Wojciech Domitrz, Stanisław Janeczko

Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

HAMILTONIAN VECTOR FIELDS ON SINGULAR VARIETIES

Manuscript received: 15 August 2020
Manuscript accepted: 31 August 2020

Abstract

We define Hamiltonian vector fields on singular subvarieties of the symplectic space. We describe Hamiltonian vector fields on smooth submanifolds, singular planar curves with ADE singularities and regular union singularities.

Keywords: symplectic geometry, Hamiltonian vector fields, singularities
Mathematics Subject Classification (2020): 58K50 (primary), 37J39

1. INTRODUCTION

Let M be a smooth $2 n$-dimensional manifold, endowed with a nondegenerate, closed 2 -form ω. The 2 -form ω is called symplectic and the pair (M, ω) is a symplectic manifold. We introduce the canonical symplectic structure $\dot{\omega}$ on $T M$ using the vector bundle morphism $\beta: T M \ni u \mapsto \omega(u, \cdot) \in T^{*} M$, namely the pullback of the Liouville symplectic form $d \theta$ defined on the cotangent bundle $T^{*} M, \dot{\omega}=\beta^{*} d \theta$. A smooth vector field $X: M \rightarrow T M$ is said to be Hamiltonian if the form $\omega(X, \cdot)$ is exact. A function $H: M \rightarrow \mathbb{R}$ is called Hamiltonian for X if $\omega(X, \cdot)=-d H(\cdot)$. If X is Hamiltonian, then its image $X(M) \subset T M$ is a Lagrangian submanifold of $(T M, \dot{\omega})$ generated by H. In local Darboux coordinates, $M \cong \mathbb{R}^{2 n}$, $\omega=\sum_{i=1}^{n} d y_{i} \wedge d x_{i}$, and $\dot{\omega}=\beta^{*} d \theta=\sum_{i=1}^{n}\left(d \dot{y}_{i} \wedge d x_{i}-d \dot{x}_{i} \wedge d y_{i}\right)$, where $(q, \dot{q})=((x, y),(\dot{x}, \dot{y}))$ are coordinates on $T \mathbb{R}^{2 n} \equiv \mathbb{R}^{2 n} \times \mathbb{R}^{2 n}$.

To generalize this notion, we introduce a concept of a Hamiltonian system as a general Lagrangian submanifold N of the symplectic tangent bundle ($T M, \dot{\omega}$). If $\left.\tau\right|_{N}: N \rightarrow M$ is singular, where τ is tangent bundle projection, we also call N an implicit Hamiltonian system (cf. [12], [7]). Important property of such systems around singularities is their solvability, i.e. existence of smooth local curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ such that its tangent lifting $\dot{\gamma}(t)$ belongs to N around each point of N. An immediate necessary condition for solvability
is tangential solvability condition, which is satisfied if $\dot{q} \in d\left(\left.\tau\right|_{N}\right)_{v}\left(T_{v} N\right)$ for each point $v=(q, \dot{q}) \in N$. It is proved (cf. [7]) that, for certain naturally generic implicit Hamiltonian systems, they are solvable if they fulfill this tangential solvability condition. Another generalization following P.A.M. Dirac (cf. [3]) is provided by constrained Lagrangian submanifolds (cf. [11]) as Hamiltonian systems. The generalized Hamiltonian function for such system is a generating family (Morse family) for the corresponding Lagrangian submanifold $L_{h} ; F(x, y, \lambda)=\sum_{i=1}^{k} a_{i}(x, y) \lambda_{i}+h(x, y)$ over the constraint K defined by smooth functions $a_{i}(x, y)=0$. The condition of solvability $\left\{\frac{\partial F}{\partial \lambda_{i}}, F\right\}=0$ for $(x, y, \lambda) \in S \times \mathbb{R}^{2 n}$ defines the section of L_{h} which is tangent to K. The general sections of L_{h} give the vector fields which are Hamiltonian on the constrained submanifold.

In this work we concentrate on the vector fields of symplectic space (M, ω), which are Hamiltonian on a subvariety of M. As we do not exclude singularities, our approach is local and we consider mainly germs of subvarieties and germs of vector fields. We find the spaces of vector fields, which are Hamiltonian on symplectic, isotropic and coisotropic submanifolds of (M, ω) and we provide the classification of Hamiltonian vector fields on singular varieties: planar curves of type $A_{k}, D_{k}, E_{6}, E_{7}, E_{8}$, regular union of three 1-dimensional submanifolds, regular union of two 2 -dimensional isotropic submanifolds, and regular union of two 2-dimensional symplectic submanifolds. We use the Mathematica package Exterior Differential Calculus for calculations.

2. HAMILTONIAN SYSTEMS ON SUBMANIFOLDS

Let K be a submanifold of $\mathbb{R}^{2 n}$ and $h: K \rightarrow \mathbb{R}$ be a smooth function on K. The notion of generalized Hamiltonian system (generalized Hamiltonian dynamics) was introduced by P.A.M. Dirac in [3]. A generalized Hamiltonian system is the following sub-bundle L_{h} of $T \mathbb{R}^{2 n}$ over K (cf. [13]):

$$
\begin{equation*}
L_{h}=\left\{v \in T \mathbb{R}^{2 n}: \omega(v, u)=-d h(u) \quad \forall_{u \in T K}\right\} . \tag{1}
\end{equation*}
$$

It is easy to see that L_{h} is a Lagrangian submanifold of $\left(T \mathbb{R}^{2 n}, \dot{\omega}\right)$.
In local coordinates, the generalized Hamiltonian system (1) can be written, using generating family $F: \mathbb{R}^{2 n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$, in the following way:

$$
\begin{equation*}
F(x, y, \lambda)=\sum_{\ell=1}^{k} a_{\ell}(x, y) \lambda_{\ell}+H(x, y) \tag{2}
\end{equation*}
$$

where K is defined as a zero-level set of the mapping $a:(x, y) \mapsto\left(a_{1}(x, y), \ldots, a_{k}(x, y)\right)$, $H(x, y)$ is an arbitrary smooth extension of the function $h: K \rightarrow \mathbb{R}$ and a is a maximal rank map-germ.

The generalized Hamiltonian system L is given by an immersion $\phi: C_{F} \rightarrow L \subset\left(T \mathbb{R}^{2 n}, \dot{\omega}\right)$ defined by

$$
\phi(x, y, \lambda)=\left(x, y, \frac{\partial F}{\partial y}(x, y, \lambda),-\frac{\partial F}{\partial x}(x, y, \lambda)\right), \quad(x, y, \lambda) \in C_{F} .
$$

Since $\frac{\partial F}{\partial \lambda_{\ell}}(x, y, \lambda)=a_{\ell}(x, y)$, we have $C_{F}=K \times \mathbb{R}^{k}$. Then L can be described as

$$
L=\phi\left(C_{F}\right)=\left\{\left(x, y, \frac{\partial F}{\partial y}(x, y, \lambda),-\frac{\partial F}{\partial x}(x, y, \lambda)\right) \in T \mathbb{R}^{2 n}:(x, y, \lambda) \in K \times \mathbb{R}^{k}\right\}
$$

L is a skew-conormal bundle to K and its smooth sections are called Hamiltonian systems on K with Hamiltonian H. This may be extended to Hamiltonian system on M taking Hamiltonian function

$$
F(x, y)=\sum_{l=1}^{k} \lambda_{l}(x, y) a_{l}(x, y)+H(x, y)
$$

for some smooth functions $\lambda_{l}(x, y)$.
Vector fields, which are Hamiltonian on K are given in the form:

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{k} \lambda_{j}(x, y)\left(\frac{\partial a_{j}}{\partial y_{i}}(x, y) \frac{\partial}{\partial x_{i}}-\frac{\partial a_{j}}{\partial x_{i}}(x, y) \frac{\partial}{\partial y_{i}}\right)+\sum_{i=1}^{n}\left(\frac{\partial H}{\partial y_{i}}(x, y) \frac{\partial}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}}(x, y) \frac{\partial}{\partial y_{i}}\right) \tag{3}
\end{equation*}
$$

If we consider the functions $\lambda_{j}(x, y)$ which are smooth solutions of the system of linear equations (cf. [8]),

$$
\begin{equation*}
\sum_{j=1}^{k}\left\{a_{i}, a_{j}\right\}(x, y) \lambda_{j}=\left\{H, a_{i}\right\}(x, y), \quad i=1, \ldots, k \tag{4}
\end{equation*}
$$

then the vector fields (3) are the logarithmic Hamiltonian vector fields over K.

3. HAMILTONIAN VECTOR FIELDS ON SINGULAR VARIETIES

Let (M, ω) be a symplectic manifold. Let N be a subset of M.
Definition 1. A smooth vector field X on M is called Hamiltonian on N if there exists a smooth function H on M such that

$$
\begin{equation*}
(X\rfloor \omega)\left.\right|_{x}=-\left.d H\right|_{x}, \text { for every } x \in N \tag{5}
\end{equation*}
$$

Example 2. Let $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ be the standard symplectic space. Let $N \subset\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ be the germ of a hypersurface with isolated singularity at 0 . Assume that the ideal of smooth functiongerms vanishing on N is generated by a smooth function-germ g on $\mathbb{R}^{2 n}$. Let H be a smooth function-germ on $\mathbb{R}^{2 n}$ and let X_{H} be a Hamiltonian vector field-germ on $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with a Hamiltonian H i.e. $\left.X_{H}\right\rfloor \omega=-d H$. Let Y be a smooth vector field-germ on $\mathbb{R}^{2 n}$. Then the vector field-germ $g Y+X_{H}$ is Hamiltonian on N.

A smooth k-form β on M vanishes on N if $\left.\beta\right|_{x}=0$ for every $x \in N$.
Definition 3. A smooth k-form α on M has zero algebraic restriction to N if there exist a smooth k-form β on M vanishing on N and a smooth $(k-1)$-form γ on M vanishing on N such that

$$
\begin{equation*}
\alpha=\beta+d \gamma \tag{6}
\end{equation*}
$$

Let $\mathcal{A}_{0}^{k}(N, M)$ denote the space of smooth k-forms with zero algebraic restriction to N. Since $d\left(\mathcal{A}_{0}^{k}(N, M)\right) \subset \mathcal{A}_{0}^{k+1}(N, M)$, the complex $\left(\mathcal{A}_{0}^{*}(N, M), d\right)$ is a subcomplex of the de Rham complex on M. We denote by $H^{*}(N, M)$ the cohomology groups of the complex $\left(\mathcal{A}_{0}^{*}(N, M), d\right)$.
Proposition 4. A smooth vector field X on M is Hamiltonian on N if and only if there exists a smooth function H on M such that $X\rfloor \omega+d H$ has zero algebraic restriction to N.

Proof. Definition 1 is equivalent to the following condition:

$$
\begin{equation*}
X\rfloor \omega+d H=\sum_{i=1}^{k} f_{i} \alpha_{i} \tag{7}
\end{equation*}
$$

where $\alpha_{1}, \cdots, \alpha_{k}$ are smooth 1 -forms on $M, H, f_{1}, \cdots, f_{k}$ are smooth functions on M such that $\left.f_{1}\right|_{N}=\cdots=\left.f_{k}\right|_{N}=0$. But this implies that $\left.X\right\rfloor \omega+d H$ has zero algebraic restriction to N.

On the other hand, if there exists a smooth function H on M such that $X\rfloor \omega+d H$ has zero algebraic restriction to N, then

$$
\begin{equation*}
X\rfloor \omega+d H=\sum_{i=1}^{k} f_{i} \alpha_{i}+d g \tag{8}
\end{equation*}
$$

where $\alpha_{1}, \cdots, \alpha_{k}$ are smooth 1 -forms on $M, H, f_{1}, \cdots, f_{k}, g$ are smooth functions on M such that $\left.f_{1}\right|_{N}=\cdots=\left.f_{k}\right|_{N}=\left.g\right|_{N}=0$. But this can be written in the following way:

$$
\begin{equation*}
X\rfloor \omega+d(H-g)=\sum_{i=1}^{k} f_{i} \alpha_{i}, \tag{9}
\end{equation*}
$$

which implies that X is Hamiltonian on N.
The above definition and proposition are the motivation for the following definition of the symplectic vector field on N :

Definition 5. A smooth vector field X on M is called symplectic on N if $\mathcal{L}_{X} \omega$ has zero algebraic restriction to N.

It is obvious that a vector field, which is Hamiltonian on N, is symplectic on N. The inverse implication is not always true. The necessary and sufficient conditions are given in the following proposition:

Proposition 6. The vector field-germ X is Hamiltonian on N if and only if X is symplectic on N and $\mathcal{L}_{X} \omega$ define the zero cohomology class in $H^{2}(N, M)$.
Corollary 7. If $H^{2}(N, M)=\{0\}$, then any symplectic vector field-germ on N is Hamiltonian on N.

Definition 8. The germ at 0 of a set $N \subset \mathbb{R}^{m}$ is called quasi-homogeneous if there exist a local coordinate system x_{1}, \ldots, x_{m} and positive numbers $\lambda_{1}, \ldots, \lambda_{m}$ such that the following holds: if a point with coordinates $x_{i}=a_{i}$ belongs to N, then for any $t \in[0,1]$ the point with coordinates $x_{i}=t^{\lambda_{i}} a_{i}$ also belongs to N.

It was proved that if N is quasi-homogeneous, then $H^{k}(N, M)=\{0\}$ for $k>0$. (e.g. see [4]). It implies the following proposition:

Proposition 9. If N is quasi-homogeneous, then any symplectic vector field-germ on N is Hamiltonian on N.

4. GERMS OF HAMILTONIAN VECTOR FIELDS ON SMOOTH SUBMANIFOLDS

If S is a smooth submanifold of M, then a smooth k-form α on M has zero algebraic restriction to M if and only if the pullback of α to M vanishes. Thus, we obtain the following result:

Corollary 10. Let S be a smooth submanifold of M. Let $\imath: S \hookrightarrow M$ be an embedding of S. A smooth vector field X on M is Hamiltonian on S if and only if there exists a smooth function H on M such that

$$
\begin{equation*}
\left.\imath^{*}(X\rfloor \omega\right)=d(H \circ \imath) . \tag{10}
\end{equation*}
$$

Thus, by the above corollary we obtain the following:

$$
\begin{equation*}
\omega(X(x), v)=-d H(v), \text { for every } x \in S, \text { and for every } v \in T_{x} S . \tag{11}
\end{equation*}
$$

It means that if the vector field X is Hamiltonian on a smooth submanifold S of M, then X is a section of the bundle L.

By Poincare Lemma and Corollary 10 we have
Proposition 11. Let S be a smooth submanifold of M. Let $\imath: S \hookrightarrow M$ be an embedding of S. A smooth vector field X on M is Hamiltonian on S if and only if $\left.d\left(\imath^{*}(X\rfloor \omega\right)\right)=0$.

4.1. SYMPLECTIC SUBMANIFOLDS

Let S be the germ of a symplectic submanifold of dimension $2 k$ of the symplectic manifold ($\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$). Then, by the Darboux-Givental Theorem (see [1]), S is symplectomorphic to

$$
S_{0}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid x_{i}=y_{i}=0 \text { for } i=k+1, \cdots, n\right\} .
$$

If $(\tilde{x}, \tilde{y})=\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}\right)$ and $\imath: S \ni(\tilde{x}, \tilde{y}) \mapsto(\tilde{x}, 0, \tilde{y}, 0) \in \mathbb{R}^{2 n}$, then a smooth vector field-germ

$$
X=\sum_{i=1}^{n} f_{i}(x, y) \frac{\partial}{\partial x_{i}}+g_{i}(x, y) \frac{\partial}{\partial y_{i}}
$$

at 0 on $\mathbb{R}^{2 n}$ is Hamiltonian on S_{0} if $d\left(\imath^{*}(X\rfloor \omega\right)=0$.
It implies that $d\left(\sum_{i=1}^{k} f_{i}(\tilde{x}, 0, \tilde{y}, 0) d y_{i}-g_{i}(\tilde{x}, 0, \tilde{y}, 0) d x_{i}\right)=0$. Thus, the vector field-germ

$$
\left.\left.\tilde{X}=\sum_{i=1}^{k} f_{i}(\tilde{x}, 0, \tilde{y}, 0)\right) \frac{\partial}{\partial x_{i}}+g_{i}(\tilde{x}, 0, \tilde{y}, 0)\right) \frac{\partial}{\partial y_{i}}
$$

on S_{0} is Hamiltonian on a symplectic manifold $\left(S_{0}, \iota^{*} \omega=\sum_{i=1}^{k} d x_{i} \wedge d y_{i}\right)$. Let us notice that $\left.\tilde{X}\right|_{\pi(x, y)}=\pi_{*}\left(\left.X\right|_{(x, y)}\right)$, where $\pi: \mathbb{R}^{2 n} \ni(x, y) \mapsto(\tilde{x}, \tilde{y}) \in S_{0}$. Since $\pi \circ \imath=I d_{S_{0}}$, we obtain the following proposition:

Proposition 12. A smooth vector field-germ X on $\left(\mathbb{R}^{2 n}, \omega\right)$ is Hamiltonian on the symplectic submanifold-germ S_{0}, if the vector field-germ $\pi_{*}(X \circ \imath)$ on S_{0} is Hamiltonian on the symplectic manifold $\left(S_{0}, \iota^{*} \omega\right)$.

4.2. COISOTROPIC SUBMANIFOLDS

Let C be the germ of a coisotropic submanifold of codimension k of the symplectic manifold ($\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$). Then, by the Darboux-Givental Theorem (see [1]), C is symplectomorphic to

$$
C_{0}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid x_{i}=0 \text { for } i=1, \cdots, k\right\}
$$

If $\tilde{x}=\left(x_{k+1}, \cdots, x_{n}\right)$ and $\imath: C_{0} \ni(\tilde{x}, y) \mapsto(0, \tilde{x}, y) \in \mathbb{R}^{2 n}$, then a smooth vector field-germ

$$
X=\sum_{i=1}^{n} f_{i}(x, y) \frac{\partial}{\partial x_{i}}+g_{i}(x, y) \frac{\partial}{\partial y_{i}}
$$

at 0 on $\mathbb{R}^{2 n}$ is Hamiltonian on C_{0} if $d\left(\iota^{*}(X\rfloor \omega\right)=0$. It implies that the 1 -form-germ

$$
\left.\imath^{*}(X\rfloor \omega\right)=\sum_{i=1}^{n} f_{i}(0, \tilde{x}, y) d y_{i}-\sum_{i=k+n}^{k} g_{i}(0, \tilde{x}, y) d x_{i}
$$

on C_{0} is exact. Hence, there exists a smooth function-germ on C_{0} such that $g_{i}(0, \tilde{x}, y)=$ $-\frac{\partial h}{\partial x_{i}}(\tilde{x}, y)$ for $i=k+1, \cdots, n$ and $f_{i}(0, \tilde{x}, y)=\frac{\partial h}{\partial y_{i}}(\tilde{x}, y)$ for $i=1, \cdots, n$. Thus, we obtain the following proposition:

Proposition 13. A smooth vector field-germ

$$
X=\sum_{i=1}^{n} f_{i}(x, y) \frac{\partial}{\partial x_{i}}+g_{i}(x, y) \frac{\partial}{\partial y_{i}}
$$

on $\left(\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)$ is Hamiltonian on the coisotropic submanifold-germ

$$
C_{0}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid x_{i}=0 \text { for } i=1, \cdots, k\right\}
$$

if there exists a smooth function germ h on C_{0} such that $g_{i}(0, \tilde{x}, y)=-\frac{\partial h}{\partial x_{i}}(\tilde{x}, y)$ for $i=k+$ $1, \cdots, n$ and $f_{i}(0, \tilde{x}, y)=\frac{\partial h}{\partial y_{i}}(\tilde{x}, y)$ for $i=1, \cdots, n$.

4.3. ISOTROPIC SUBMANIFOLDS

Let I be the germ of an isotropic submanifold of dimension k of the symplectic manifold $\left(\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)$. Then, by the Darboux-Givental Theorem (see [1]), I is symplectomorphic to

$$
I_{0}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid y=0, x_{i}=0 \text { for } i=k+1, \cdots, n\right\}
$$

If $\tilde{x}=\left(x_{1}, \cdots, x_{k}\right)$ and $t: I_{0} \ni \tilde{x} \mapsto(\tilde{x}, 0) \in \mathbb{R}^{2 n}$, then a smooth vector field-germ

$$
X=\sum_{i=1}^{n} f_{i}(x, y) \frac{\partial}{\partial x_{i}}+g_{i}(x, y) \frac{\partial}{\partial y_{i}}
$$

at 0 on $\mathbb{R}^{2 n}$ is Hamiltonian on I_{0} if $d\left(\imath^{*}(X\rfloor \omega\right)=0$. It implies that the 1-form-germ

$$
\left.\imath^{*}(X\rfloor \omega\right)=-\sum_{i=1}^{k} g_{i}(\tilde{x}, 0) d x_{i}
$$

on I_{0} is exact. Hence, there exists a smooth function-germ on I_{0} such that $g_{i}(\tilde{x}, 0)=\frac{\partial h}{\partial x_{i}}(\tilde{x})$ for $i=1, \cdots, k$. Thus, we obtain the following proposition:

Proposition 14. A smooth vector field-germ

$$
X=\sum_{i=1}^{n} f_{i}(x, y) \frac{\partial}{\partial x_{i}}+g_{i}(x, y) \frac{\partial}{\partial y_{i}}
$$

on $\left(\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)$ is Hamiltonian on the isotropic submanifold

$$
I_{0}=\left\{(x, y) \in \mathbb{R}^{2 n} \mid y=0, x_{i}=0 \text { for } i=k+1, \cdots, n\right\}
$$

if there exists a smooth function-germ h on I_{0} such that $g_{i}(\tilde{x}, 0)=\frac{\partial h}{\partial x_{i}}(\tilde{x})$ for $i=1, \cdots, k$.

In particular by Proposition 11 we obtain
Corollary 15. If C is a regular curve (1-dimensional smooth submanifold), then any smooth vector field-germ on $\mathbb{R}^{2 n}$ is Hamiltonian.

Proof. Any smooth 1-form on C is closed.

5. GERMS OF HAMILTONIAN VECTOR FIELDS ON SINGULAR CURVES

In this section we describe germs of Hamiltonian vector fields on singular curves at a singular point. By Corollary 15 any smooth vector field-germ is Hamiltonian on a regular curve.

PLANAR CURVES OF TYPES $A_{K}, D_{K}, E_{6}, E_{7}, E_{8}$

A planar curve in the symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$ is a curve which is embedded in a smooth 2-dimensional submanifold S of $\left(\mathbb{R}^{2 n}, \omega\right)$. Let $l: S \hookrightarrow \mathbb{R}^{2 n}$ be an embedding of S.

We assume that the germ of the curve is locally diffeomorphic to $N=\left\{x \in \mathbb{R}^{2 n} \mid G\left(x_{1}, x_{2}\right)=\right.$ $\left.x_{\geq 3}=0\right\}$, where G has the following properties:

1. $G(0,0)=0, d G(0,0)=0$,
2. the ideal of smooth function-germs on \mathbb{R}^{2} vanishing on $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid G\left(x_{1}, x_{2}\right)=0\right\}$ is generated by G.
3. G is quasi-homogeneous polynomial.

Then, we can take locally $S=\left\{x \in \mathbb{R}^{2 n} \mid x_{\geq 3}=0\right\}$ and $\imath\left(x_{3}, \cdots, x_{2 n}\right)=\left(0,0, x_{3}, \cdots, x_{2 n}\right)$. A smooth vector field-germ on $\left(\mathbb{R}^{2 n}, \omega\right)$ is Hamiltonian on N if and only if $\left.d\left(\imath^{*}(X\rfloor \omega\right)\right)=$ $d\left(G\left(x_{1}, x_{2}\right) \alpha\right)$ for some smooth 1-form-germ α on \mathbb{R}^{2}.

By Theorem 4.11 in [5] any curve-germ in the symplectic space $\left(\mathbb{R}^{2 n}, \omega_{0}=\sum_{i=0}^{n} d p_{i} \wedge\right.$ $\left.d q_{i}\right), n \geq 2$, which is diffeomorphic to the curve-germ at $0\left\{x \in \mathbb{R}^{2 n} \mid G\left(x_{1}, x_{2}\right)=x_{\geq 3}=0\right\}$ for smooth function-germs G in Tab. 1 is symplectomorphic to one and only one of the following curve-germs:

$$
\begin{equation*}
N^{i}=\left\{(p, q) \in \mathbb{R}^{2 n} \mid G\left(p_{1}, p_{2}\right)=q_{1}-\int_{0}^{p_{2}} F_{i}\left(p_{1}, t\right) d t=q_{\geq 2}=p_{\geq 3}=0\right\} \subset\left(\mathbb{R}^{2 n}, \omega_{0}\right) \tag{12}
\end{equation*}
$$

for $i=0, \cdots, \mu$, where smooth function-germs F_{i} are presented in Tab. 1 .

Table 1
Classification of the algebraic restrictions to $A_{k}, D_{k}, E_{6}, E_{7}, E_{8}$

$G\left(x_{1}, x_{2}\right)$	$F_{i}\left(x_{1}, x_{2}\right), i=0,1, \ldots, \mu$
$\begin{aligned} & A_{k}: x_{1}^{k+1}-x_{2}^{2} \\ & k \geq 1 \end{aligned}$	$\begin{aligned} & F_{0}=1 \\ & F_{i}=x_{1}^{i}, i=1, \ldots, k-1 \\ & F_{k}=0 \end{aligned}$
$\begin{aligned} & D_{k}: x_{1}^{2} x_{2}-x_{2}^{k-1} \\ & k \geq 4 \end{aligned}$	$\begin{aligned} & F_{0}=1 \\ & F_{i}=b x_{1}+x_{2}^{i}, i=1, \ldots, k-4 \\ & F_{k-3}=(\pm 1)^{k} x_{1}+b x_{2}^{k-3}, \\ & F_{k-2}=x_{2}^{k-3}, F_{k-1}=x_{2}^{k-2}, F_{k}=0 \end{aligned}$
$E_{6}: x_{1}^{3}-x_{2}^{4}$	$\begin{aligned} & F_{0}=1, F_{1}= \pm x_{2}+b x_{1}, F_{2}=x_{1}+b x_{2}^{2}, \\ & F_{3}=x_{2}^{2}+b x_{1} x_{2}, F_{4}= \pm x_{1} x_{2}, F_{5}=x_{1} x_{2}^{2}, F_{6}=0 \end{aligned}$
$E_{7}: x_{1}^{3}-x_{1} x_{2}^{3}$	$\begin{aligned} & F_{0}=1, F_{1}=x_{2}+b x_{1}, F_{2}= \pm x_{1}+b x_{2}^{2}, \\ & F_{3}=x_{2}^{2}+b x_{1} x_{2}, F_{4}= \pm x_{1} x_{2}+b x_{2}^{3}, \\ & F_{5}=x_{2}^{3}, F_{6}=x_{2}^{4}, F_{7}=0 \end{aligned}$
$E_{8}: x_{1}^{3}-x_{2}^{5}$	$\begin{aligned} & F_{0}= \pm 1, F_{1}=x_{2}+b x_{1}, F_{2}=x_{1}+b_{1} x_{2}^{2}+b_{2} x_{2}^{3} \\ & F_{3}= \pm x_{2}^{2}+b x_{1} x_{2}, F_{4}= \pm x_{1} x_{2}+b x_{2}^{3}, \\ & F_{5}=x_{2}^{3}+b x_{1} x_{2}^{2}, F_{6}=x_{1} x_{2}^{2}, F_{7}= \pm x_{1} x_{2}^{3}, F_{8}=0 \end{aligned}$

Let $\imath: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2 n}$ be the following map-germ: $l\left(p_{1}, p_{2}\right)=\left(p_{1}, \int_{0}^{p_{2}} F_{i}\left(p_{1}, t\right) d t, p_{2}, 0\right)$. A smooth vector field-germ

$$
X=\sum_{i=1}^{n} f_{i}\left(p_{1}, q_{1}, \cdots, p_{n}, q_{n}\right) \frac{\partial}{\partial p_{i}}+g_{i}\left(p_{1}, q_{1}, \cdots, p_{n}, q_{n}\right) \frac{\partial}{\partial q_{i}}
$$

on $\left(\mathbb{R}^{2 n}, \omega_{0}=\sum_{i=1}^{n} d p_{i} \wedge d q_{i}\right)$ is Hamiltonian on N^{i} if a smooth 2-form-germ at 0 on \mathbb{R}^{2}

$$
\sigma=r\left(p_{1}, p_{2}\right) d p_{1} \wedge d p_{2}=d\left(\left(f_{1} \circ \imath\right) d\left(\int_{0}^{p_{2}} F_{i}\left(p_{1}, t\right) d t\right)-\left(g_{1} \circ \imath\right) d p_{1}-\left(g_{2} \circ \imath\right) d p_{2}\right)
$$

has zero algebraic restriction to $\left\{\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2} \mid G\left(p_{1}, p_{2}\right)=0\right\}$.
By the direct calculation we obtain that

$$
\begin{gather*}
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1}, \int_{0}^{p_{2}} F_{i}\left(p_{1}, t\right) d t, p_{2}, 0\right) \tag{13}\\
+F_{i}\left(p_{1}, p_{2}\right)\left(\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1}, \int_{0}^{p_{2}} F_{i}\left(p_{1}, t\right) d t, p_{2}, 0\right) \\
-\int_{0}^{p_{2}} \frac{\partial F_{i}}{\partial p_{1}}\left(p_{1}, t\right) d t\left(\frac{\partial f_{1}}{\partial p_{2}}+\frac{\partial g_{2}}{\partial q_{1}}\right)\left(p_{1}, \int_{0}^{p_{2}} F_{i}\left(p_{1}, t\right) d t, p_{2}, 0\right)
\end{gather*}
$$

If G is quasi-homogeneous, then a smooth 2-form $r\left(p_{1}, p_{2}\right) d p_{1} \wedge d p_{2}$ has zero algebraic restriction to $\left\{\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2} \mid G\left(p_{1}, p_{2}\right)=0\right\}$ if and only if r belongs to the ideal $<\nabla G>$ generated by $\frac{\partial G}{\partial p_{1}}\left(p_{1}, p_{2}\right), \frac{\partial G}{\partial p_{2}}\left(p_{1}, p_{2}\right)$ (see [5]).

Thus, we obtain the following proposition:

Proposition 16. A smooth vector field-germ

$$
X=\sum_{j=1}^{n} f_{j}(p, q) \frac{\partial}{\partial p_{j}}+g_{j}(p, q) \frac{\partial}{\partial q_{j}}
$$

is Hamiltonian on

$$
N^{i}=\left\{(p, q) \in \mathbb{R}^{2 n} \mid G\left(p_{1}, p_{2}\right)=q_{1}-\int_{0}^{p_{2}} F_{i}\left(p_{1}, t\right) d t=q_{\geq 2}=p_{\geq 3}=0\right\} \subset\left(\mathbb{R}^{2 n}, \omega_{0}\right)
$$

where G and F_{i} are presented in Tab. 1, if and only if the function-germ r given by (13) belongs to the ideal $<\nabla G>$.

5.1. PLANAR CURVES OF TYPES A_{K}^{I}

By Proposition 16 we obtain the following:
Proposition 17. Let us fix $k \in \mathbb{N}$ and $i=0,1, \cdots, k$. A smooth vector field-germ

$$
X=\sum_{j=1}^{n} f_{j}(p, q) \frac{\partial}{\partial p_{j}}+g_{j}(p, q) \frac{\partial}{\partial q_{j}}
$$

on $\left(\mathbb{R}^{2 n}, \omega_{0}=\sum_{j=1}^{n} d p_{j} \wedge d q_{j}\right)$ is Hamiltonian on

$$
A_{k}^{i}=\left\{(p, q) \in \mathbb{R}^{2 n} \mid p_{1}^{k+1}-p_{2}^{2}=q_{1}-p_{1}^{i} p_{2}=q \geq 2=p_{\geq 3}=0\right\}(i=0,1, \cdots, k-1)
$$

or on

$$
A_{k}^{k}=\left\{(p, q) \in \mathbb{R}^{2 n} \mid p_{1}^{k+1}-p_{2}^{2}=q_{\geq 1}=p_{\geq 3}=0\right\}
$$

if and only if the following conditions are satisfied:

$$
\begin{gathered}
\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)=\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0) \text { for } j=0, \cdots, i-1, \\
\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)=\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0)-\frac{j!}{(j-i)!}\left(\frac{\partial^{j-i+1} f_{1}}{\partial p_{1}^{j-i+1}}(0)+\frac{\partial^{j-i+1} g_{2}}{\partial p_{1}^{j-i} \partial q_{1}}(0)\right) \text { for } j=i, \cdots, k-1 .
\end{gathered}
$$

Proof. For a planar curve of type $A_{k}^{i}(k \geq 1, i=0, \cdots, k)$, we have that $G\left(p_{1}, p_{2}\right)=p_{1}^{k+1}-p_{2}^{2}$ and $F_{i}\left(p_{1}, p_{2}\right)=p_{1}^{i}$ for $i=0, \cdots, k-1$ and $F_{k}\left(p_{1}, p_{2}\right)=0$ (see Tab. 1).

For A_{k}^{0} singularity we have

$$
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}+\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1}, p_{2}, p_{2}, 0\right)
$$

For A_{k}^{i} singularity $i=1, \cdots, k-1$ the function-germ r has the following form:

$$
\begin{align*}
& r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1}, p_{1}^{i} p_{2}, p_{2}, 0\right) \tag{14}\\
& \quad+p_{1}^{i}\left(\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1}, p_{1}^{i} p_{2}, p_{2}, 0\right) \\
& -i p_{1}^{i-1} p_{2}\left(\frac{\partial f_{1}}{\partial p_{2}}+\frac{\partial g_{2}}{\partial q_{1}}\right)\left(p_{1}, p_{1}^{i} p_{2}, p_{2}, 0\right)
\end{align*}
$$

For A_{k}^{k} singularity we get $F_{k}\left(p_{1}, p_{2}\right)=0$ and

$$
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1}, 0, p_{2}, 0\right) .
$$

Since $\left.\langle\nabla G\rangle=<p_{1}^{k}, p_{2}\right\rangle$, it is easy to see that $\mathcal{O}_{2} /\langle\nabla G\rangle \cong \mathbb{R}\left\{1, p_{1}, \cdots, p_{1}^{k-1}\right\}$. The function-germ r belongs to $<\nabla G>$ if and only if $\frac{\partial^{j} r}{\partial p_{1}^{j}}(0,0)=0$ for $j=0,1, \cdots, k-1$. By a direct calculation we get that for $j=0, \cdots, i-1$

$$
\frac{\partial^{j} r}{\partial p_{1}^{j}}(0,0)=\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)-\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0),
$$

and for $j=i, \cdots, k-1$

$$
\frac{\partial^{j} r}{\partial p_{1}^{j}}(0,0)=\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)-\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0)+\frac{j!}{(j-i)!}\left(\frac{\partial^{j-i+1} f_{1}}{\partial p_{1}^{j-i+1}}(0)+\frac{\partial^{j-i+1} g_{2}}{\partial p_{1}^{j-i} \partial q_{1}}(0)\right)
$$

5.2. PLANAR CURVES OF TYPES D_{K}^{I}

For a planar curve of type $D_{k}^{i}(k \geq 4, i=0, \cdots, k)$ we have that $G\left(p_{1}, p_{2}\right)=p_{1}^{2} p_{2}-p_{2}^{k-1}$. Then it is easy to see that $\left.\langle\nabla G\rangle=<p_{1} p_{2}, p_{1}^{2}-(k-1) p_{2}^{k-2}\right\rangle$ and

$$
\mathcal{O}_{2} /<\nabla G>\cong \mathbb{R}\left\{1, p_{2}, \cdots, p_{2}^{k-2}, p_{1}\right\} .
$$

For D_{k}^{0} singularity we get $F_{0}\left(p_{1}, p_{2}\right)=1$ and

$$
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}+\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1}, p_{2}, p_{2}, 0\right)
$$

For D_{k}^{i} singularity $i=1, \cdots, k-4$ we get $F_{i}\left(p_{1}, p_{2}\right)=b p_{1}+p_{2}^{i}$ and

$$
\begin{align*}
& r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1}, b p_{1} p_{2}+\frac{p_{2}^{i+1}}{i+1}, p_{2}, 0\right) \tag{15}\\
& +\left(b p_{1}+p_{2}^{i}\right)\left(\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1}, b p_{1} p_{2}+\frac{p_{2}^{i+1}}{i+1}, p_{2}, 0\right) \\
& \quad-b p_{2}\left(\frac{\partial f_{1}}{\partial p_{2}}+\frac{\partial g_{2}}{\partial q_{1}}\right)\left(p_{1}, b p_{1} p_{2}+\frac{p_{2}^{i+1}}{i+1}, p_{2}, 0\right) .
\end{align*}
$$

For D_{k}^{k-3} singularity we have $F_{k-3}\left(p_{1}, p_{2}\right)=(\pm 1)^{k} p_{1}+b p_{2}^{k-3}$ and

$$
\begin{gather*}
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1},(\pm 1)^{k} p_{1} p_{2}+b \frac{p_{2}^{k-2}}{k-2}, p_{2}, 0\right) \tag{16}\\
+\left((\pm 1)^{k} p_{1}+b p_{2}^{k-3}\right)\left(\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1},(\pm 1)^{k} p_{1} p_{2}+b \frac{p_{2}^{k-2}}{k-2}, p_{2}, 0\right) \\
-(\pm 1)^{k} p_{2}\left(\frac{\partial f_{1}}{\partial p_{2}}+\frac{\partial g_{2}}{\partial q_{1}}\right)\left(p_{1},(\pm 1)^{k} p_{1} p_{2}+b \frac{p_{2}^{k-2}}{k-2}, p_{2}, 0\right) .
\end{gather*}
$$

For D_{k}^{k-2} singularity we get $F_{k-2}\left(p_{1}, p_{2}\right)=p_{2}^{k-3}$ and

$$
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1}, \frac{p_{2}^{k-2}}{k-2}, p_{2}, 0\right)+p_{2}^{k-3}\left(\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1}, \frac{p_{2}^{k-2}}{k-2}, p_{2}, 0\right)
$$

For D_{k}^{k-1} singularity we get $F_{k-2}\left(p_{1}, p_{2}\right)=p_{2}^{k-2}$ and

$$
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1}, \frac{p_{2}^{k-1}}{k-1}, p_{2}, 0\right)+p_{2}^{k-2}\left(\frac{\partial f_{1}}{\partial p_{1}}+\frac{\partial g_{1}}{\partial q_{1}}\right)\left(p_{1}, \frac{p_{2}^{k-1}}{k-1}, p_{2}, 0\right) .
$$

For D_{k}^{k} singularity we get $F_{k}\left(p_{1}, p_{2}\right)=0$ and

$$
r\left(p_{1}, p_{2}\right)=\left(\frac{\partial g_{1}}{\partial p_{2}}-\frac{\partial g_{2}}{\partial p_{1}}\right)\left(p_{1}, 0, p_{2}, 0\right) .
$$

The function-germ r belongs to $<\nabla G>=<p_{1} p_{2}, p_{1}^{2}-(k-1) p_{2}^{k-2}>$ if and only if

$$
\begin{equation*}
\frac{\partial^{j} r}{\partial p_{2}^{j}}(0,0)=\frac{\partial r}{\partial p_{1}}(0,0)=0 \text { for } j=0,1, \cdots, k-3 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} r}{\partial p_{1}^{2}}(0,0)=\frac{2}{(k-1)!} \frac{\partial^{k-2} r}{\partial p_{2}^{k-2}}(0,0) \tag{18}
\end{equation*}
$$

For general k conditions (17)-(18) are rather complicated in terms of partial derivatives of coefficient functions f_{1}, g_{1}, g_{2} at 0 . Therefore, we will present them only for D_{4}^{i} singularities for $i=0,1, \cdots, 4$.

Let $X=\sum_{j=1}^{n} f_{j}(p, q) \frac{\partial}{\partial p_{j}}+g_{j}(p, q) \frac{\partial}{\partial q_{j}}$ be the smooth vector field-germ on $\left(\mathbb{R}^{2 n}, \omega_{0}=\right.$ $\left.\sum_{j=1}^{n} d p_{j} \wedge d q_{j}\right)$. By a direct calculation Proposition 16 implies the following:

The vector field-germ X is Hamiltonian on

$$
D_{4}^{0}=\left\{(p, q) \in \mathbb{R}^{2 n} \mid p_{1}^{2} p_{2}-p_{2}^{3}=q_{1}-p_{2}=q_{\geq 2}=p_{\geq 3}=0\right\}
$$

if and only if the following conditions are satisfied:

$$
\begin{gathered}
\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0)=\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)+\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial q_{1}}(0)+\frac{\partial^{j+1} f_{1}}{\partial p_{1}^{j+1}}(0) \text { for } j=0,1, \\
\frac{\partial^{2} g_{1}}{\partial p_{2}^{2}}(0)+2 \frac{\partial^{2} g_{1}}{\partial q_{1} \partial p_{2}}(0)+\frac{\partial^{2} g_{1}}{\partial q_{1}^{2}}(0)+\frac{\partial^{2} f_{1}}{\partial p_{1} \partial p_{2}}(0) \\
-\frac{\partial^{2} g_{2}}{\partial p_{1} \partial p_{2}}(0)+\frac{\partial^{2} f_{1}}{\partial p_{1} \partial q_{1}}(0)-\frac{\partial^{2} g_{2}}{\partial p_{1} \partial q_{1}}(0)=0, \\
=\frac{\partial^{3} g_{1}}{\partial p_{2}^{3}}(0)+3 \frac{\partial^{3} g_{1}}{\partial q_{1} \partial p_{2}^{2}}(0)+3 \frac{\partial^{3} g_{1}}{\partial q_{1}^{2} \partial p_{2}}(0)+\frac{\partial^{3} g_{1}}{\partial q_{1}^{3}}(0)+\frac{\partial^{3} f_{1}}{\partial p_{1} \partial p_{2}^{2}}(0)-\frac{\partial^{3} g_{1}}{\partial p_{1} \partial p_{2}^{2}}(0) \\
+2 \frac{\partial^{3} f_{1}}{\partial p_{1}^{2} \partial q_{1} \partial p_{2}}(0)-2 \frac{\partial^{3} g_{2}}{\partial p_{1} \partial q_{1} \partial p_{2}}(0)+\frac{\partial^{3} f_{1}}{\partial p_{1} \partial q_{1}^{2}}(0)-\frac{\partial^{3} g_{2}}{\partial p_{1} \partial q_{1}^{2}}(0) .
\end{gathered}
$$

The vector field-germ X is Hamiltonian on

$$
D_{4}^{1}=\left\{(p, q) \in \mathbb{R}^{2 n} \left\lvert\, p_{1}^{2} p_{2}-p_{2}^{3}=q_{1}-p_{1} p_{2}-b \frac{p_{2}^{2}}{2}=q_{\geq 2}=p_{\geq 3}=0\right.\right\}
$$

if and only if the following conditions are satisfied:

$$
\begin{gathered}
\frac{\partial g_{1}}{\partial p_{2}}(0)=\frac{\partial g_{2}}{\partial p_{1}}(0), \\
\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)+\frac{\partial^{2} g_{1}}{\partial p_{1} \partial p_{2}}(0)-\frac{\partial^{2} g_{2}}{\partial p_{1}^{2}}(0)=0, \\
-\frac{\partial f_{1}}{\partial p_{2}}(0)+\frac{\partial^{2} g_{1}}{\partial p_{2}^{2}}(0)-\frac{\partial g_{2}}{\partial q_{1}}(0)+b\left(\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)\right)-\frac{\partial^{2} g_{2}}{\partial p_{1} \partial p_{2}}(0)=0, \\
6\left(\frac{\partial^{2} g_{1}}{\partial p_{1} \partial q_{1}}(0)+\frac{\partial^{2} f_{1}}{\partial p_{1}^{2}}(0)\right)+3\left(\frac{\partial^{3} g_{1}}{\partial p_{1}^{2} \partial p_{2}}(0)-\frac{\partial^{3} g_{2}}{\partial p_{1}^{3}}(0)\right) \\
=\frac{\partial^{3} g_{1}}{\partial p_{2}^{3}}(0)-\frac{\partial^{3} g_{2}}{\partial p_{1} \partial p_{2}^{2}}(0)-2\left(\frac{\partial^{2} f_{1}}{\partial p_{2}^{2}}(0)+\frac{\partial^{2} g_{2}}{\partial q_{1} \partial p_{2}}(0)\right) \\
+b\left(3 \frac{\partial^{2} g_{1}}{\partial p_{1} \partial p_{2}}(0)+2 \frac{\partial^{2} f_{1}}{\partial p_{1} \partial p_{2}}(0)-\frac{\partial g_{2}}{\partial p_{1}} \partial q_{1}(0)\right) .
\end{gathered}
$$

The vector field-germ X is Hamiltonian on

$$
D_{4}^{2}=\left\{(p, q) \in \mathbb{R}^{2 n} \left\lvert\, p_{1}^{2} p_{2}-p_{2}^{3}=q_{1}-\frac{p_{2}^{2}}{2}=q_{\geq 2}=p_{\geq 3}=0\right.\right\}
$$

if and only if the following conditions are satisfied:

$$
\begin{gathered}
\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)=\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0) \text { for } j=0,1 \\
\frac{\partial^{2} g_{1}}{\partial p_{2}^{2}}(0)+\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)-\frac{\partial^{2} g_{2}}{\partial p_{1} \partial p_{2}}(0)=0 \\
3\left(\frac{\partial^{3} g_{1}}{\partial p_{1}^{2} \partial p_{2}}(0)-\frac{\partial^{3} g_{2}}{\partial p_{1}^{3}}(0)\right)= \\
\frac{\partial^{3} g_{1}}{\partial p_{2}^{3}}(0)+\frac{\partial^{2} g_{1}}{\partial q_{1} \partial p_{2}}(0)+2\left(\frac{\partial^{2} g_{1}}{\partial q_{1} \partial p_{2}}(0)+\frac{\partial^{2} f_{1}}{\partial p_{1} \partial p_{2}}(0)\right)-\frac{\partial^{3} g_{2}}{\partial p_{1} \partial p_{2}^{2}}(0)-\frac{\partial^{2} g_{2}}{\partial p_{1} \partial q_{1}}(0)
\end{gathered}
$$

The vector field-germ X is Hamiltonian on

$$
D_{4}^{3}=\left\{(p, q) \in \mathbb{R}^{2 n} \left\lvert\, p_{1}^{2} p_{2}-p_{2}^{3}=q_{1}-\frac{p_{2}^{3}}{3}=q_{\geq 2}=p_{\geq 3}=0\right.\right\}
$$

if and only if the following conditions are satisfied:

$$
\begin{gathered}
\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)=\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0) \text { for } j=0,1, \\
\frac{\partial^{2} g_{1}}{\partial p_{2}^{2}}(0)=\frac{\partial^{2} g_{2}}{\partial p_{1} \partial p_{2}}(0), \\
3\left(\frac{\partial^{3} g_{1}}{\partial p_{1}^{2} \partial p_{2}}(0)-\frac{\partial^{3} g_{2}}{\partial p_{1}^{3}}(0)\right)=\frac{\partial^{3} g_{1}}{\partial p_{2}^{3}}(0)+2\left(\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)\right)-\frac{\partial^{3} g_{2}}{\partial p_{1} \partial p_{2}^{2}}(0) .
\end{gathered}
$$

The vector field-germ X is Hamiltonian on

$$
D_{4}^{4}=\left\{(p, q) \in \mathbb{R}^{2 n} \mid p_{1}^{2} p_{2}-p_{2}^{3}=q \geq 1=p_{\geq 3}=0\right\}
$$

if and only if the following conditions are satisfied:

$$
\frac{\partial^{j+1} g_{1}}{\partial p_{1}^{j} \partial p_{2}}(0)=\frac{\partial^{j+1} g_{2}}{\partial p_{1}^{j+1}}(0) \text { for } j=0,1,
$$

$$
\begin{gathered}
\frac{\partial^{2} g_{1}}{\partial p_{2}^{2}}(0)=\frac{\partial^{2} g_{2}}{\partial p_{1} \partial p_{2}}(0), \\
3\left(\frac{\partial^{3} g_{1}}{\partial p_{1}^{2} \partial p_{2}}(0)-\frac{\partial^{3} g_{2}}{\partial p_{1}^{3}}(0)\right)=\frac{\partial^{3} g_{1}}{\partial p_{2}^{3}}(0)-\frac{\partial^{3} g_{2}}{\partial p_{1} \partial p_{2}^{2}}(0) .
\end{gathered}
$$

In the same way by Proposition 16 one can obtain the necessary and sufficient conditions for the vector field-germ X to be Hamiltonian on planar curves with E_{k}^{i} singularities for $k=6,7,8$ and $i=0,1, \cdots, k$ (see Tab. 1). Please notice that for E_{k}^{i} singularity there are k independent conditions, therefore we do not present them.

6. GERMS OF HAMILTONIAN VECTOR FIELDS ON REGULAR UNION SINGULARITIES.

A regular union singularity N at 0 in $\mathbb{R}^{2 n}$ is the union

$$
\begin{equation*}
N=N_{1} \cup \cdots \cup N_{s}, s \geq 2 \tag{19}
\end{equation*}
$$

of germs at 0 of smooth submanifolds N_{1}, \cdots, N_{s} of $\mathbb{R}^{2 n}$ (in what follows - strata) such that the dimension of the space

$$
\begin{equation*}
W=T_{0} N_{1}+\cdots+T_{0} N_{s} \tag{20}
\end{equation*}
$$

is equal to the sum of the dimensions of the strata, i.e. the sum (20) is direct. If the number of strata and their dimensions are fixed, then all such N are diffeomorphic. By Theorem 7.1 in [5] the germ of a closed 2-form σ has zero algebraic restriction to N if and only if its pullback to each of the strata $N_{i}(i=1, \cdots, s)$ vanishes and the restriction of the germ σ to the space W vanishes. It implies the following:

Proposition 18. A smooth vector field-germ X in the symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$ is Hamiltonian on a regular union singularity N if and only if the pullback of the germ $d(X\rfloor \omega)$ to each of the strata $N_{i}(i=1, \cdots, s)$ vanishes and the restriction of the germ $\left.d(X\rfloor \omega\right)$ to the space W vanishes.

6.1. REGULAR UNION OF THREE 1-DIMENSIONAL SUBMANIFOLDS

Let us consider a regular union singularity of three germs at 0 of 1-dimensional submanifolds $N=N_{1} \cup N_{2} \cup N_{3}$ of the symplectic space ($\left.\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d p_{i} \wedge d q_{i}\right)$. These symplectic singularities are classified in [5].

Proposition 19 (Theorem 7.4 in [5]). Any regular union singularity N with three 1 -dimensional strata in the symplectic space $\left(\mathbb{R}^{2 n}, \omega\right), n \geq 3$ (resp. $n=2$) is symplectomorphic to one and only one of the varieties $N^{0}, N^{1}, N^{2}, N^{3}\left(\right.$ resp. $\left.N^{0}, N^{1}, N^{2}\right)$ given in Tab. 2. It holds if and only if the pair (ω, N) satisfies the condition in the last column of the table.

Table 2
Classification of symplectic regular union singularities with three 1 -dimensional strata. W denotes the 3 -space spanned by the tangent lines at 0 to the strata

	Symplectic normal forms	Geometric condition
N^{0}	$q_{2}=p_{1}+p_{2}$, $p_{1} q_{1}=q_{1} p_{2}=p_{2} q_{2}=0$, $p_{\geq 3}=q_{\geq 3}=0$	$\left.\omega\right\|_{W} \neq 0$, ker $\left.\omega\right\|_{W} \not \subset T_{0} N_{i}+T_{0} N_{j}$, for any $i, j \in\{1,2,3\} ;$
N^{1}	$q_{2}=p_{1}$, $p_{1} q_{1}=q_{1} p_{2}=p_{2} p_{1}=0$, $p_{\geq 3}=q_{\geq 3}=0$	$\left.\omega\right\|_{W} \neq 0$, ker $\left.\omega\right\|_{W} \subset T_{0} N_{i}+T_{0} N_{j}$, ker $\left\|\left.\right\|_{W} \neq T_{0} N_{i}, T_{0} N_{j}\right.$, for some $i, j \in\{1,2,3\} ;$
N^{2}	$p_{1} q_{1}=q_{1} p_{2}=p_{2} p_{1}=0, p_{\geq 3}=$ $q_{\geq 2}=0$	$\left.\omega\right\|_{W} \neq 0$, ker $\left.\omega\right\|_{W}=T_{0} N_{i}$ for some $i \in\{1,2,3\}$
N^{3}	$p_{1} p_{2}=p_{2} p_{3}=p_{3} p_{1}=0, p_{\geq 4}=$ $q_{\geq 1}=0$	$\left.\omega\right\|_{W}=0$.

Since the strata are 1-dimensional, by Proposition 18, a smooth vector-field germ X is Hamiltonian on N if and only if $d(X\rfloor \omega)\left.\right|_{W}=0$. Hence for singularities N^{i} for $i=0,1, \cdots, 3$ we obtain the following conditions:

Let $X=\sum_{i=1}^{n} f_{i}(p, q) \frac{\partial}{\partial p_{i}}+g_{i}(p, q) \frac{\partial}{\partial q_{i}}$ be a smooth vector field-germ on $\mathbb{R}^{2 n}$. The vector field-germ X is Hamiltonian on N^{0} if and only if

$$
\begin{gathered}
\frac{\partial f_{1}}{\partial q_{2}}(0)+\frac{\partial f_{1}}{\partial p_{2}}(0)-\frac{\partial f_{2}}{\partial q_{1}}(0)+\frac{\partial g_{2}}{\partial q_{1}}(0)=0 \\
\frac{\partial f_{2}}{\partial q_{1}}(0)+\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)+\frac{\partial f_{2}}{\partial q_{1}}(0)=0 \\
\frac{\partial g_{1}}{\partial q_{2}}(0)-\frac{\partial g_{2}}{\partial q_{2}}(0)-\frac{\partial f_{2}}{\partial p_{2}}(0)+\frac{\partial g_{1}}{\partial p_{2}}(0)+\frac{\partial f_{2}}{\partial p_{1}}(0)-\frac{\partial g_{2}}{\partial p_{1}}(0)=0 .
\end{gathered}
$$

The vector field-germ X is Hamiltonian on N^{1} if and only if

$$
\frac{\partial f_{1}}{\partial p_{2}}(0)+\frac{\partial g_{2}}{\partial q_{1}}(0)=\frac{\partial f_{1}}{\partial q_{2}}(0)+\frac{\partial f_{2}}{\partial q_{1}}(0)+\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)=0
$$

$$
\frac{\partial g_{1}}{\partial p_{2}}(0)-\frac{\partial g_{2}}{\partial q_{2}}(0)-\frac{\partial f_{2}}{\partial p_{2}}(0)-\frac{\partial g_{2}}{\partial p_{1}}(0)=0
$$

The vector field-germ X is Hamiltonian on N^{2} if and only if

$$
\frac{\partial f_{1}}{\partial p_{2}}(0)+\frac{\partial g_{2}}{\partial q_{1}}(0)=\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)=\frac{\partial g_{1}}{\partial p_{2}}(0)-\frac{\partial g_{2}}{\partial p_{1}}(0)=0 .
$$

The vector field-germ X is Hamiltonian on N^{3} if and only if

$$
\frac{\partial g_{2}}{\partial p_{3}}(0)-\frac{\partial g_{3}}{\partial p_{2}}(0)=\frac{\partial g_{1}}{\partial p_{2}}(0)-\frac{\partial g_{2}}{\partial p_{1}}(0)=\frac{\partial g_{1}}{\partial p_{3}}(0)-\frac{\partial g_{3}}{\partial p_{1}}(0)=0 .
$$

6.2. REGULAR UNION OF TWO 2-DIMENSIONAL ISOTROPIC SUBMANIFOLDS

Now we consider the regular union singularity of two 2-dimensional isotropic submanifoldgerms of the symplectic space. The following classification proposition was proved in [5]:

Proposition 20. Any regular union singularity N of two 2-dimensional isotropic submanifoldgerms in a symplectic space $\left(\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d p_{i} \wedge d q_{i}\right)$ is symplectomorphic to one and only one of the varieties N^{0}, N^{1}, N^{4} in Tab. 3. The orbit of N^{i} has codimension i in the class of all regular union singularities with two 2-dimensional isotropic strata. The normal form N^{i} holds if and only if the pair (ω, N) satisfies the condition given in the last column of Tab. 3.

Table 3
Classification of symplectic regular union singularities of two 2-dimensional isotropic submanifold-germs. W denotes the 4 -space spanned by the tangent planes at 0 to the strata

	Symplectic normal forms	Geometric condition	codim
N^{0}	$\left\{p_{\geq 3}=q \geq 1=0\right\} \cup$ $\left\{p_{\geq 1}=q \geq 3=0\right\}$	rank $\left.\omega\right\|_{W}=4$	0
$N^{1}(n \geq 3)$	$\{p \geq 3=q \geq 1=0\} \cup$ $\left\{p \geq 1=q_{2}=q \geq 4=0\right\}$	rank $\left.\omega\right\|_{W}=2$	1
$N^{4}(n \geq 4)$	$\left\{p \geq 3=q_{\geq 1}=0\right\} \cup$ $\left\{p_{1}=p_{2}=p \geq 5=q \geq 1=0\right\}$	$\left.\omega\right\|_{W}=0$	4

By Proposition 18 a smooth vector field-germ X is Hamiltonian on N if and only if X is Hamiltonian on both of isotropic submanifold-germs N_{1}, N_{2} and $\left.d(X\rfloor \omega\right)\left.\right|_{W}=0$.

Let $X=\sum_{i=1}^{n} f_{i}(p, q) \frac{\partial}{\partial p_{i}}+g_{i}(p, q) \frac{\partial}{\partial q_{i}}$ be a smooth vector field-germ on $\mathbb{R}^{2 n}$. By Propositions 18 and 14 we obtain the following conditions:

The vector field-germ X is Hamiltonian on $N^{0}=N_{1}^{0} \cup N_{2}^{0}$ if and only if there exist a smooth function-germs h on $N_{1}^{0}=\left\{p_{\geq 3}=q_{\geq 1}=0\right\}$ and k on $N_{2}^{0}=\left\{q \geq 3=p_{\geq 1}=0\right\}$ such that $g_{i}\left(p_{1}, p_{2}, 0\right)=\frac{\partial h}{\partial p_{i}}\left(p_{1}, p_{2}\right)$ and $f_{i}\left(0, q_{1}, q_{2}, 0\right)=\frac{\partial k}{\partial q_{i}}\left(q_{1}, q_{2}\right)$ for $i=1,2$, and

$$
\frac{\partial g_{2}}{\partial q_{2}}(0)+\frac{\partial f_{2}}{\partial p_{2}}(0)=\frac{\partial f_{1}}{\partial p_{2}}(0)+\frac{\partial g_{2}}{\partial q_{1}}(0)=\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)=\frac{\partial g_{1}}{\partial q_{2}}(0)+\frac{\partial f_{2}}{\partial p_{1}}(0)=0
$$

The vector field-germ X is Hamiltonian on $N^{1}=N_{1}^{1} \cup N_{2}^{1}$ if and only if there exist a smooth function-germs h on $N_{1}^{1}=\left\{p_{\geq 3}=q_{\geq 1}=0\right\}$ and k on $N_{2}^{1}=\left\{p_{\geq 1}=q_{2}=q_{\geq 4}=0\right\}$ such that $g_{i}\left(p_{1}, p_{2}, 0\right)=\frac{\partial h}{\partial p_{i}}\left(p_{1}, p_{2}\right)$ for $i=1,2$ and $f_{j}\left(0, q_{1}, 0, q_{3}, 0\right)=\frac{\bar{d} k}{\partial q_{j}}\left(q_{1}, q_{3}\right)$ for $j=1,3$, and

$$
\frac{\partial g_{2}}{\partial q_{3}}(0)+\frac{\partial f_{3}}{\partial p_{2}}(0)=\frac{\partial f_{1}}{\partial p_{2}}(0)+\frac{\partial g_{2}}{\partial q_{1}}(0)=\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)=\frac{\partial g_{1}}{\partial q_{3}}(0)+\frac{\partial f_{3}}{\partial p_{1}}(0)=0
$$

The vector field-germ X is Hamiltonian on $N^{4}=N_{1}^{4} \cup N_{2}^{4}$ if and only if there exist a smooth function-germs h on $N_{1}^{4}=\left\{p_{\geq 3}=q_{\geq 1}=0\right\}$ and k on $N_{2}^{4}=\left\{p_{1}=p_{2}=p_{\geq 5}=q \geq 1=0\right\}$ such that $g_{i}\left(p_{1}, p_{2}, 0\right)=\frac{\partial h}{\partial p_{i}}\left(p_{1}, p_{2}\right)$ for $i=1,2$ and $g_{j}\left(0, p_{3}, p_{4}, 0\right)=\frac{\partial k}{\partial p_{j}}\left(p_{3}, p_{4}\right)$ for $j=3,4$, and

$$
\frac{\partial g_{2}}{\partial p_{3}}(0)-\frac{\partial g_{3}}{\partial p_{2}}(0)=\frac{\partial g_{2}}{\partial p_{4}}(0)+\frac{\partial g_{4}}{\partial p_{2}}(0)=\frac{\partial g_{1}}{\partial p_{3}}(0)-\frac{\partial g_{3}}{\partial p_{1}}(0)=\frac{\partial g_{1}}{\partial p_{4}}(0)-\frac{\partial g_{4}}{\partial p_{1}}(0)=0 .
$$

6.3. REGULAR UNION OF TWO 2-DIMENSIONAL SYMPLECTIC SUBMANIFOLDS

In this subsection we consider Hamiltonian vector field-germs on regular union singularities with two 2 -dimensional symplectic strata in a symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$. Recall that two germs of submanifolds N_{1}, N_{2} of a symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$ are called ω-orthogonal if $\omega(v, u)=0$ for any vectors $v \in T_{0} N_{1}, u \in T_{0} N_{2}$. The symplectic classification of such N involves the following invariant:

Definition 21 (see Definition 7.6 in [5]). The index of non-orthogonality between 2-dimensional symplectic submanifolds N_{1} and N_{2} of a symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$ is the number

$$
\alpha=\alpha\left(N_{1}, N_{2}\right)=1-\frac{(\omega \wedge \omega)\left(v_{1}, v_{2}, u_{1}, u_{2}\right)}{2 \cdot \omega\left(v_{1}, v_{2}\right) \cdot \omega\left(u_{1}, u_{2}\right)}
$$

where v_{1}, v_{2} is a basis of $T_{0} N_{1}$ and u_{1}, u_{2} is a basis of $T_{0} N_{2}$.
It is easy to see that the index of non-orthogonality $\alpha\left(N_{1}, N_{2}\right)$ is well-defined, i.e. it does not depend on the choice of the bases of $T_{0} N_{1}$ and $T_{0} N_{2}$. It is equal to 0 if and only if there exists a non-zero vector $u \in T_{0} N_{1}$ such that $\omega(v, u)=0$ for any $v \in T_{0} N_{2}$. It is equal to 1 if and only if the 4 -form $\omega \wedge \omega$ has zero restriction to the space $W=T_{0} N_{1}+T_{0} N_{2}$.

Theorem 22 (Theorem 7.9 in [5]). Let $\omega=\sum_{i=1}^{n} d p_{i} \wedge d q_{i}$. Let $N=N_{1} \cup N_{2}$ be the regular union singularity with two 2 -dimensional symplectic strata in the symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$.

If N_{1} and N_{2} are not ω-orthogonal, then N is symplectomorphic to the variety

$$
N^{\alpha}=\left\{q_{1}=p_{2}, p_{1}=p_{\geq 3}=q_{\geq 3}=0\right\} \cup\left\{p_{2}=\alpha q_{1}, p_{\geq 3}=q_{\geq 2}=0\right\}
$$

where α is the index of non-orthogonality between N_{1} and N_{2}.
If N_{1} and N_{2} are ω-orthogonal, then N has is symplectomorphic to

$$
N^{\perp}=\left\{p_{\geq 2}=q_{\geq 2}=0\right\} \cup\left\{p_{1}=q_{1}=p_{\geq 3}=q_{\geq 3}=0\right\}
$$

If $n \geq 3$, then any of the normal forms is realizable and if $n=2$, then any of the normal forms is realizable except the normal form N^{1}.

Theorem 22 was generalized in [6] to regular union singularities of two germs of symplectic or quasi-symplectic k-dimensional submanifolds of the symplectic space. For simplicity we present the case $k=2$ only.

By Proposition 18 a smooth vector field-germ X is Hamiltonian on $N=N_{1} \cup N_{2}$ if and only if X is Hamiltonian on both of symplectic submanifold-germs N_{1}, N_{2} and $\left.d(X\rfloor \omega\right)\left.\right|_{W}=0$.

Let $X=\sum_{i=1}^{n} f_{i}(p, q) \frac{\partial}{\partial p_{i}}+g_{i}(p, q) \frac{\partial}{\partial q_{i}}$ be a smooth vector field-germ on $\mathbb{R}^{2 n}$. By Propositions 18 and direct calculations we obtain the following proposition:

Proposition 23. The vector field-germ X is Hamiltonian on

$$
N^{\alpha}=\left\{q_{1}=p_{2}, p_{1}=p_{\geq 3}=q \geq 3=0\right\} \cup\left\{p_{2}=\alpha q_{1}, p_{\geq 3}=q \geq 2=0\right\}
$$

if and only if

$$
\begin{gathered}
\left.\left(-\frac{\partial f_{1}}{\partial q_{2}}+\frac{\partial g_{2}}{\partial q_{2}}+\frac{\partial f_{2}}{\partial p_{2}}+\frac{\partial f_{2}}{\partial q_{1}}\right)\right|_{\left\{q_{1}=p_{2}, p_{1}=p_{\geq 3}=q_{\geq 3}=0\right\}}=0 \\
\left.\left(\alpha \frac{\partial g_{1}}{\partial p_{2}}+\frac{\partial g_{1}}{\partial q_{1}}+\frac{\partial f_{1}}{\partial p_{1}}-\alpha \frac{\partial g_{2}}{\partial p_{1}}\right)\right|_{\left\{p_{2}=\alpha q_{1}, p_{\geq 3}=q_{\geq 2}=0\right\}}=0 \\
\frac{\partial g_{2}}{\partial q_{2}}(0)+\frac{\partial f_{2}}{\partial p_{2}}(0)=\frac{\partial f_{1}}{\partial p_{2}}(0)+\frac{\partial g_{2}}{\partial q_{1}}(0)=\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)=\frac{\partial g_{1}}{\partial q_{2}}(0)+\frac{\partial f_{2}}{\partial p_{1}}(0)=0, \\
\frac{\partial f_{1}}{\partial q_{2}}(0)-\frac{\partial f_{2}}{\partial q_{1}}(0)=\frac{\partial g_{1}}{\partial p_{2}}(0)-\frac{\partial g_{2}}{\partial p_{1}}(0)=0
\end{gathered}
$$

Let us denote the stata of N^{\perp} by

$$
N_{1}^{\perp}=\left\{p_{\geq 2}=q_{\geq 2}=0\right\}, \quad N_{2}^{\perp}=\left\{p_{1}=q_{1}=p_{\geq 3}=q_{\geq 3}=0\right\} .
$$

In the same way we get the following result:

Proposition 24. The vector field-germ X is Hamiltonian on $N^{\perp}=N_{1}^{\perp} \cup N_{2}^{\perp}$ if and only if

$$
\begin{gather*}
\left.\left(\frac{\partial g_{1}}{\partial q_{1}}+\frac{\partial f_{1}}{\partial p_{1}}\right)\right|_{N_{1}^{\perp}}=0 \tag{21}\\
\left.\left(\frac{\partial g_{2}}{\partial q_{2}}+\frac{\partial f_{2}}{\partial p_{2}}\right)\right|_{N_{2}^{\perp}}=0 \tag{22}\\
\frac{\partial g_{2}}{\partial q_{2}}(0)+\frac{\partial f_{2}}{\partial p_{2}}(0)=\frac{\partial f_{1}}{\partial p_{2}}(0)+\frac{\partial g_{2}}{\partial q_{1}}(0)=\frac{\partial g_{1}}{\partial q_{1}}(0)+\frac{\partial f_{1}}{\partial p_{1}}(0)=\frac{\partial g_{1}}{\partial q_{2}}(0)+\frac{\partial f_{2}}{\partial p_{1}}(0)=0, \\
\frac{\partial f_{1}}{\partial q_{2}}(0)-\frac{\partial f_{2}}{\partial q_{1}}(0)=\frac{\partial g_{1}}{\partial p_{2}}(0)-\frac{\partial g_{2}}{\partial p_{1}}(0)=0 .
\end{gather*}
$$

The conditions (21)-(22) mean that the vector field-germ $\left.f_{i}\right|_{N_{i}} \frac{\partial}{\partial p_{i}}+\left.g_{i}\right|_{N_{i}} \frac{\partial}{\partial q_{i}}$ on the symplectic manifold-germ $\left(N_{i}^{\perp},\left.\omega\right|_{T N_{i}^{\perp}}\right)$ is Hamiltonian (in the classical sense) for $i=1,2$ (see Proposition 12).

References

[1] V. I. Arnold, A. B. Givental Symplectic geometry, in Dynamical systems, IV, 1-138, Encyclopedia of Matematical Sciences, vol. 4, Springer, Berlin, 2001.
[2] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birhauser, Boston, 1985.
[3] P.A.M. Dirac, Generalized Hamiltonian Dynamics, Canadian J. Math. 2, (1950), 129-148.
[4] W. Domitrz, S. Janeczko, M. Zhitomirskii, Relative Poincare lemma, contractibility, quasi-homogeneity and vector fields tangent to a singular variety, Ill. J. Math. 48, No. 3 (2004), 803-835.
[5] W. Domitrz, S. Janeczko, M. Zhitomirskii, Symplectic singularities of varieties: the method of algebraic restrictions, J. reine und angewandte Math. 618 (2008), 197-235.
[6] W. Domitrz, S. Janeczko, M. Zhitomirskii, Generic singularities of symplectic and quasi-symplectic immersions, Math. Proc. Camb. Philos. Soc. 155 (2013), no. 2, 317-329.
[7] T. Fukuda, S. Janeczko, Singularities of implicit differential systems and their integrability, Banach Center Publications, 65, (2004), 23-47.
[8] T. Fukuda, S. Janeczko, Hamiltonian systems on submanifolds, Advanced Studies in Pure Mathematics 78, (2018), 221-249.
[9] G. Ishikawa, S. Janeczko, Symplectic bifurcations of plane curves and isotropic liftings, Q. J. Math. 54, No. 1 (2003), 73-102.
[10] G. Ishikawa, S. Janeczko, Symplectic singularities of isotropic mappings, Geometric singularity theory, Banach Center Publications 65 (2004), 85-106.
[11] S. Janeczko, Constrained Lagrangian submanifolds over singular constraining varieties and discriminant varieties, Ann. Inst. Henri Poincare, Phys. Theorique, 46, No. 1, (1987), 1-26.
[12] S. Janeczko, On implicit Lagrangian differential systems., Annales Polonici Mathematici, LXXIV, (2000), 133-141.
[13] S. Janeczko, F. Pelletier, Singularities of implicit differential systems and Maximum Principle, Banach Center Publications, 62, (2004), 117-132.
[14] M. Zhitomirskii, Relative Darboux theorem for singular manifolds and local contact algebra, Can. J. Math. 57, No. 6 (2005), 1314-1340.

