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1. INTRODUCTION

Let M be a smooth 2n-dimensional manifold, endowed with a nondegenerate, closed
2-form ω . The 2-form ω is called symplectic and the pair (M,ω) is a symplectic manifold.
We introduce the canonical symplectic structure ω̇ on T M using the vector bundle morphism
β : T M 3 u 7→ ω(u, ·) ∈ T ∗M, namely the pullback of the Liouville symplectic form dθ de-
fined on the cotangent bundle T ∗M, ω̇ = β ∗dθ . A smooth vector field X : M→ T M is said
to be Hamiltonian if the form ω(X , ·) is exact. A function H : M → R is called Hamilto-
nian for X if ω(X , ·) = −dH(·). If X is Hamiltonian, then its image X(M) ⊂ T M is a La-
grangian submanifold of (T M, ω̇) generated by H. In local Darboux coordinates, M ∼= R2n,
ω =∑

n
i=1 dyi∧dxi, and ω̇ = β ∗dθ =∑

n
i=1(dẏi∧dxi−dẋi∧dyi), where (q, q̇) = ((x,y),(ẋ, ẏ))

are coordinates on TR2n ≡ R2n×R2n.

To generalize this notion, we introduce a concept of a Hamiltonian system as a general
Lagrangian submanifold N of the symplectic tangent bundle (T M, ω̇). If τ |N : N→M is sin-
gular, where τ is tangent bundle projection, we also call N an implicit Hamiltonian system
(cf. [12], [7]). Important property of such systems around singularities is their solvabil-
ity, i.e. existence of smooth local curve γ : (−ε,ε)→ M such that its tangent lifting γ̇(t)
belongs to N around each point of N. An immediate necessary condition for solvability
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is tangential solvability condition, which is satisfied if q̇ ∈ d(τ |N)v(TvN) for each point
v = (q, q̇) ∈ N. It is proved (cf. [7]) that, for certain naturally generic implicit Hamilto-
nian systems, they are solvable if they fulfill this tangential solvability condition. Another
generalization following P.A.M. Dirac (cf. [3]) is provided by constrained Lagrangian sub-
manifolds (cf. [11]) as Hamiltonian systems. The generalized Hamiltonian function for such
system is a generating family (Morse family) for the corresponding Lagrangian submanifold
Lh; F(x,y,λ ) = ∑

k
i=1 ai(x,y)λi + h(x,y) over the constraint K defined by smooth functions

ai(x,y) = 0. The condition of solvability { ∂F
∂λi

,F}= 0 for (x,y,λ ) ∈ S×R2n defines the sec-
tion of Lh which is tangent to K. The general sections of Lh give the vector fields which are
Hamiltonian on the constrained submanifold.

In this work we concentrate on the vector fields of symplectic space (M,ω), which are
Hamiltonian on a subvariety of M. As we do not exclude singularities, our approach is local
and we consider mainly germs of subvarieties and germs of vector fields. We find the spaces
of vector fields, which are Hamiltonian on symplectic, isotropic and coisotropic submani-
folds of (M,ω) and we provide the classification of Hamiltonian vector fields on singular
varieties: planar curves of type Ak,Dk,E6,E7,E8, regular union of three 1-dimensional sub-
manifolds, regular union of two 2-dimensional isotropic submanifolds, and regular union
of two 2-dimensional symplectic submanifolds. We use the Mathematica package Exterior
Differential Calculus for calculations.

2. HAMILTONIAN SYSTEMS ON SUBMANIFOLDS

Let K be a submanifold of R2n and h : K → R be a smooth function on K. The notion
of generalized Hamiltonian system (generalized Hamiltonian dynamics) was introduced by
P.A.M. Dirac in [3]. A generalized Hamiltonian system is the following sub-bundle Lh of
TR2n over K (cf. [13]):

Lh = {v ∈ TR2n : ω(v,u) =−dh(u) ∀u∈T K}. (1)

It is easy to see that Lh is a Lagrangian submanifold of (TR2n, ω̇).

In local coordinates, the generalized Hamiltonian system (1) can be written, using gener-
ating family F : R2n×Rk→ R, in the following way:

F(x,y,λ ) =
k

∑
`=1

a`(x,y)λ`+H(x,y), (2)

where K is defined as a zero-level set of the mapping a : (x,y) 7→ (a1(x,y), . . . ,ak(x,y)),
H(x,y) is an arbitrary smooth extension of the function h : K→ R and a is a maximal rank
map-germ.
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The generalized Hamiltonian system L is given by an immersion φ : CF → L⊂ (TR2n, ω̇)
defined by

φ(x,y,λ ) = (x,y,
∂F
∂y

(x,y,λ ),−∂F
∂x

(x,y,λ )), (x,y,λ ) ∈CF .

Since ∂F
∂λ`

(x,y,λ ) = a`(x,y), we have CF = K×Rk. Then L can be described as

L = φ(CF) = {(x,y,
∂F
∂y

(x,y,λ ),−∂F
∂x

(x,y,λ )) ∈ TR2n : (x,y,λ ) ∈ K×Rk}.

L is a skew-conormal bundle to K and its smooth sections are called Hamiltonian sys-
tems on K with Hamiltonian H. This may be extended to Hamiltonian system on M taking
Hamiltonian function

F(x,y) =
k

∑
l=1

λl(x,y)al(x,y)+H(x,y)

for some smooth functions λl(x,y).

Vector fields, which are Hamiltonian on K are given in the form:

n

∑
i=1

k

∑
j=1

λ j(x,y)(
∂a j

∂yi
(x,y)

∂

∂xi
−

∂a j

∂xi
(x,y)

∂

∂yi
)+

n

∑
i=1

(
∂H
∂yi

(x,y)
∂

∂xi
− ∂H

∂xi
(x,y)

∂

∂yi
). (3)

If we consider the functions λ j(x,y) which are smooth solutions of the system of linear
equations (cf. [8]),

k

∑
j=1
{ai,a j}(x,y)λ j = {H,ai}(x,y), i = 1, . . . ,k, (4)

then the vector fields (3) are the logarithmic Hamiltonian vector fields over K.

3. HAMILTONIAN VECTOR FIELDS ON SINGULAR
VARIETIES

Let (M,ω) be a symplectic manifold. Let N be a subset of M.

Definition 1. A smooth vector field X on M is called Hamiltonian on N if there exists
a smooth function H on M such that

(Xcω)|x =−dH|x, for every x ∈ N. (5)
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Example 2. Let (R2n,ω0) be the standard symplectic space. Let N ⊂ (R2n,ω0) be the germ
of a hypersurface with isolated singularity at 0. Assume that the ideal of smooth function-
germs vanishing on N is generated by a smooth function-germ g on R2n. Let H be a smooth
function-germ on R2n and let XH be a Hamiltonian vector field-germ on (R2n,ω0) with
a Hamiltonian H i.e. XHcω = −dH. Let Y be a smooth vector field-germ on R2n. Then
the vector field-germ gY +XH is Hamiltonian on N.

A smooth k-form β on M vanishes on N if β |x = 0 for every x ∈ N.

Definition 3. A smooth k-form α on M has zero algebraic restriction to N if there exist
a smooth k-form β on M vanishing on N and a smooth (k−1)-form γ on M vanishing on N
such that

α = β +dγ. (6)

Let Ak
0(N,M) denote the space of smooth k-forms with zero algebraic restriction to N.

Since d(Ak
0(N,M)) ⊂ Ak+1

0 (N,M), the complex (A∗0(N,M),d) is a subcomplex of the de
Rham complex on M. We denote by H∗(N,M) the cohomology groups of the complex
(A∗0(N,M),d).

Proposition 4. A smooth vector field X on M is Hamiltonian on N if and only if there exists
a smooth function H on M such that Xcω +dH has zero algebraic restriction to N.

Proof. Definition 1 is equivalent to the following condition:

Xcω +dH =
k

∑
i=1

fiαi, (7)

where α1, · · · ,αk are smooth 1-forms on M, H, f1, · · · , fk are smooth functions on M such
that f1|N = · · ·= fk|N = 0. But this implies that Xcω +dH has zero algebraic restriction to
N.

On the other hand, if there exists a smooth function H on M such that Xcω +dH has zero
algebraic restriction to N, then

Xcω +dH =
k

∑
i=1

fiαi +dg, (8)

where α1, · · · ,αk are smooth 1-forms on M, H, f1, · · · , fk,g are smooth functions on M such
that f1|N = · · ·= fk|N = g|N = 0. But this can be written in the following way:

Xcω +d (H−g) =
k

∑
i=1

fiαi, (9)

which implies that X is Hamiltonian on N.

The above definition and proposition are the motivation for the following definition of the
symplectic vector field on N:
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Definition 5. A smooth vector field X on M is called symplectic on N if LX ω has zero
algebraic restriction to N.

It is obvious that a vector field, which is Hamiltonian on N, is symplectic on N. The
inverse implication is not always true. The necessary and sufficient conditions are given in
the following proposition:

Proposition 6. The vector field-germ X is Hamiltonian on N if and only if X is symplectic
on N and LX ω define the zero cohomology class in H2(N,M).

Corollary 7. If H2(N,M) = {0}, then any symplectic vector field-germ on N is Hamiltonian
on N.

Definition 8. The germ at 0 of a set N ⊂ Rm is called quasi-homogeneous if there exist
a local coordinate system x1, . . . ,xm and positive numbers λ1, . . . ,λm such that the following
holds: if a point with coordinates xi = ai belongs to N, then for any t ∈ [0,1] the point with
coordinates xi = tλiai also belongs to N.

It was proved that if N is quasi-homogeneous, then Hk(N,M) = {0} for k > 0. (e.g. see
[4]). It implies the following proposition:

Proposition 9. If N is quasi-homogeneous, then any symplectic vector field-germ on N is
Hamiltonian on N.

4. GERMS OF HAMILTONIAN VECTOR FIELDS ON
SMOOTH SUBMANIFOLDS

If S is a smooth submanifold of M, then a smooth k-form α on M has zero algebraic
restriction to M if and only if the pullback of α to M vanishes. Thus, we obtain the following
result:

Corollary 10. Let S be a smooth submanifold of M. Let ι : S ↪→M be an embedding of S.
A smooth vector field X on M is Hamiltonian on S if and only if there exists a smooth function
H on M such that

ι
∗(Xcω) = d(H ◦ ι). (10)

Thus, by the above corollary we obtain the following:

ω(X(x),v) =−dH(v), for every x ∈ S, and for every v ∈ TxS. (11)

It means that if the vector field X is Hamiltonian on a smooth submanifold S of M, then X is
a section of the bundle L.

By Poincare Lemma and Corollary 10 we have

Proposition 11. Let S be a smooth submanifold of M. Let ι : S ↪→M be an embedding of S.
A smooth vector field X on M is Hamiltonian on S if and only if d(ι∗(Xcω)) = 0.
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4.1. SYMPLECTIC SUBMANIFOLDS

Let S be the germ of a symplectic submanifold of dimension 2k of the symplectic man-
ifold (R2n,ω = ∑

n
i=1 dxi ∧ dyi). Then, by the Darboux-Givental Theorem (see [1]), S is

symplectomorphic to

S0 = {(x,y) ∈ R2n|xi = yi = 0 for i = k+1, · · · ,n}.

If (x̃, ỹ) = (x1, · · · ,xk,y1, · · · ,yk) and ι : S 3 (x̃, ỹ) 7→ (x̃,0, ỹ,0) ∈ R2n, then a smooth vector
field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂

∂yi

at 0 on R2n is Hamiltonian on S0 if d(ι∗(Xcω) = 0.

It implies that d(∑k
i=1 fi(x̃,0, ỹ,0)dyi−gi(x̃,0, ỹ,0)dxi) = 0. Thus, the vector field-germ

X̃ =
k

∑
i=1

fi(x̃,0, ỹ,0))
∂

∂xi
+gi(x̃,0, ỹ,0))

∂

∂yi

on S0 is Hamiltonian on a symplectic manifold (S0, ι
∗ω = ∑

k
i=1 dxi∧dyi). Let us notice that

X̃ |π(x,y) = π∗(X |(x,y)), where π : R2n 3 (x,y) 7→ (x̃, ỹ) ∈ S0. Since π ◦ ι = IdS0 , we obtain the
following proposition:

Proposition 12. A smooth vector field-germ X on (R2n,ω) is Hamiltonian on the symplectic
submanifold-germ S0, if the vector field-germ π∗(X ◦ ι) on S0 is Hamiltonian on the symplec-
tic manifold (S0, ι

∗ω).

4.2. COISOTROPIC SUBMANIFOLDS

Let C be the germ of a coisotropic submanifold of codimension k of the symplectic man-
ifold (R2n,ω = ∑

n
i=1 dxi ∧ dyi). Then, by the Darboux-Givental Theorem (see [1]), C is

symplectomorphic to

C0 = {(x,y) ∈ R2n|xi = 0 for i = 1, · · · ,k}.

If x̃ = (xk+1, · · · ,xn) and ι : C0 3 (x̃,y) 7→ (0, x̃,y) ∈ R2n, then a smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂

∂yi

at 0 on R2n is Hamiltonian on C0 if d(ι∗(Xcω) = 0. It implies that the 1-form-germ

ι
∗(Xcω) =

n

∑
i=1

fi(0, x̃,y)dyi−
k

∑
i=k+n

gi(0, x̃,y)dxi
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on C0 is exact. Hence, there exists a smooth function-germ on C0 such that gi(0, x̃,y) =
− ∂h

∂xi
(x̃,y) for i = k+1, · · · ,n and fi(0, x̃,y) = ∂h

∂yi
(x̃,y) for i = 1, · · · ,n. Thus, we obtain the

following proposition:

Proposition 13. A smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂

∂yi

on (R2n,ω = ∑
n
i=1 dxi∧dyi) is Hamiltonian on the coisotropic submanifold-germ

C0 = {(x,y) ∈ R2n| xi = 0 for i = 1, · · · ,k},

if there exists a smooth function germ h on C0 such that gi(0, x̃,y) = − ∂h
∂xi

(x̃,y) for i = k+

1, · · · ,n and fi(0, x̃,y) = ∂h
∂yi

(x̃,y) for i = 1, · · · ,n.

4.3. ISOTROPIC SUBMANIFOLDS

Let I be the germ of an isotropic submanifold of dimension k of the symplectic manifold
(R2n,ω = ∑

n
i=1 dxi∧dyi). Then, by the Darboux-Givental Theorem (see [1]), I is symplec-

tomorphic to
I0 = {(x,y) ∈ R2n|y = 0, xi = 0 for i = k+1, · · · ,n}.

If x̃ = (x1, · · · ,xk) and ι : I0 3 x̃ 7→ (x̃,0) ∈ R2n, then a smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂

∂yi

at 0 on R2n is Hamiltonian on I0 if d(ι∗(Xcω) = 0. It implies that the 1-form-germ

ι
∗(Xcω) =−

k

∑
i=1

gi(x̃,0)dxi

on I0 is exact. Hence, there exists a smooth function-germ on I0 such that gi(x̃,0) = ∂h
∂xi

(x̃)
for i = 1, · · · ,k. Thus, we obtain the following proposition:

Proposition 14. A smooth vector field-germ

X =
n

∑
i=1

fi(x,y)
∂

∂xi
+gi(x,y)

∂

∂yi

on (R2n,ω = ∑
n
i=1 dxi∧dyi) is Hamiltonian on the isotropic submanifold

I0 = {(x,y) ∈ R2n|y = 0, xi = 0 for i = k+1, · · · ,n},

if there exists a smooth function-germ h on I0 such that gi(x̃,0) = ∂h
∂xi

(x̃) for i = 1, · · · ,k.
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In particular by Proposition 11 we obtain

Corollary 15. If C is a regular curve (1-dimensional smooth submanifold), then any smooth
vector field-germ on R2n is Hamiltonian.

Proof. Any smooth 1-form on C is closed.

5. GERMS OF HAMILTONIAN VECTOR FIELDS ON
SINGULAR CURVES

In this section we describe germs of Hamiltonian vector fields on singular curves at a sin-
gular point. By Corollary 15 any smooth vector field-germ is Hamiltonian on a regular curve.

PLANAR CURVES OF TYPES AK,DK,E6,E7,E8

A planar curve in the symplectic space (R2n,ω) is a curve which is embedded in a smooth
2-dimensional submanifold S of (R2n,ω). Let ι : S ↪→ R2n be an embedding of S.

We assume that the germ of the curve is locally diffeomorphic to N = {x∈R2n|G(x1,x2)=
x≥3 = 0}, where G has the following properties:

1. G(0,0) = 0, dG(0,0) = 0,

2. the ideal of smooth function-germs on R2 vanishing on {(x1,x2) ∈ R2|G(x1,x2) = 0}
is generated by G.

3. G is quasi-homogeneous polynomial.

Then, we can take locally S = {x ∈ R2n|x≥3 = 0} and ι(x3, · · · ,x2n) = (0,0,x3, · · · ,x2n).
A smooth vector field-germ on (R2n,ω) is Hamiltonian on N if and only if d(ι∗(Xcω)) =
d(G(x1,x2)α) for some smooth 1-form-germ α on R2.

By Theorem 4.11 in [5] any curve-germ in the symplectic space (R2n,ω0 = ∑
n
i=0 d pi ∧

dqi), n≥ 2, which is diffeomorphic to the curve-germ at 0 {x∈R2n|G(x1,x2) = x≥3 = 0} for
smooth function-germs G in Tab. 1 is symplectomorphic to one and only one of the following
curve-germs:

Ni = {(p,q) ∈ R2n|G(p1, p2) = q1−
∫ p2

0
Fi(p1, t)dt = q≥2 = p≥3 = 0} ⊂ (R2n,ω0), (12)

for i = 0, · · · ,µ , where smooth function-germs Fi are presented in Tab. 1.
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Table 1
Classification of the algebraic restrictions to Ak,Dk,E6,E7,E8

G(x1,x2) Fi(x1,x2), i = 0,1, . . . ,µ

Ak : xk+1
1 − x2

2
k ≥ 1

F0 = 1
Fi = xi

1, i = 1, . . . ,k−1
Fk = 0

Dk : x2
1x2− xk−1

2
k ≥ 4

F0 = 1
Fi = bx1 + xi

2, i = 1, . . . ,k−4
Fk−3 = (±1)kx1 +bxk−3

2 ,
Fk−2 = xk−3

2 , Fk−1 = xk−2
2 , Fk = 0

E6 : x3
1− x4

2 F0 = 1, F1 =±x2 +bx1, F2 = x1 +bx2
2,

F3 = x2
2 +bx1x2, F4 =±x1x2, F5 = x1x2

2, F6 = 0

E7 : x3
1− x1x3

2 F0 = 1, F1 = x2 +bx1, F2 =±x1 +bx2
2,

F3 = x2
2 +bx1x2, F4 =±x1x2 +bx3

2,
F5 = x3

2, F6 = x4
2, F7 = 0

E8 : x3
1− x5

2 F0 =±1, F1 = x2 +bx1, F2 = x1 +b1x2
2 +b2x3

2
F3 =±x2

2 +bx1x2, F4 =±x1x2 +bx3
2,

F5 = x3
2 +bx1x2

2, F6 = x1x2
2, F7 =±x1x3

2, F8 = 0

Let ι : R2 → R2n be the following map-germ: ι(p1, p2) = (p1,
∫ p2

0 Fi(p1, t)dt, p2,0).
A smooth vector field-germ

X =
n

∑
i=1

fi(p1,q1, · · · , pn,qn)
∂

∂ pi
+gi(p1,q1, · · · , pn,qn)

∂

∂qi

on (R2n,ω0 = ∑
n
i=1 d pi∧dqi) is Hamiltonian on Ni if a smooth 2-form-germ at 0 on R2

σ = r(p1, p2)d p1∧d p2 = d
(
( f1 ◦ ι)d(

∫ p2

0
Fi(p1, t)dt)− (g1 ◦ ι)d p1− (g2 ◦ ι)d p2

)
has zero algebraic restriction to {(p1, p2) ∈ R2|G(p1, p2) = 0}.

By the direct calculation we obtain that

r(p1, p2) =
(

∂g1
∂ p2
− ∂g2

∂ p1

)
(p1,

∫ p2
0 Fi(p1, t)dt, p2,0) (13)

+Fi(p1, p2)
(

∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1,

∫ p2
0 Fi(p1, t)dt, p2,0)

−
∫ p2

0
∂Fi
∂ p1

(p1, t)dt
(

∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1,

∫ p2
0 Fi(p1, t)dt, p2,0).

If G is quasi-homogeneous, then a smooth 2-form r(p1, p2)d p1 ∧ d p2 has zero algebraic
restriction to {(p1, p2) ∈ R2|G(p1, p2) = 0} if and only if r belongs to the ideal < ∇G >
generated by ∂G

∂ p1
(p1, p2), ∂G

∂ p2
(p1, p2) (see [5]).

Thus, we obtain the following proposition:
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Proposition 16. A smooth vector field-germ

X =
n

∑
j=1

f j(p,q)
∂

∂ p j
+g j(p,q)

∂

∂q j

is Hamiltonian on

Ni = {(p,q) ∈ R2n|G(p1, p2) = q1−
∫ p2

0
Fi(p1, t)dt = q≥2 = p≥3 = 0} ⊂ (R2n,ω0),

where G and Fi are presented in Tab. 1, if and only if the function-germ r given by (13)
belongs to the ideal < ∇G >.

5.1. PLANAR CURVES OF TYPES AI
K

By Proposition 16 we obtain the following:

Proposition 17. Let us fix k ∈ N and i = 0,1, · · · ,k. A smooth vector field-germ

X =
n

∑
j=1

f j(p,q)
∂

∂ p j
+g j(p,q)

∂

∂q j

on (R2n,ω0 = ∑
n
j=1 d p j∧dq j) is Hamiltonian on

Ai
k = {(p,q) ∈ R2n|pk+1

1 − p2
2 = q1− pi

1 p2 = q≥2 = p≥3 = 0} (i = 0,1, · · · ,k−1)

or on
Ak

k = {(p,q) ∈ R2n|pk+1
1 − p2

2 = q≥1 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0, · · · , i−1,

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0)− j!
( j− i)!

(
∂ j−i+1 f1

∂ p j−i+1
1

(0)+
∂ j−i+1g2

∂ p j−i
1 ∂q1

(0)

)
for j = i, · · · ,k−1.

Proof. For a planar curve of type Ai
k (k≥ 1, i= 0, · · · ,k) , we have that G(p1, p2) = pk+1

1 − p2
2

and Fi(p1, p2) = pi
1 for i = 0, · · · ,k−1 and Fk(p1, p2) = 0 (see Tab. 1).

For A0
k singularity we have

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1
+

∂ f1

∂ p1
+

∂g1

∂q1

)
(p1, p2, p2,0).



Hamiltonian vector fields on singular varieties

For Ai
k singularity i = 1, · · · ,k−1 the function-germ r has the following form:

r(p1, p2) =
(

∂g1
∂ p2
− ∂g2

∂ p1

)
(p1, pi

1 p2, p2,0) (14)

+pi
1

(
∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1, pi

1 p2, p2,0)

−ipi−1
1 p2

(
∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1, pi

1 p2, p2,0).

For Ak
k singularity we get Fk(p1, p2) = 0 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,0, p2,0).

Since < ∇G >=< pk
1, p2 >, it is easy to see that O2/ < ∇G >∼= R

{
1, p1, · · · , pk−1

1

}
. The

function-germ r belongs to < ∇G > if and only if ∂ jr
∂ p j

1
(0,0) = 0 for j = 0,1, · · · ,k− 1. By

a direct calculation we get that for j = 0, · · · , i−1

∂ jr

∂ p j
1

(0,0) =
∂ j+1g1

∂ p j
1∂ p2

(0)− ∂ j+1g2

∂ p j+1
1

(0),

and for j = i, · · · ,k−1

∂ jr

∂ p j
1

(0,0) =
∂ j+1g1

∂ p j
1∂ p2

(0)− ∂ j+1g2

∂ p j+1
1

(0)+
j!

( j− i)!

(
∂ j−i+1 f1

∂ p j−i+1
1

(0)+
∂ j−i+1g2

∂ p j−i
1 ∂q1

(0)

)
.

5.2. PLANAR CURVES OF TYPES DI
K

For a planar curve of type Di
k ( k≥ 4, i = 0, · · · ,k ) we have that G(p1, p2) = p2

1 p2− pk−1
2 .

Then it is easy to see that < ∇G >=< p1 p2, p2
1− (k−1)pk−2

2 > and

O2/ < ∇G >∼= R
{

1, p2, · · · , pk−2
2 , p1

}
.

For D0
k singularity we get F0(p1, p2) = 1 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1
+

∂ f1

∂ p1
+

∂g1

∂q1

)
(p1, p2, p2,0).

For Di
k singularity i = 1, · · · ,k−4 we get Fi(p1, p2) = bp1 + pi

2 and

r(p1, p2) =
(

∂g1
∂ p2
− ∂g2

∂ p1

)
(p1,bp1 p2 +

pi+1
2

i+1 , p2,0) (15)

+(bp1 + pi
2)
(

∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1,bp1 p2 +

pi+1
2

i+1 , p2,0)

−bp2

(
∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1,bp1 p2 +

pi+1
2

i+1 , p2,0).
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For Dk−3
k singularity we have Fk−3(p1, p2) = (±1)k p1 +bpk−3

2 and

r(p1, p2) =
(

∂g1
∂ p2
− ∂g2

∂ p1

)
(p1,(±1)k p1 p2 +b pk−2

2
k−2 , p2,0) (16)

+((±1)k p1 +bpk−3
2 )

(
∂ f1
∂ p1

+ ∂g1
∂q1

)
(p1,(±1)k p1 p2 +b pk−2

2
k−2 , p2,0)

−(±1)k p2

(
∂ f1
∂ p2

+ ∂g2
∂q1

)
(p1,(±1)k p1 p2 +b pk−2

2
k−2 , p2,0).

For Dk−2
k singularity we get Fk−2(p1, p2) = pk−3

2 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,

pk−2
2

k−2
, p2,0)+ pk−3

2

(
∂ f1

∂ p1
+

∂g1

∂q1

)
(p1,

pk−2
2

k−2
, p2,0).

For Dk−1
k singularity we get Fk−2(p1, p2) = pk−2

2 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,

pk−1
2

k−1
, p2,0)+ pk−2

2

(
∂ f1

∂ p1
+

∂g1

∂q1

)
(p1,

pk−1
2

k−1
, p2,0).

For Dk
k singularity we get Fk(p1, p2) = 0 and

r(p1, p2) =

(
∂g1

∂ p2
− ∂g2

∂ p1

)
(p1,0, p2,0).

The function-germ r belongs to < ∇G >=< p1 p2, p2
1− (k−1)pk−2

2 > if and only if

∂ jr

∂ p j
2

(0,0) =
∂ r

∂ p1
(0,0) = 0 for j = 0,1, · · · ,k−3 (17)

and
∂ 2r
∂ p2

1
(0,0) =

2
(k−1)!

∂ k−2r
∂ pk−2

2

(0,0). (18)

For general k conditions (17)-(18) are rather complicated in terms of partial derivatives of
coefficient functions f1, g1, g2 at 0. Therefore, we will present them only for Di

4 singularities
for i = 0,1, · · · ,4.

Let X = ∑
n
j=1 f j(p,q) ∂

∂ p j
+ g j(p,q) ∂

∂q j
be the smooth vector field-germ on (R2n,ω0 =

∑
n
j=1 d p j∧dq j). By a direct calculation Proposition 16 implies the following:

The vector field-germ X is Hamiltonian on

D0
4 = {(p,q) ∈ R2n|p2

1 p2− p3
2 = q1− p2 = q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:
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∂ j+1g2

∂ p j+1
1

(0) =
∂ j+1g1

∂ p j
1∂ p2

(0)+
∂ j+1g1

∂ p j
1∂q1

(0)+
∂ j+1 f1

∂ p j+1
1

(0) for j = 0,1,

∂ 2g1

∂ p2
2
(0)+2

∂ 2g1

∂q1∂ p2
(0)+

∂ 2g1

∂q2
1
(0)+

∂ 2 f1

∂ p1∂ p2
(0)

− ∂ 2g2

∂ p1∂ p2
(0)+

∂ 2 f1

∂ p1∂q1
(0)− ∂ 2g2

∂ p1∂q1
(0) = 0,

3
(

∂ 3g1

∂ p2
1∂ p2

(0)+
∂ 3g1

∂ p2
1∂q1

(0)+
∂ 3 f1

∂ p3
1
(0)− ∂ 3g2

∂ p3
1
(0)
)

=
∂ 3g1

∂ p3
2
(0)+3

∂ 3g1

∂q1∂ p2
2
(0)+3

∂ 3g1

∂q2
1∂ p2

(0)+
∂ 3g1

∂q3
1
(0)+

∂ 3 f1

∂ p1∂ p2
2
(0)− ∂ 3g2

∂ p1∂ p2
2
(0)

+2
∂ 3 f1

∂ p1∂q1∂ p2
(0)−2

∂ 3g2

∂ p1∂q1∂ p2
(0)+

∂ 3 f1

∂ p1∂q2
1
(0)− ∂ 3g2

∂ p1∂q2
1
(0).

The vector field-germ X is Hamiltonian on

D1
4 = {(p,q) ∈ R2n|p2

1 p2− p3
2 = q1− p1 p2−b

p2
2

2
= q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂g1

∂ p2
(0) =

∂g2

∂ p1
(0),

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)+

∂ 2g1

∂ p1∂ p2
(0)− ∂ 2g2

∂ p2
1
(0) = 0,

− ∂ f1

∂ p2
(0)+

∂ 2g1

∂ p2
2
(0)− ∂g2

∂q1
(0)+b

(
∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)
)
− ∂ 2g2

∂ p1∂ p2
(0) = 0,

6
(

∂ 2g1

∂ p1∂q1
(0)+

∂ 2 f1

∂ p2
1
(0)
)
+3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)

=
∂ 3g1

∂ p3
2
(0)− ∂ 3g2

∂ p1∂ p2
2
(0)−2

(
∂ 2 f1

∂ p2
2
(0)+

∂ 2g2

∂q1∂ p2
(0)
)

+b
(

3
∂ 2g1

∂ p1∂ p2
(0)+2

∂ 2 f1

∂ p1∂ p2
(0)− ∂g2

∂ p1
∂q1(0)

)
.



Wojciech Domitrz, Stanisław Janeczko

The vector field-germ X is Hamiltonian on

D2
4 = {(p,q) ∈ R2n|p2

1 p2− p3
2 = q1−

p2
2

2
= q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0,1,

∂ 2g1

∂ p2
2
(0)+

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)− ∂ 2g2

∂ p1∂ p2
(0) = 0,

3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)
=

∂ 3g1

∂ p3
2
(0)+

∂ 2g1

∂q1∂ p2
(0)+2

(
∂ 2g1

∂q1∂ p2
(0)+

∂ 2 f1

∂ p1∂ p2
(0)
)
− ∂ 3g2

∂ p1∂ p2
2
(0)− ∂ 2g2

∂ p1∂q1
(0).

The vector field-germ X is Hamiltonian on

D3
4 = {(p,q) ∈ R2n|p2

1 p2− p3
2 = q1−

p3
2

3
= q≥2 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0,1,

∂ 2g1

∂ p2
2
(0) =

∂ 2g2

∂ p1∂ p2
(0),

3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)
=

∂ 3g1

∂ p3
2
(0)+2

(
∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)
)
− ∂ 3g2

∂ p1∂ p2
2
(0).

The vector field-germ X is Hamiltonian on

D4
4 = {(p,q) ∈ R2n|p2

1 p2− p3
2 = q≥1 = p≥3 = 0}

if and only if the following conditions are satisfied:

∂ j+1g1

∂ p j
1∂ p2

(0) =
∂ j+1g2

∂ p j+1
1

(0) for j = 0,1,
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∂ 2g1

∂ p2
2
(0) =

∂ 2g2

∂ p1∂ p2
(0),

3
(

∂ 3g1

∂ p2
1∂ p2

(0)− ∂ 3g2

∂ p3
1
(0)
)
=

∂ 3g1

∂ p3
2
(0)− ∂ 3g2

∂ p1∂ p2
2
(0).

In the same way by Proposition 16 one can obtain the necessary and sufficient conditions
for the vector field-germ X to be Hamiltonian on planar curves with E i

k singularities for
k = 6,7,8 and i = 0,1, · · · ,k (see Tab. 1). Please notice that for E i

k singularity there are k
independent conditions, therefore we do not present them.

6. GERMS OF HAMILTONIAN VECTOR FIELDS ON
REGULAR UNION SINGULARITIES.

A regular union singularity N at 0 in R2n is the union

N = N1∪·· ·∪Ns, s≥ 2 (19)

of germs at 0 of smooth submanifolds N1, · · · ,Ns of R2n (in what follows - strata) such that
the dimension of the space

W = T0N1 + · · ·+T0Ns (20)

is equal to the sum of the dimensions of the strata, i.e. the sum (20) is direct. If the number
of strata and their dimensions are fixed, then all such N are diffeomorphic. By Theorem 7.1
in [5] the germ of a closed 2-form σ has zero algebraic restriction to N if and only if its
pullback to each of the strata Ni (i = 1, · · · ,s) vanishes and the restriction of the germ σ to
the space W vanishes. It implies the following:

Proposition 18. A smooth vector field-germ X in the symplectic space (R2n,ω) is Hamilto-
nian on a regular union singularity N if and only if the pullback of the germ d(Xcω) to each
of the strata Ni (i = 1, · · · ,s) vanishes and the restriction of the germ d(Xcω) to the space W
vanishes.

6.1. REGULAR UNION OF THREE 1-DIMENSIONAL
SUBMANIFOLDS

Let us consider a regular union singularity of three germs at 0 of 1-dimensional submani-
folds N = N1∪N2∪N3 of the symplectic space (R2n,ω = ∑

n
i=1 d pi∧dqi). These symplectic

singularities are classified in [5].
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Proposition 19 (Theorem 7.4 in [5]). Any regular union singularity N with three
1-dimensional strata in the symplectic space (R2n,ω), n≥ 3 (resp. n = 2) is symplectomor-
phic to one and only one of the varieties N0,N1,N2,N3 (resp. N0,N1,N2) given in Tab. 2. It
holds if and only if the pair (ω,N) satisfies the condition in the last column of the table.

Table 2
Classification of symplectic regular union singularities with three

1-dimensional strata. W denotes the 3-space spanned by the tangent
lines at 0 to the strata

Symplectic normal forms Geometric condition
N0 q2 = p1 + p2,

p1q1 = q1 p2 = p2q2 = 0,
p≥3 = q≥3 = 0

ω|W 6= 0,
kerω|W 6⊂ T0Ni +T0N j,
for any i, j ∈ {1,2,3};

N1 q2 = p1,
p1q1 = q1 p2 = p2 p1 = 0,
p≥3 = q≥3 = 0

ω|W 6= 0,
kerω|W ⊂ T0Ni +T0N j,
kerω|W 6= T0Ni,T0N j
for some i, j ∈ {1,2,3};

N2 p1q1 = q1 p2 = p2 p1 = 0, p≥3 =
q≥2 = 0

ω|W 6= 0,
kerω|W = T0Ni
for some i ∈ {1,2,3}

N3 p1 p2 = p2 p3 = p3 p1 = 0, p≥4 =
q≥1 = 0

ω|W = 0.

Since the strata are 1-dimensional, by Proposition 18, a smooth vector-field germ X is
Hamiltonian on N if and only if d(Xcω)|W = 0. Hence for singularities Ni for i = 0,1, · · · ,3
we obtain the following conditions:

Let X = ∑
n
i=1 fi(p,q) ∂

∂ pi
+gi(p,q) ∂

∂qi
be a smooth vector field-germ on R2n.

The vector field-germ X is Hamiltonian on N0 if and only if

∂ f1

∂q2
(0)+

∂ f1

∂ p2
(0)− ∂ f2

∂q1
(0)+

∂g2

∂q1
(0) = 0,

∂ f2

∂q1
(0)+

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0)+

∂ f2

∂q1
(0) = 0,

∂g1

∂q2
(0)− ∂g2

∂q2
(0)− ∂ f2

∂ p2
(0)+

∂g1

∂ p2
(0)+

∂ f2

∂ p1
(0)− ∂g2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N1 if and only if

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂ f1

∂q2
(0)+

∂ f2

∂q1
(0)+

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) = 0,
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∂g1

∂ p2
(0)− ∂g2

∂q2
(0)− ∂ f2

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N2 if and only if

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N3 if and only if

∂g2

∂ p3
(0)− ∂g3

∂ p2
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) =

∂g1

∂ p3
(0)− ∂g3

∂ p1
(0) = 0.

6.2. REGULAR UNION OF TWO 2-DIMENSIONAL ISOTROPIC
SUBMANIFOLDS

Now we consider the regular union singularity of two 2-dimensional isotropic submanifold-
germs of the symplectic space. The following classification proposition was proved in [5]:

Proposition 20. Any regular union singularity N of two 2-dimensional isotropic submanifold-
germs in a symplectic space (R2n,ω = ∑

n
i=1 d pi∧dqi) is symplectomorphic to one and only

one of the varieties N0,N1,N4 in Tab. 3. The orbit of Ni has codimension i in the class of
all regular union singularities with two 2-dimensional isotropic strata. The normal form Ni

holds if and only if the pair (ω,N) satisfies the condition given in the last column of Tab. 3.

Table 3
Classification of symplectic regular union singularities of two 2-dimensional
isotropic submanifold-germs. W denotes the 4-space spanned by the tangent

planes at 0 to the strata

Symplectic normal forms Geometric condition codim

N0 {p≥3 = q≥1 = 0}∪
{p≥1 = q≥3 = 0} rank ω|W = 4 0

N1 ( n≥ 3)
{p≥3 = q≥1 = 0}∪
{p≥1 = q2 = q≥4 = 0} rank ω|W = 2 1

N4 ( n≥ 4 )
{p≥3 = q≥1 = 0}∪

{p1 = p2 = p≥5 = q≥1 = 0} ω|W = 0 4

By Proposition 18 a smooth vector field-germ X is Hamiltonian on N if and only if X is
Hamiltonian on both of isotropic submanifold-germs N1, N2 and d(Xcω)|W = 0.

Let X = ∑
n
i=1 fi(p,q) ∂

∂ pi
+gi(p,q) ∂

∂qi
be a smooth vector field-germ on R2n. By Proposi-

tions 18 and 14 we obtain the following conditions:
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The vector field-germ X is Hamiltonian on N0 = N0
1 ∪N0

2 if and only if there exist a smooth
function-germs h on N0

1 = {p≥3 = q≥1 = 0} and k on N0
2 = {q≥3 = p≥1 = 0} such that

gi(p1, p2,0) = ∂h
∂ pi

(p1, p2) and fi(0,q1,q2,0) = ∂k
∂qi

(q1,q2) for i = 1,2, and

∂g2

∂q2
(0)+

∂ f2

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q2
(0)+

∂ f2

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N1 =N1
1 ∪N1

2 if and only if there exist a smooth
function-germs h on N1

1 = {p≥3 = q≥1 = 0} and k on N1
2 = {p≥1 = q2 = q≥4 = 0} such that

gi(p1, p2,0) = ∂h
∂ pi

(p1, p2) for i = 1,2 and f j(0,q1,0,q3,0) = ∂k
∂q j

(q1,q3) for j = 1,3, and

∂g2

∂q3
(0)+

∂ f3

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q3
(0)+

∂ f3

∂ p1
(0) = 0.

The vector field-germ X is Hamiltonian on N4 =N4
1 ∪N4

2 if and only if there exist a smooth
function-germs h on N4

1 = {p≥3 = q≥1 = 0} and k on N4
2 = {p1 = p2 = p≥5 = q≥1 = 0} such

that gi(p1, p2,0) = ∂h
∂ pi

(p1, p2) for i = 1,2 and g j(0, p3, p4,0) = ∂k
∂ p j

(p3, p4) for j = 3,4, and

∂g2

∂ p3
(0)− ∂g3

∂ p2
(0) =

∂g2

∂ p4
(0)+

∂g4

∂ p2
(0) =

∂g1

∂ p3
(0)− ∂g3

∂ p1
(0) =

∂g1

∂ p4
(0)− ∂g4

∂ p1
(0) = 0.

6.3. REGULAR UNION OF TWO 2-DIMENSIONAL SYMPLECTIC
SUBMANIFOLDS

In this subsection we consider Hamiltonian vector field-germs on regular union singular-
ities with two 2-dimensional symplectic strata in a symplectic space (R2n,ω). Recall that
two germs of submanifolds N1,N2 of a symplectic space (R2n,ω) are called ω-orthogonal
if ω(v,u) = 0 for any vectors v ∈ T0N1,u ∈ T0N2. The symplectic classification of such N
involves the following invariant:

Definition 21 (see Definition 7.6 in [5]). The index of non-orthogonality between 2-dimen-
sional symplectic submanifolds N1 and N2 of a symplectic space (R2n,ω) is the number

α = α(N1,N2) = 1− (ω ∧ω)(v1,v2,u1,u2)

2 ·ω(v1,v2) ·ω(u1,u2)

where v1,v2 is a basis of T0N1 and u1,u2 is a basis of T0N2.

It is easy to see that the index of non-orthogonality α(N1,N2) is well-defined, i.e. it does
not depend on the choice of the bases of T0N1 and T0N2. It is equal to 0 if and only if there
exists a non-zero vector u ∈ T0N1 such that ω(v,u) = 0 for any v ∈ T0N2. It is equal to 1 if
and only if the 4-form ω ∧ω has zero restriction to the space W = T0N1 +T0N2.
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Theorem 22 (Theorem 7.9 in [5]). Let ω = ∑
n
i=1 d pi∧dqi. Let N = N1∪N2 be the regular

union singularity with two 2-dimensional symplectic strata in the symplectic space (R2n,ω).

If N1 and N2 are not ω-orthogonal, then N is symplectomorphic to the variety

Nα = {q1 = p2, p1 = p≥3 = q≥3 = 0}∪{p2 = αq1, p≥3 = q≥2 = 0},

where α is the index of non-orthogonality between N1 and N2.

If N1 and N2 are ω-orthogonal, then N has is symplectomorphic to

N⊥ = {p≥2 = q≥2 = 0}∪{p1 = q1 = p≥3 = q≥3 = 0}.

If n ≥ 3, then any of the normal forms is realizable and if n = 2, then any of the normal
forms is realizable except the normal form N1.

Theorem 22 was generalized in [6] to regular union singularities of two germs of symplec-
tic or quasi-symplectic k-dimensional submanifolds of the symplectic space. For simplicity
we present the case k = 2 only.

By Proposition 18 a smooth vector field-germ X is Hamiltonian on N =N1∪N2 if and only
if X is Hamiltonian on both of symplectic submanifold-germs N1, N2 and d(Xcω)|W = 0.

Let X = ∑
n
i=1 fi(p,q) ∂

∂ pi
+gi(p,q) ∂

∂qi
be a smooth vector field-germ on R2n. By Proposi-

tions 18 and direct calculations we obtain the following proposition:

Proposition 23. The vector field-germ X is Hamiltonian on

Nα = {q1 = p2, p1 = p≥3 = q≥3 = 0}∪{p2 = αq1, p≥3 = q≥2 = 0}

if and only if (
−∂ f1

∂q2
+

∂g2

∂q2
+

∂ f2

∂ p2
+

∂ f2

∂q1

)
|{q1=p2,p1=p≥3=q≥3=0} = 0,

(
α

∂g1

∂ p2
+

∂g1

∂q1
+

∂ f1

∂ p1
−α

∂g2

∂ p1

)
|{p2=αq1,p≥3=q≥2=0} = 0,

∂g2

∂q2
(0)+

∂ f2

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q2
(0)+

∂ f2

∂ p1
(0) = 0,

∂ f1

∂q2
(0)− ∂ f2

∂q1
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

Let us denote the stata of N⊥ by

N⊥1 = {p≥2 = q≥2 = 0}, N⊥2 = {p1 = q1 = p≥3 = q≥3 = 0}.

In the same way we get the following result:
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Proposition 24. The vector field-germ X is Hamiltonian on N⊥ = N⊥1 ∪N⊥2 if and only if(
∂g1

∂q1
+

∂ f1

∂ p1

)
|N⊥1 = 0, (21)

(
∂g2

∂q2
+

∂ f2

∂ p2

)
|N⊥2 = 0, (22)

∂g2

∂q2
(0)+

∂ f2

∂ p2
(0) =

∂ f1

∂ p2
(0)+

∂g2

∂q1
(0) =

∂g1

∂q1
(0)+

∂ f1

∂ p1
(0) =

∂g1

∂q2
(0)+

∂ f2

∂ p1
(0) = 0,

∂ f1

∂q2
(0)− ∂ f2

∂q1
(0) =

∂g1

∂ p2
(0)− ∂g2

∂ p1
(0) = 0.

The conditions (21)-(22) mean that the vector field-germ fi|N⊥i
∂

∂ pi
+gi|N⊥i

∂

∂qi
on the sym-

plectic manifold-germ (N⊥i ,ω|T N⊥i
) is Hamiltonian (in the classical sense) for i = 1,2 (see

Proposition 12).
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