves at a sin-
gular point. By Corollary 15 any smooth vector field-germ is Hamiltonian on a regular curve.

PLANAR CURVES OF TYPES Ay, Dy, Eg, E7, Es

A planar curve in the symplectic space (R?*, ) is a curve which is embedded in a smooth
2-dimensional submanifold S of (R*", ). Let 1 : S < R?" be an embedding of S.

We assume that the germ of the curve is locally diffeomorphic to N = {x € R?"|G(x1,x;) =
x>3 = 0}, where G has the following properties:

1. G(0,0) =0, dG(0,0) =0,

2. the ideal of smooth function-germs on R? vanishing on {(x{,x2) € R?|G(x1,x2) = 0}
is generated by G.

3. G is quasi-homogeneous polynomial.

Then, we can take locally S = {x € R¥"|x>3 = 0} and 1(x3,---,x2,) = (0,0,x3,--+ ,x2,).
A smooth vector field-germ on (R?", @) is Hamiltonian on N if and only if d(1*(X | @)) =
d(G(x1,x;)a) for some smooth 1-form-germ o on R?.

By Theorem 4.11 in [5] any curve-germ in the symplectic space (R*", ay = Yl odpi N
dg;), n > 2, which is diffeomorphic to the curve-germ at 0 {x € R?"|G(x1,x3) = x>3 = 0} for
smooth function-germs G in Tab. 1 is symplectomorphic to one and only one of the following
curve-germs:

. P2
N'={(p.q) e R*|G(p1,p2) = q1 — A Fi(p1,t)dt = g>2 = p>3 =0} C (R, ), (12)

fori=0,---,u, where smooth function-germs F; are presented in Tab. 1.
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Table 1
Classification of the algebraic restrictions to Ay, Dy, E¢, E7,Eg
G(x1,x%2) Fi(x1,%2), i=0,1,....1
Ak ka —x% F() =1
k>1 F=x,i=1,....k—1
F=0

Dy, 2X%X2 —xéfl =1

k>4 Fi=bx;+xy, i=1,....k—4
F3 = (£1)kx + b5,

F._» :)4_3, F._ :xé_z, F=0

E6:x?—x‘2‘ FOZI,F]:ZtX2+bX1,F2:.X]+bX%7
F3 :x%—l—bx]xz, F4 = :tX])Cz, F5 :xlx%, F6 =0

E7:x?—x1x% F0:1,F1:xz+bx1,FZ::l:xl—i-bx%,
F :x% +bxixy, Fy = £x1x0 —i—bxg,
F5 :x%, F6 :xé, F7 =0

Eg:x?—xg FoZ:tl,F]:X2+bX1,F2 :x1+b1x%+b2x§
= ix% +bxixp, Fy = £x1x2 —i—bx%,
F5 :x%—l—bxlx%, F6 :xlx%, F7 = :txlx%, Fg =0

Let 1 : R? — R?" be the following map-germ: 1(p1,p2) = (p1, ) Fi(p1,t)dt, p2,0).
A smooth vector field-germ

X=Y £ 9 J
i_Zlfl(pUQU ,Pna%)api—f—gz(l?l,ch, 7Pn7‘]n)8q

1

n (R?", ay = Y ,dpiAdg;) is Hamiltonian on N " if a smooth 2-form-germ at 0 on R?

o =r(p1,p2)dpi Ndpr=d ((fl o l)d(/opzﬂ(pl,t)dt) —(g101)dp1 — (820 l)dpz>

has zero algebraic restriction to {(p1, p2) € R?|G(p1,p2) =0}.

By the direct calculation we obtain that
d d
r(prop2) = (58 = 92 ) (b1, [ Fipr0)d1, pa,0) (13)
d d
FE(p1,p2) (S5 + 58 ) (P10 Fipr,1)dt, p2,0)

0 0
— I - (py f>df( gy gf)(pl, o> Fi(p1,1)dt, p2,0).

If G is quasi-homogeneous, then a smooth 2-form r(py, p2)dp; Adp; has zero algebraic
restriction to g(Pl,PZ) € R?|G(p1,p2) = 0} if and only if r belongs to the ideal < VG >

generated by $% (p1,pa), 9 (p1,p2) (see [5).
Thus, we obtain the following proposition:
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Proposition 16. A smooth vector field-germ

X= Lo

d
+gj(p,q)aq

dp; J

is Hamiltonian on
. P2
N'={(p,q) € R*|G(p1,p2) = qi —/0 Fi(p1,t)dt = g>» = p>3 =0} C (R, ay),

where G and F; are presented in Tab. 1, if and only if the function-germ r given by (13)
belongs to the ideal < VG >.

5.1. PLANAR CURVES OF TYPES A%

By Proposition 16 we obtain the following:
Proposition 17. Let us fixk € Nand i =0,1,--- k. A smooth vector field-germ

& 8 0
; +gj(p,q)aq,

J
n (R*", @ = Y'i_1dpjAdq;) is Hamiltonian on

AL ={(p,q) eR*"|P! —pl=gi—pipr=gs2=p>3=0} (i=0,1,--- ,k—1)

or on
At ={(p,q) eR¥|P\"" = p3 = g>1 = p>3 =0}
if and only if the following conditions are satisfied:

9i+1 9Jt1
S (0) =R O) for =0, 1,
P] P2 P
a_iﬂgl 0 aj+1g2 0 j! ajfiﬂf ajfiﬂgz 0 . 1
apld opr O TG\ g O g, ) Jr I Tk
Pi9p2 41 J Py 991
Proof. For a planar curve of typeA’ (k>1,i=0,--- k), we have that G(py, p2) = p’f“— P3

and F;(p1,p2) = p fori=0,--- ,k—1 and Fk(pl pg) 0 (see Tab. 1).

For Ag singularity we have

dg1 dgr | Idfi 381)
9 = - + + 9 ) 70 .
(p1,p2) <9 . op op1 | Oq (p1,p2,p2,0)
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For A;{ singularity i = 1,--- ,k — 1 the function-germ r has the following form:

d d
r(p1,p2) = (a—f;; - ﬁ,ﬁ) (p1, P P2, P2,0) (14)
+pll <81J7C11 + ag:) (P17p111727]9270)

o 9 d
s (328 i)

For AX singularity we get Fi(p1, p2) = 0 and
dgi 8gz)
rpi,p2) = 170 270
rrp) = (55 52 1.0,
Since < VG >=< p]f,pz >, it is easy to see that O,/ < VG >%R{1,p1, 7pr 1}. The

function-germ r belongs to < VG > if and only if %(0,0) =0 for j=0,1,--- ,k—1. By
Pi

a direct calculation we get that for j =0,---,i—1
i B 8f+1g1 aj+1g2
——5(0,0) = =—==—=(0) = —7(0),
Ip; dp1dp2 ap

and for j=1i,--- ,k—1

Bl 9J+1 9i+1 -, 9i—i+l 9i—itl
220,00 = =2 0) - S5 0)+ - S0+ 20,
op] dplap, ap] =D\ apl” apl'9q
]
5.2. PLANAR CURVES OF TYPES D%
For a planar curve of type D (k>4,i= k) we have that G(p1, p2) = pip2 —p’é L
Then it is easy to see that < VG >=< plpz,p1 - (k— l)p2 > and
02/ < VG >= R{LPZ?' o apé_zapl} .
For DY singularity we get Fy(p1,p2) = 1 and
dg1 dg  dfi  Idg
= — 0).
(phPZ) (apz apl + apl + aq1 (p17p27p27 )
For D! singularity i = 1,--- ,k—4 we get F;(p1, p2) = bp: —l—p; and
d d
r(p1,p2) = (a—f;; - af,f) (p1.bp1pa+ 227 . p2,0) (15)

i+

i d
+(bP1 +P12) <a£11 + aq1> (Pl;bP1P2+%,P2;O)

P p) i+1
~bpy (58 + 92 ) (pr,bp1p2 + F27, p2,0).
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For D’,Z_3 singularity we have F,_3(p1, p2) = (1) p; +bp§_3 and
— (98 _ 9% +1 b py.0 16
r(p1,p2) I " apr (p1, (1), p1pr+ b5, pr,0) (16)
dgi

3 (9 -
+(<:|:l)kp1 +bp§ 3) (aljjll + > (Pla(il)kPIPZ‘f’b]/:szaPz,O)

fi 4 9 A2
—(£1)p2 (3—,]:'2 + T‘fﬁ) (P, (£1)*p1p2+bh, p2,0).
For D¥~? singulari — pk=3
i gularity we get Fy_»(p1,p2) = p5 ~ and

_ (dg1 9 P2 fi | dgi P52
r(PlaPZ)— (a_pz_a_p]) (Plamap%o)_"l’z a +aq1 (p 7k 27172;0)

For Di’l singularity we get F_»(p1,p2) = p5 % and

_ [(dg1 dg P! dfi  9dgi P
r(p17p2)_ (a_pz_a_pl) (plamup270)+p2 a +aq1 (p17k_—17p270>'

For DX singularity we get Fy(p1, p2) = 0 and

0 d
r(p17p2): (ai; afj)(plaop%o)

The function-germ r belongs to < VG >=< pps,pt — (k—1) pg_z > if and only if

o ~2(0,0) = or ~==(0,0)=0 for j=0,1,-- ,k—3 (17)
apz apl .] P Y
and 2 k=2
9°r 2 9 r
5(0,0) = ——+ 5(0,0). (18)

For general k conditions (17)-(18) are rather complicated in terms of partial derivatives of
coefficient functions fi, g1, g2 at 0. Therefore, we will present them only for DZ singularities
fori=0,1,---,4.

Let X =Y, fj (p, q) I +g;(p, q) - be the smooth vector field-germ on (R**, @y =
p i—1dpjN\dq ;) By a direct calculation Proposmon 16 implies the following:

The vector field-germ X is Hamiltonian on

DY ={(p,q) € R*|pipr—p3=q1— p2=q>2 = p>3 =0}

if and only if the following conditions are satisfied:
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aj+1 aj+l aj+1 aj+1
jflz - 81 (o : 81 0)+ j—{ll
apl a171(9172 aplaql 8]?1

(0) for j=0,1,

azgl
8p%

d%g1 ( d%g1 )+ 9% fi
dq19p2 g3 dp1dp>
_ a2g2 azfl 0) — azgz
dp19p2 dp19qi dp19qi

3( g1 0)+ g (O)+33f1(0) 3382(0)>

(0)+2

(0) =0,

opiopy " Optoqr  dpl T ap
g g 93 93¢ 9* fi g,
=9 035002935205, 0T 00 O 5,52 Y " 5012
125 qi1op; qiop2 91 p1op; p1op;
93 93 93 93
Jr2—]010_2 82 f120_ 822 '
dp19q19p2 dp19q19pa dp19q; ap19q;
The vector field-germ X is Hamiltonian on
1 2n) 2 3 P2
Dy={(p,q) €ER™|pip2—p2 = @1 = p1p2 = b7 =22 = p>3 =0}
if and only if the following conditions are satisfied:
d d
281 0y = 282 (),
dp2 api
dg dfi 9°gi 9°¢
0)+ 0)+ 0)— 0) =0,
aql( ) 3p1( ) aplapz( ) ap%( )

0 0+ 2510~ 220)+ (320 + 52 0)) - 5220 =0

“apy T aprt T aq dqr ' dpi ) dpidps
9%g d*fi ) ( dg A >
6 0)+—=5(0) | +3 0)——==(0
<9p1<9q1( ) 8p%( ) 319%9192( ) 8p?( )
9% g2 P fi 9%g>

~ o 0= dp19p3 0)=2 ( ap3 O+ dq19p2 (O)>

82g1 azfl a82 )
+b (3 0)+2 0)— dg(0) ).
( 31718192( ) 8p1<9pz( ) Ipi 0(0)
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The vector field-germ X is Hamiltonian on
2 2n) 2 3 P
Dy={(p,q) eR™|pip2—pr=q1 - 5 =42 =p3= 0}
if and only if the following conditions are satisfied:

ajﬂgl _aj+1g2
i _ 41
aplap, apl"

(0) for j =0,1,

d%g

2
i dg1 0 +9f1 0 9°g>
Ip;

aqi ap1 . Op1dpa
3g g )
3 0) — 0)) =
(5280~ 550

3 2 2 2 3 2
8g310 9°g1 0+2(981 0+9f1 O)— 8g220_8g2
aps dq19p2 dq19p2 Ip1dpa dp1dp; dp1dqi

(0)+ =0,

(0).

The vector field-germ X is Hamiltonian on

3

p
Di={(p.9) ER|pip2— P} =1 — F = q=2=p>3 =0}
if and only if the following conditions are satisfied:
0/t 0/ t!
j—gl = ,flz (0) for j=0,1,
dp19p2 Ip;
92 ok
ap3 dp19p>

dg 9%g, ) g (3g1 dfi ) g
3 0)— 0))=—=0)+2| =—(0)+=-(0) | —
(919%3192( ) 819?( ) 31)%( ) 9q1( ) 8p1( ) 9p19p3

The vector field-germ X is Hamiltonian on
D ={(p.q) €R*|pips—p3 = g1 = p>3 =0}

if and only if the following conditions are satisfied:

aj+1gl aj+1g2 .
I O)ZT(O) for]:(),l,
dpi1dp> dpi
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azg 82g
0= 5,5,
apz p19p2
g g ) g g
3 0) — 0) ) = Z2L0)— 0).
(ap%8pz ap; ) p; aplap%( )

In the same way by Proposition 16 one can obtain the necessary and sufficient conditions
for the vector field-germ X to be Hamiltonian on planar curves with E,’( singularities for
k=6,7,8 and i = 0,1,k (see Tab. 1). Please notice that for E; singularity there are k
independent conditions, therefore we do not present them.

6. GERMS OF HAMILTONIAN VECTOR FIELDS ON
REGULAR UNION SINGULARITIES.

A regular union singularity N at 0 in R*" is the union

N=NU---UNg, s >2 (19)
of germs at 0 of smooth submanifolds Nj,--- ,N; of R*" (in what follows - strata) such that
the dimension of the space

W = ToN1 + - - - + ToN; (20)

is equal to the sum of the dimensions of the strata, i.e. the sum (20) is direct. If the number
of strata and their dimensions are fixed, then all such N are diffeomorphic. By Theorem 7.1
in [5] the germ of a closed 2-form ¢ has zero algebraic restriction to N if and only if its
pullback to each of the strata N; (i = 1,--- ,s) vanishes and the restriction of the germ o to
the space W vanishes. It implies the following:

Proposition 18. A smooth vector field-germ X in the symplectic space (Rzn, w) is Hamilto-
nian on a regular union singularity N if and only if the pullback of the germ d(X |®) to each
of the strata N; (i=1,--- ,s) vanishes and the restriction of the germ d(X | ®) to the space W
vanishes.

6.1. REGULAR UNION OF THREE 1-DIMENSIONAL
SUBMANIFOLDS

Let us consider a regular union singularity of three germs at O of 1-dimensional submani-
folds N = Ny UN, UNj of the symplectic space (R?*,» = Y ,dpiNdg;). These symplectic
singularities are classified in [5].
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Proposition 19 (Theorem 7.4 in [5]). Any regular union singularity N with three
1-dimensional strata in the symplectic space (Rzn, ), n > 3 (resp. n = 2) is symplectomor-
phic to one and only one of the varieties N, N', N>, N? (resp. N°,N',N?) given in Tab. 2. It
holds if and only if the pair (@,N) satisfies the condition in the last column of the table.

Table 2
Classification of symplectic regular union singularities with three
1-dimensional strata. W denotes the 3-space spanned by the tangent
lines at O to the strata

Symplectic normal forms Geometric condition
N | g2 =p1+p2, oly # 0,

Pig1 =q1p2 = p2q2 =0, kero|w ¢ ToN; + ToN;,

p>3=¢>3=0 forany i,j € {1,2,3};
N'| ¢ =pi, olw #0,

P1q1 = q1p2 = p2p1 =0, kero|w C ToN; + ToN;,

P>3=(g>3 = 0 kera)\w 75 T()N,',T()Nj

for some i, j € {1,2,3};

N | pigi =qip2=p2p1 =0, p>3= | @|w #0,
g>2 = 0 kera)\w = ToN;
for some i € {1,2,3}

N | pip2=p2p3=p3p1 =0, p>a= | o|ly =0.
g>1=0

Since the strata are 1-dimensional, by Proposition 18, a smooth vector-field germ X is
Hamiltonian on N if and only if d(X | w)|w = 0. Hence for singularities N* fori =0,1,---,3
we obtain the following conditions:

LetX =Y", fi(p, q)aip +gi(p, q)aiq be a smooth vector field-germ on R?",

The vector field-germ X is Hamiltonian on NV if and only if

d fi 0 +3f1 (0 3f2(0 +ag2(0):07

I " dpr 91t dq
L0+ 20+ S0+ $20) -0,
g—i 0 _% 0 —g—ﬁ(owg—i(owg—ﬁ _%(O) 0.
The vector field-germ X is Hamiltonian on N if and only if
9010+ 282(0) = 1(0) 4 22(0) 4 %110) 0y =,
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g1 dg2 df2 g2
981 0y — 2820y — 22 (0) — 782 ) — .
Ip2 Iq> ) Ip2 ) 3171( )

The vector field-germ X is Hamiltonian on N? if and only if

91 0y 982 0y — 281 ) 1 91 ) — 981y _ 982

= -—(0) = =—(0) = 5— 0)=0.
9p: " 90 790, Ot 50,0 7 3,07 5,

The vector field-germ X is Hamiltonian on N? if and only if
d d d d d d
982 ) 983 ) _ 981 982 _ 981 983 ) g
dp3 dp2 dp2 Ipi dp3 dpi

6.2. REGULAR UNION OF TWO 2-DIMENSIONAL ISOTROPIC
SUBMANIFOLDS

Now we consider the regular union singularity of two 2-dimensional isotropic submanifold-
germs of the symplectic space. The following classification proposition was proved in [5]:

Proposition 20. Any regular union singularity N of two 2-dimensional isotropic submanifold-
germs in a symplectic space (Rz”, o =YY" ,dp;iNdg;) is symplectomorphic to one and only
one of the varieties N°,N', N* in Tab. 3. The orbit of N has codimension i in the class of
all regular union singularities with two 2-dimensional isotropic strata. The normal form N'
holds if and only if the pair (®,N) satisfies the condition given in the last column of Tab. 3.

Table 3
Classification of symplectic regular union singularities of two 2-dimensional
isotropic submanifold-germs. W denotes the 4-space spanned by the tangent
planes at O to the strata

Symplectic normal forms Geometric condition | codim
= =0}U
N {p?;m 61:2;>3 :}0} rank 0|y =4 0
Ln> {p=3=g>1=0}U _
=" {p>1=92=¢q>4 =0} rank @y =2 :
= =0}U
N4 n>4 {p23 q>1 0 =0 4
(P2 (= po = pos =21 =0} v

By Proposition 18 a smooth vector field-germ X is Hamiltonian on N if and only if X is
Hamiltonian on both of isotropic submanifold-germs Ni, N, and d(X | @)|w = 0.

LetX =YY", fi(p,q) ai +gi(p, q)aiq be a smooth vector field-germ on R?*. By Proposi-

tions 18 and 14 we obtain the following conditions:
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The vector field-germ X is Hamiltonian on N° = N? UNS if and only if there exist a smooth
function-germs 4 on N = {p>3 = ¢>1 = 0} and k on NJ = {g>3 = p>| = 0} such that

gi<P17p270) = g_;li(pMPZ) and fi(OﬂhQ%O) = 3_5(5117512) fori= 172, and

d d d d d d d d
ﬁo”.ﬁ(o :i(o) ﬁ(o :ﬁo i(o):ﬁo _|_£(()):()_
g dp2 Ip2 dq Iq dpi dq> dpi

The vector field-germ X is Hamiltonianon N!' =N 11 UN2l if and only if there exist a smooth
function-germs h on N} = {p>3 =g¢>1 =0} and k on N3 = {p>| = q2 = g>4 = 0} such that

gi(p1,p2,0) = §5-(p1,p2) for i=1,2and ;(0,41,0,43,0) = $X (q1,43) for j = 1,3, and

982 gy 4 93 oy _ 9f1 gy, 982 gy _ 981y, 91 gy _ 981y 9
aq3<0>+ ap2(0>_ap2(0)+ aq1(>_aq1(0)+ ap1(0>_aq3(0>+ o

(0)=0.
The vector field-germ X is Hamiltonian on N* = Nf UNQ1 if and only if there exist a smooth

function-germs 1 on N} = {p>3 =g>1 =0} and kon N3 = {p; = pr = p>5 = g>1 = 0} such

that g(p1,p2,0) = S%(p1, p2) for i = 1,2 and g;(0, p3, pa,0) = f—,f}.(m,m) for j=3,4, and

g 0 983 0) = g © +3g4 (0) = g1 0 283 0) — 981 dg4

222(0) — =22(0) = === 29%(0) = =21(0) — 222(0) = =21(0) — =22(0) = 0.
ap3 op> Ips4 Ip> ap3 Ip1 ops4 ) 8191()

6.3. REGULAR UNION OF TWO 2-DIMENSIONAL SYMPLECTIC
SUBMANIFOLDS

In this subsection we consider Hamiltonian vector field-germs on regular union singular-
ities with two 2-dimensional symplectic strata in a symplectic space (R?*,®). Recall that
two germs of submanifolds Ny, N, of a symplectic space (R?", @) are called @-orthogonal
if o(v,u) = 0 for any vectors v € TyN;,u € ToN,. The symplectic classification of such N
involves the following invariant:

Definition 21 (see Definition 7.6 in [5]). The index of non-orthogonality between 2-dimen-
sional symplectic submanifolds N1 and N> of a symplectic space (R*", @) is the number

((D/\ CO) (V17V27u]7u2)

o= Nl,Nz =1-
( ) 2'60(1/1,\/2)-(0(141,1/{2)

where vy, vy is a basis of ToNy and uy,u» is a basis of TyN.

It is easy to see that the index of non-orthogonality a(Ni,N;) is well-defined, i.e. it does
not depend on the choice of the bases of TyN; and TpN,. It is equal to O if and only if there
exists a non-zero vector u € TyN; such that @(v,u) = 0 for any v € TyN,. It is equal to 1 if
and only if the 4-form @ A @ has zero restriction to the space W = TyN; + Ty N;.
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Theorem 22 (Theorem 7.9 in [5]). Let w =Y ,dp;Ndq;. Let N = N UN, be the regular
union singularity with two 2-dimensional symplectic strata in the symplectic space (Rzn, ).

If N1 and N, are not m-orthogonal, then N is symplectomorphic to the variety
N = {q1 = p2,p1 = p>3 = q>3 =0} U{p2 = 0q1,p>3 = g2 = 0},
where Q. is the index of non-orthogonality between N and N;.

If N1 and N, are w-orthogonal, then N has is symplectomorphic to

N+t = {p>2=¢>0=0}U{p1 = q1 = p>3 = g3 = 0}.

If n > 3, then any of the normal forms is realizable and if n =2, then any of the normal
forms is realizable except the normal form N'.

Theorem 22 was generalized in [6] to regular union singularities of two germs of symplec-
tic or quasi-symplectic k-dimensional submanifolds of the symplectic space. For simplicity
we present the case k = 2 only.

By Proposition 18 a smooth vector field-germ X is Hamiltonian on N = Ny UN; if and only
if X is Hamiltonian on both of symplectic submanifold-germs Ny, N, and d(X |®)|w = 0.

LetX =YY", fi(p.q) a%- +gi(p, ‘Z)a%- be a smooth vector field-germ on R>*. By Proposi-
tions 18 and direct calculations we obtain the following proposition:
Proposition 23. The vector field-germ X is Hamiltonian on
N%={q1=p2,p1 = p>3 =q>3 =0} U{p2 = 0q1,p>3 = g2 = 0}

if and only if

0 0 0 0
( f1+g27L f2+f2

_aqz dgr dp> aql) ‘{‘11:1727171:1723:%3:0} =0,

dg1 , dg1 | Ifi dg2
o + + -
( dpo  dq1  dpr Ip
982 ), Oz ) _ N1, 982 981 )\ Ofr ) 981 Ofr

) ’{P2:Gq1,pz3:qZ2:0} =0,

282 0y 4+ 212 (0) = - - 2
3qz() Ip2 op2 dqi dqi api Iq api
dfi dfa dgi g2
21 0) - 22(0) = 25L(0) — 252 (0) = 0.

2¢2 dq1 Ip2 api )

Let us denote the stata of N by
1 _ _ _ 1 o _ _
Nt ={p>2=g>2=0}, Ny ={p1=q1 =p>3=¢>3=0}.

In the same way we get the following result:
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Proposition 24. The vector field-germ X is Hamiltonian on N*- = NlL UN2L if and only if

dgi  dfi B
(Gert ) =0 D
dg2  dfr B
<(9_q2+(9_pz) \Nzi =0, (22)
g2 df2 afi g dg1 dfi Jgi df2
982 0) 4+ 212 (0) = 21 (0) + 282 (0) = 281 (0) + 2L (0) = 28110y + 222 (0) = 0,
36]2( ) aPz( 91?2( 36]1( a61!1< 9171( ) 36]2( 91?1( )
dfi 0 df 0) — dgi 0 382(0)20‘

dq2 " dqi" ' dpr Ipi

The conditions (21)-(22) mean that the vector field-germ f;|, . ai + 8ilyL a%_ on the sym-

Pi

plectic manifold-germ (N;", ®|;, 1) is Hamiltonian (in the classical sense) for i = 1,2 (see
Proposition 12).

(8]
(9]
(10]
(11]
[12]
(13]

(14]
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