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Abstract—We show that there exists a natural Poisson–Lie algebra associated to a singular
symplectic structure ω. We construct Poisson–Lie algebras for the Martinet and Roussarie
types of singularities. In the special case when the singular symplectic structure is given by
the pullback from the Darboux form, ω = F ∗ω0, this Poisson–Lie algebra is a basic symplectic
invariant of the singularity of the smooth mapping F into the symplectic space (R2n, ω0). The
case of Ak singularities of pullbacks is considered, and Poisson–Lie algebras for Σ2,0, Σe

2,2,0 and
Σh

2,2,0 stable singularities of 2-forms are calculated.
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1. INTRODUCTION

Let ω be the germ of a closed 2-form at 0 ∈ R
2n. For a function-germ h at 0 ∈ R

2n and
nondegenerate ω, the Hamiltonian vector field of h with respect to ω is the vector field Xω,h such
that (see [11, 21])

ω(Xω,h, ξ) = −ξ(h) (1.1)

for any vector field ξ on R
2n.

If ω is singular, then the smooth vector field Xω,h defined by formula (1.1) may not exist
(cf. [14, 19, 6]). Thus we define the space of Hamiltonians Hω,

Hω = {h ∈ E2n | Xω,h is smooth}. (1.2)

If h, k ∈ Hω, we show that {h, k}ω = ω(Xω,h,Xω,k) belongs to Hω. And under a certain generic
condition we prove that Hω equipped with the bracket {· , ·}ω is a Poisson–Lie algebra.

Let (R2n, ω0) be a symplectic space with ω0 in Darboux form. Let θ be the Liouville 1-form on
the cotangent bundle T ∗

R
2n. Then dθ is a standard symplectic structure on T ∗

R
2n. Let β : TR2n →

T ∗
R
2n be the canonical bundle map defined by ω0, β : TR2n � v �→ ω0(v, ·) ∈ T ∗

R
2n. Then we can

define the canonical symplectic structure ω̇ on TR2n, ω̇ = β∗dθ = d(β∗θ). Throughout the paper,
unless otherwise stated, all objects are germs at 0 of smooth functions, mappings, forms, etc., or
their representatives on an open neighborhood of 0 in R

2n.
Let F : (R2n, 0) → TR2n be a smooth map-germ. We say that F is isotropic if F ∗ω̇ = 0. If we

assume that F : (R2n, 0) → TR2n is an isotropic map-germ, then the germ of the differential of the
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130 T. FUKUDA, S. JANECZKO

1-form (β ◦ F )∗θ vanishes, d(β ◦ F )∗θ = F ∗β∗dθ = F ∗ω̇ = 0. Thus (β ◦ F )∗θ is a germ of a closed
1-form. And there exists a smooth function-germ g : (R2n, 0) → R such that

(β ◦ F )∗θ = −dg. (1.3)

For each smooth isotropic map-germ F the function-germ g is uniquely defined up to an additive
constant.

Let F : R2n → (R2n, ω0) be a smooth map, π : TR2n → R
2n and F = π ◦ F . In general, F can

be regarded as a vector field along F , i.e., a section of an induced fiber bundle F ∗TR2n. By EU
(ER2n , respectively) we denote the R-algebra of smooth function-germs at 0 on U (and on “the
target space” R

2n, respectively). For each isotropic map-germ F along F there exists a unique g
belonging to the maximal ideal mU of EU , g ∈ mU , which is a generating function-germ for F . If F
is an embedding, then its image M = F (R2n) ⊂ TR2n is an implicit differential system branching
along singular values of F (cf. [7]). Singularities of such systems were studied by many authors
(cf. [3, 4, 19]). In this paper we assume the smooth solvability of M and find their local classification
and invariants.

To F we associate a symplectically invariant algebra RF of all function-germs generating
isotropic map-germs F along F . Let F : R2n → (R2n, ω0) be as above; then F induces a possi-
bly degenerate 2-form F ∗ω0. For a smooth function h defined on U ⊂ R

2n, we formally define the
Hamiltonian vector field Xh (which may not be smooth) on U by equality (1.1) with ω replaced
by F ∗ω0. To F we associate the Poisson–Lie algebra (1.2),

HF = {h ∈ E2n | Xh is smooth}. (1.4)

Then HF ⊂ RF is a Poisson–Lie algebra endowed with the Poisson–Lie bracket

{k, h}F ∗ω0 := F ∗ω0(Xk,Xh). (1.5)

Assume F : (R2n, 0) → TR2n is a smooth isotropic map-germ along a smooth map-germ F :
(R2n, 0) → R

2n such that the regular point set of F is dense, and h : (R2n, 0) → R is a generating
function-germ of F . Then F is smoothly solvable (cf. [8, 9]) as an implicit differential system if and
only if h belongs to the Poisson–Lie algebra HF . Thus the elements of HF are considered to be
Hamiltonians, which satisfy the equation

(β ◦ dF (Xh))
∗θ = −dh.

In this paper we introduce the symplectic A-equivalence to classify the smooth map-germs F
into a symplectic space. We use this equivalence to classify the normal forms of such mappings in
Section 2. Then, in Section 3 we use the classified normal forms to investigate the structure of the
singular pullback F ∗ω0. In Section 4 we find conditions for a smooth map-germ F under which
F ∗ω0 is a stable 2-form. Calculations are done for Martinet and Roussarie normal forms, but in
Section 5 for the special case of Ak type singularities of mappings. The Poisson–Lie algebra of a
singular symplectic form is introduced in Section 6 (cf. [8–10]). And the Poisson–Lie algebras for
Σ2,0, Σe

2,2,0 and Σh
2,2,0 stable singularities of 2-forms are calculated in Section 7.

2. NORMAL FORMS OF MAPPINGS INTO A SYMPLECTIC SPACE

Let F : (R2n, 0) → (R2n, 0) and G : (R2n, 0) → (R2n, 0) be two C∞ map-germs, where the target
space R

2n is endowed with the standard symplectic structure ω0 =
∑n

i=1 dyi ∧ dxi. We say that
F and G are symplectomorphic if there exist a diffeomorphism-germ φ : (R2n, 0) → (R2n, 0) of the
source space and a symplectomorphism Φ: (R2n, 0) → (R2n, 0) of the target space such that

G = Φ ◦ F ◦ φ. (2.1)
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POISSON–LIE ALGEBRAS AND SINGULAR SYMPLECTIC FORMS 131

In this paper, we use new (modified) pre-normal forms of Ak singularities of map-germs (cf. [1, 2,
5, 12, 13]). Before that, we give an introductory pre-normal form of not necessarily stable corank 1
map-germs F : (R2n, 0) → (R2n, 0).

Proposition 2.1 (introductory pre-normal form). Let G : (R2n, 0) → (R2n, 0) be a C∞ map-
germ of corank 1. Then G is symplectomorphic to a map-germ of the form

F = (f1, . . . , f2n),

fi(u) = ui (i ≤ 2n− 1), f2n(u) is a C∞ function.
(2.2)

Proof. Suppose G : (R2n, 0) → (R2n, 0) is a C∞ map-germ of corank 1. Then there exist a
C∞ diffeomorphism h : (R2n, 0) → (R2n, 0) of the source space and a C∞ diffeomorphism ϕ =
(ϕ1, . . . , ϕ2n) : (R

2n, 0) → (R2n, 0) of the target space such that

ϕi ◦G ◦ h(u1, . . . , u2n) = ui (i < 2n),

ϕ2n ◦G ◦ h(u1, . . . , u2n) = g(u1, . . . , u2n),

where g is a C∞ function with ∂g/∂u2n(0) = 0.
Now we use this differential normal form to construct a symplectomorphic change of coordinates

of the target space. There is a symplectic diffeomorphism on the target space

ψ = (ψ1, . . . , ψ2n) : (R2n, 0) → (R2n, 0) such that ψ2n = ϕ2n.

Next, let
vi = ψi ◦G ◦ h(u1, . . . , u2n) (i < 2n), v2n = u2n.

Then, (v1, . . . , v2n) are new coordinates on the source space and we have

ψi ◦G ◦ h = vi (i < 2n), ψ2n ◦G ◦ h = g(v1, . . . , v2n). �

Now for Ak map-germs, we have
Proposition 2.2. Let G : (R2n, 0) → (R2n, 0) be an Ak type singularity.
1. If G is a fold map-germ, i.e., A1, then G is symplectomorphic to a map-germ of the form

F = (f1, . . . , f2n),

fi(u) = ui (i ≤ 2n − 1), f2n(u) = u22n.
(2.3)

2. If G is an Ak type map-germ with k ≥ 2, then G is symplectomorphic to a map-germ of the
form

fi(u) = ui (i ≤ 2n − 1),

f2n(u) = uk+1
2n +

k−1∑

i=1

ai(u1, . . . , u2n−1)u
i
2n + b(u1, . . . , u2n−1),

(2.4)

where a1(u1, . . . , u2n−1), . . . , ak−1(u1, . . . , u2n−1) and b(u1, . . . , u2n−1) are smooth functions and the
differentials da1, da2, . . . , dak−1 are linearly independent at the origin.

3 (cusp for n = 1). If G : (R2, 0) → (R2, 0) is an Ak map-germ with k ≥ 2, then k = 2 and it
is symplectomorphic to the normal form of a cusp:

F = (f1, f2), f1(u) = u1, f2(u) = u32 + u1u2. (2.5)

Proof. The proof of assertion 1 is almost the same as the proof of Proposition 2.1. Suppose
that G is a fold map-germ, i.e., A1 map-germ. Then there exist a C∞ diffeomorphism h : (R2n, 0) →
(R2n, 0) of the source space and a C∞ diffeomorphism ϕ = (ϕ1, . . . , ϕ2n) : (R

2n, 0) → (R2n, 0) of the
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target space such that

ϕi ◦G ◦ h(u1, . . . , u2n) = ui (i < 2n), ϕ2n ◦G ◦ h(u1, . . . , u2n) = u22n.

Then, there is a symplectic diffeomorphism on the target space

ψ = (ψ1, . . . , ψ2n) : (R2n, 0) → (R2n, 0) such that ψ2n = ϕ2n.

Let
vi = ψi ◦G ◦ h(u1, . . . , u2n) (i < 2n), v2n = u2n.

Then, (v1, . . . , v2n) are coordinates on the source space and we have

ψi ◦G ◦ h = vi (i < 2n), ψ2n ◦G ◦ h = u22n = v22n.

Now suppose that G is an Ak map-germ. Then, by Morin’s theorem (cf. [17]), there exist a
C∞ diffeomorphism h : (R2n, 0) → (R2n, 0) of the source space and a C∞ diffeomorphism ϕ =
(ϕ1, . . . , ϕ2n) : (R

2n, 0) → (R2n, 0) of the target space such that

ϕi ◦G ◦ h(u1, . . . , u2n) = ui (i < 2n),

ϕ2n ◦G ◦ h(u1, . . . , u2n) = uk+1
2n +

k−1∑

i=1

uiu
i
2n.

(2.6)

Then, there is a symplectic diffeomorphism on the target space

ψ = (ψ1, . . . , ψ2n) : (R2n, 0) → (R2n, 0) such that ψ2n = ϕ2n. (2.7)

Let
vi = ψi ◦G ◦ h(u1, . . . , u2n) (i < 2n), v2n = u2n. (2.8)

Then, (v1, . . . , v2n) are new coordinates on the source space, and from (2.6) and (2.8) we have

ψi ◦G ◦ h(v1, . . . , v2n) = vi (i < 2n),

ψ2n ◦G ◦ h(v1, . . . , v2n) = u2n = vk+1
2n +

k−1∑

i=1

uiv
i
2n.

Taking the inverse of the source coordinates (2.8), we get the final form

ψi ◦G ◦ h(v1, . . . , v2n) = vi (i < 2n),

ψ2n ◦G ◦ h(v1, . . . , v2n) = u2n = vk+1
2n +

k−1∑

i=1

ui(v)v
i
2n.

Note that the coefficients ui(v) are functions of the variables v1, v2, . . . , v2n−1, v2n. However, the
coefficients ui(v) are desirable to be functions of the variables v1, v2, . . . , v2n−1.

Since ui(v)’s are functions of the variables v1, . . . , v2n, they can be expressed in the form

ui(v1, . . . , v2n) =
2n−1∑

j=1

vjαi,j(v1, . . . , v2n) + βi(v2n).

Since G is an Ak type map-germ, the order of βi(v2n) must be greater than k − i:

ordβi(v2n) > k − i;

indeed, if ord βi(v2n) ≤ k − i, then G must be an A�-singularity for some � < k.
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Then with the coordinates

wi = vi (i < 2n), w2n = k+1

√
√
√
√uk+1

2n +

k−1∑

i=1

βi(v2n)vi2n

in the source space, ψ2n ◦ G ◦ h(w1, . . . , w2n) becomes an unfolding of wk+1
2n with parameters

w1, . . . , w2n−1 in the sense of unfolding theory (see, e.g., [20]):

ψ2n ◦G ◦ h(0, . . . , 0, w2n) = wk+1
2n .

Then again under new coordinates of the form

wi = wi = vi (i < 2n), w2n = w2n(v1, . . . , v2n),

ψ2n ◦G ◦ h becomes of the form

ψ2n ◦G ◦ h = w k+1
2n +

k−1∑

i=1

ai(w1, . . . , w2n−1)w
i
2n + b(w1, . . . , w2n−1). (2.9)

Note that after (2.7) we have not changed coordinates in the target space. So the map-germ G
and the map-germ ψ ◦G ◦ h,

ψi ◦G ◦ h(w) = wi (i < 2n),

ψ2n ◦G ◦ h(w) = w k+1
2n +

k−1∑

i=1

ai(w1, . . . , w2n−1)w
i
2n + b(w1, . . . , w2n−1),

are symplectomorphic. This completes the proof of assertion 2.
The proof of assertion 3 is a straightforward application of assertion 2. �

3. INDUCED CLOSED 2-FORMS FROM THE SYMPLECTIC STRUCTURE

Now we want to investigate the induced closed 2-forms F ∗ω0. In order to avoid unnecessarily
complicated calculations, we choose the following new coordinates in the target space (R2n, ω0 =∑n

i=1 dyi ∧ dxi):
z1 = −x1, z2 = y1, . . . , z2n−1 = −xn, z2n = yn.

Then
ω0 = dz1 ∧ dz2 + . . .+ dz2n−1 ∧ dz2n.

Following the above change, we also use the corresponding new coordinates in the source space:

v1 = −u1, v2 = un+1, . . . , v2n−1 = −un, v2n = u2n.

In this section, we formulate our results on the induced closed 2-forms F ∗ω0. This is stated for
the corank 1 map-germ and expressed for the symplectic pre-normal form (2.2) of F .

Let (z1, . . . , z2n) be the standard coordinates in the target space R
2n and let ω0 = dz1 ∧ dz2 +

. . . + dz2n−1 ∧ dz2n be the symplectic form on the target space R
2n. With the assumptions of

Proposition 2.1 we have the following result.
Proposition 3.1. Let F be in the pre-normal form (2.2). Then

F ∗ω0 =
n−1∑

i=1

dv2i−1 ∧ dv2i +Δ(v) dv2n−1 ∧ dv2n −
∑

i �=2n−1,2n

∂f2n
∂vi

dvi ∧ dv2n−1, (3.1)

where Δ(v) = ∂f2n/∂v2n(v) is the Jacobian of F .
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From now on, we assume that
dΔ(0) �= 0. (3.2)

Let us introduce the notation

Σ2(F
∗ω0) = {v ∈ R

2n | Δ(v) = 0}, (3.3)

AF ∗ω0(v) = {w ∈ TvR
2n | i(w)F ∗ω0(v) = 0}, the kernel of F ∗ω0(v), (3.4)

where i(w)F ∗ω0(v) denotes the inner product of the vector w and the 2-form F ∗ω0(v).
Since dΔ(0) �= 0, Σ2(F

∗ω0) is a (2n− 1)-dimensional submanifold of R
2n.

Proposition 3.2. Suppose that dΔ(0) �= 0. If v ∈ Σ2(F
∗ω0), then dimAF ∗ω0(v) = 2 and it

is spanned by the following two vectors:

e1 = −
n−1∑

i=1

∂f2n
∂v2i

∂

∂v2i−1
+

n−1∑

i=1

∂f2n
∂v2i−1

∂

∂v2i
+

∂

∂v2n−1
, e2 =

∂

∂v2n
. (3.5)

Proof. Let v ∈ Σ2(F
∗ω0). Since dimAF ∗ω0(v) = 2 and e1 and e2 are linearly independent, it

is enough to show that e1, e2 ∈ AF ∗ω0(v).
From Proposition 3.1, we have

F ∗ω0 =
n−1∑

i=1

dv2i−1 ∧ dv2i +Δ dv2n−1 ∧ dv2n −
∑

i �=2n−1,2n

∂f2n
∂vi

dvi ∧ dv2n−1,

where Δ = ∂f2n/∂v2n is the Jacobian of F .
Since v ∈ Σ2(F

∗ω0), Δ(v) = 0. Thus

F ∗ω0 =

n−1∑

i=1

dv2i−1 ∧ dv2i −
∑

i �=2n−1,2n

∂f2n
∂vi

dvi ∧ dv2n−1 on Σ2(F
∗ω0).

Let

e =

2n∑

i=1

wi
∂

∂vi
∈ TvR

2n.

Then

e ∈ AF ∗ω0(v) if and only if F ∗ω0(v)

(

e,
∂

∂vj

)

= 0 (j = 1, . . . , 2n).

Now we solve the following equation for the coefficients w1, . . . , w2n:

F ∗ω0

(
2n∑

i=1

wi
∂

∂vi
,

∂

∂vj

)

= 0 (j = 1, . . . , 2n).

We have

0 = F ∗ω0

(
2n∑

i=1

wi
∂

∂vi
,

∂

∂v2j−1

)

=

(
n−1∑

i=1

dv2i−1 ∧ dv2i −
∑

i �=2n−1,2n

∂f2n
∂vi

dvi ∧ dv2n−1

)(
2n∑

i=1

wi
∂

∂vi
,

∂

∂v2j−1

)

= −w2j +
∂f2n
∂v2j−1

w2n−1 (j < n)
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and

0 = F ∗ω0

(
2n∑

i=1

wi
∂

∂vi
,

∂

∂v2j

)

= w2j−1 +
∂f2n
∂v2j

w2n−1 (j < n).

Thus we obtain

w2j−1 = −∂f2n
∂v2j

w2n−1, w2j =
∂f2n
∂v2j−1

w2n−1. (3.6)

Note that

F ∗ω0

(
2n∑

i=1

wi
∂

∂vi
,

∂

∂v2n

)

= 0 for arbitrary w1, . . . , w2n−1,

since F ∗ω0 does not contain the term ∂/∂v2n.
We also see that if we let

w2i−1 = −∂f2n
∂v2i

w2n−1, w2i =
∂f2n
∂v2i−1

w2n−1,

then we immediately have

F ∗ω0

(
2n∑

i=1

wi
∂

∂vi
,

∂

∂v2n−1

)

= 0.

Thus we have no relations between w1, . . . , w2n other than (3.6). Therefore, as a basis of AF ∗ω0(v),
we can choose

e1 = −
n−1∑

i=1

∂f2n
∂v2i

∂

∂v2i−1
+

n−1∑

i=1

∂f2n
∂v2i−1

∂

∂v2i
+

∂

∂v2n−1
, letting w2n−1 = 1, w2n = 0,

e2 =
∂

∂v2n
, letting w2n−1 = 0, w2n = 1.

This completes the proof of Proposition 3.2. �

4. CLASSIFICATION OF MAPPINGS BY INDUCED CLOSED 2-FORMS

In this section we find the classification of singularities of corank 1 maps induced by the classi-
fication of “stable” singularities of closed differential 2-forms (cf. [15, 18, 16]).

Let
ω =

∑

1≤i<j≤2n

αi,j dvi ∧ dvj

be the germ of a closed 2-form on R
2n at 0. As a volume form on R

2n, we choose

Ω = dv1 ∧ dv2 ∧ . . . ∧ dv2n.

Let
ωn = fΩ.

If f(0) �= 0, then by Darboux’s theorem, ω is isomorphic to the Darboux form

dv1 ∧ dv2 + dv3 ∧ dv4 + . . .+ dv2n−1 ∧ dv2n.

Now we assume that f(0) = 0 while df(0) �= 0. Let

Σ2(ω) = {v ∈ R
2n | f(v) = 0}.
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By the condition df(0) �= 0, Σ2(ω) is a dimension 2n − 1 submanifold of R
2n and at a point

v ∈ Σ2(ω) the kernel
Aω(v) =

{
w ∈ TvR

2n | i(w)ω(v) = 0
}

of ω(v) is a two-dimensional vector subspace of TvR
2n, where i(w)ω(v) denotes the inner product

of a tangent vector w and a 2-form ω.
Definition 4.1 (J. Martinet). Suppose that f(0) = 0 while df(0) �= 0. If Aω(0) is transversal

to T0Σ2(ω), we say that ω has a Σ2,0 singularity at 0.
Theorem 4.1 (J. Martinet). If a closed 2-form ω has a Σ2,0 singularity at 0, then ω is

isomorphic to the following closed 2-form:

v1dv1 ∧ dv2 + dv3 ∧ dv4 + . . .+ dv2n−1 ∧ dv2n.

Let us consider the set

Σ2,2(ω) =
{
v ∈ Σ2(ω) | Aω(v) ⊂ TvΣ2(ω)

}
.

It is known that Σ2,2(ω) is a dimension 2n − 3 submanifold of R2n.
Definition 4.2 (J. Martinet). Suppose that 0 ∈ Σ2,2(ω). If Aω(0) is transversal to T0Σ2,2(ω)

in T0Σ2(ω), then we say that ω has a Σ2,2,0 singularity at 0.
Since Σ2,2,0 singularities of closed 2-forms are classified only for n = 2, from now on we only

consider closed 2-forms on R
4.

Theorem 4.2 (R. Roussarie). If a closed 2-form ω on R
4 has a Σ2,2,0 singularity at 0, then

ω is isomorphic to one of the following two closed 2-forms:

dv1 ∧ dv2 + v3dv2 ∧ dv3 + d

(

v1v3 + v2v4 −
v33
3

)

∧ dv4,

dv1 ∧ dv2 + v3dv2 ∧ dv3 + d

(

v1v3 − v2v4 −
v33
3

)

∧ dv4.

Definition 4.3. If ω is isomorphic to the first of the above two forms, we say that ω has
a Σe

2,2,0 (elliptic Σ2,2,0) singularity at 0, and if ω is isomorphic to the second of the above forms, we
say that ω has a Σh

2,2,0 (hyperbolic Σ2,2,0) singularity at 0.

These two cases are distinguished as follows: Suppose that a closed 2-form ω on R
4 has a Σ2,2,0

singularity at 0. Let Ω be a positive volume form of R
4 with coordinates v1, . . . , v4, say, Ω =

dv1 ∧ dv2 ∧ dv3 ∧ dv4. Then ω2 has the form

ω2 = fΩ

for a function f such that f(0) = 0 and df(0) �= 0.
Let ΩΣ2(ω) be a volume form on Σ2(ω) such that

ΩΣ2(ω) ∧ df and Ω define the same orientation on R
4.

Let Σ2(ω) be oriented in such a way that ΩΣ2(ω) is a positive volume form on Σ2(ω). It is known
(see [18, p. 147]) that there exists a smooth vector filed X on Σ2(ω) such that

(ω|Σ2(ω)) = i(X)(ΩΣ2(ω)),

where i(X)(ΩΣ2(ω)) is the inner product of the vector filed X with the 3-form ΩΣ2(ω).
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Let w1, w2, w3 be coordinates at 0 on Σ2(ω) which define a positive orientation on Σ2(ω). Then
the vector field X has the form

X =
3∑

i=1

ai(w)
∂

∂wi
.

By the definition of Σ2,2(ω), ω vanishes on Σ2,2(ω). So, the Jacobian matrix of X at 0

(
∂ai
∂wj

(0)

)

has rank 2 and it has two nonzero eigenvalues λω,1 and λω,2, which are known to be either both
real or both imaginary.

Theorem 4.3 (R. Roussarie). Let ω have a Σ2,2,0 singularity at 0.

1. If the two eigenvalues λω,1 and λω,2 are real, then ω has a Σh
2,2,0 singularity at 0.

2. If the two eigenvalues λω,1 and λω,2 are imaginary, then ω has a Σe
2,2,0 singularity at 0.

Theorem 4.4. Let F be a map-germ of the form (2.2). Then F ∗ω0 is isomorphic to the
Martinet’s normal form of Σ2,0 singularities of closed 2-forms,

n−1∑

i=1

dv2i−1 ∧ dv2i + v2n−1 dv2n−1 ∧ dv2n, (4.1)

if and only if

(e1(Δ)(0), e2(Δ)(0)) �= (0, 0). (4.2)

Proof. By (2.2) we have

(F ∗ω0)
n = nΔ dv1 ∧ dv2 ∧ . . . ∧ dv2n.

Since by the assumption da1(0) �= 0, we have dΔ(0) = da1(0) �= 0. So, by the definition of Σ2,0, it
is enough to seek the condition for Aω(0) to be transversal to T0Σ2(ω) at 0.

Since

Σ2(ω) = {v ∈ R
2n | Δ(v) = 0}

and Aω(0) is spanned by e1 and e2, we know that Aω(0) is transversal to T0Σ2(ω) at 0 if and only
if (e1(Δ)(0), e2(Δ)(0)) �= (0, 0). Thus, from Martinet’s theorem, F ∗ω0 is isomorphic to Martinet’s
normal form of Σ2,0 if and only if (e1(Δ)(0), e2(Δ)(0)) �= (0, 0). �

Theorem 4.5. Suppose that F ∗ω0 is not isomorphic to Martinet’s normal form of Σ2,0 type
singularities; i.e., suppose that

(e1(Δ)(0), e2(Δ)(0)) = (0, 0).

Then F ∗ω0 is isomorphic to Roussarie’s Σ2,2,0 normal forms if and only if

rank

(
e1(e1(Δ))(0) e1(e2(Δ))(0)

e2(e1(Δ))(0) e2(e2(Δ))(0)

)

= 2.

Proof. Since

Σ2,2(F
∗ω0) =

{
v ∈ R

4 | Δ(v) = 0, e1(Δ)(v) = 0, e2(Δ)(v) = 0
}
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and Aω(0) is spanned by e1 and e2, we know that Aω(0) is transversal to T0Σ2,2(ω) in T0Σ2(ω) at 0
if and only if

rank

(
e1(Δ)(0) e1(e1(Δ))(0) e1(e2(Δ))(0)

e2(Δ)(0) e2(e1(Δ))(0) e2(e2(Δ))(0)

)

= 2.

Therefore, by the definition of Σ2,2,0, F ∗ω0 is isomorphic to Roussarie’s Σ2,2,0 if and only if

rank

(
e1(Δ)(0) e1(e1(Δ))(0) e1(e2(Δ))(0)

e2(Δ)(0) e2(e1(Δ))(0) e2(e2(Δ))(0)

)

= 2,

which holds if and only if

rank

(
e1(e1(Δ))(0) e1(e2(Δ))(0)

e2(e1(Δ))(0) e2(e2(Δ))(0)

)

= 2,

for (e1(Δ)(0), e2(Δ)(0)) = (0, 0) by assumption. �
Let F = (f1, . . . , f4) : (R

4, 0) → (R4, 0) be the pre-normal form of corank 1 map-germ given in
Proposition 2.1 such that

dΔ(0) �= 0, (e1(Δ)(0), e2(Δ)(0)) = (0, 0),

rank

(
e1(Δ)(0) e1(e1(Δ))(0) e1(e2(Δ))(0)

e2(Δ)(0) e2(e1(Δ))(0) e2(e2(Δ))(0)

)

= 2,

where

Δ =
∂f4
∂v4

, e1 = −∂f4
∂v2

∂

∂v1
+

∂f4
∂v1

∂

∂v2
+

∂

∂v3
, e2 =

∂

∂v4
.

Then by Theorem 4.5, F ∗ω0 is of type Σ2,2,0.
Since dΔ(0) �= 0,

Σ2(F
∗ω0) =

{
v = (v1, . . . , v4) ∈ R

4 | Δ = 0
}

is a three-dimensional submanifold of R
4 and

∂Δ

∂vi
(0) �= 0 for some i = 1, . . . , 4.

Since (e1(Δ)(0), e2(Δ)(0)) = (0, 0), we have

∂Δ

∂v4
(0) = 0,

(

−∂f4
∂v2

∂

∂v1
+

∂f4
∂v1

∂

∂v2
+

∂

∂v3

)

Δ(0) = 0.

If ∂Δ/∂v1(0) = 0 and ∂Δ/∂v2(0) = 0, then by the above formula we have ∂Δ/∂v3(0) = 0, which
contradicts the fact that dΔ(0) �= 0. Thus we have

Lemma 4.1.
∂Δ

∂v1
(0) �= 0 or

∂Δ

∂v2
(0) �= 0.

So after the changes of coordinates

z1 = −z2, z2 = z1, z3 = −z3, z4 = z4 in the target space,

v1 = −v2, v2 = v1, v3 = −v3, v4 = v4 in the source space,
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we may assume that
∂Δ

∂v1
(0) �= 0.

Then, by the implicit function theorem, there is a function ϕ(v2, v3, v4) such that

Σ2(F
∗ω0) = {v ∈ R

4 | Δ(v) = 0} =
{
(v1, . . . , v4) ∈ R

4 | v1 = ϕ(v2, v3, v4)
}
,

and we can choose v2, v3, v4 as coordinates on Σ2(F
∗ω0). Let us define

α2 = −∂f4
∂v1

∂ϕ

∂v4
, α3 = − ∂ϕ

∂v4
, α4 =

∂ϕ

∂v3
− ∂f4

∂v1

∂ϕ

∂v2
− ∂f4

∂v2
.

Considering the Jacobian matrix of α2, α3, α4, we have

rank

(
∂αi

∂vj
(0)

)

2≤i,j≤4

= 2. (4.3)

Theorem 4.6. Let the assumptions of Theorem 4.5 be fulfilled. Then

(1) F ∗ω0 is isomorphic to Roussarie’s normal form Σh
2,2,0 if and only if the two nonzero eigen-

values of
(
∂αi

∂vj
(0)

)

2≤i,j≤4

(4.4)

are real ;
(2) F ∗ω0 is isomorphic to Roussarie’s normal form Σe

2,2,0 if and only if the two nonzero eigen-
values of the matrix (4.4) are imaginary.

Proof. Let ι = (ι1, . . . , ι4) : Σ2(F
∗ω0) → R

4,

ι(v2, v3, v4) = (ϕ(v2, v3, v4), v2, v3, v4),

be the inclusion map. Then we can easily check that

dv2 ∧ dv3 ∧ dv4 = ι∗(dv2 ∧ dv3 ∧ dv4).

Set

ΩΣ2(F ∗ω0) = −dv2 ∧ dv3 ∧ dv4 = −ι∗(dv2 ∧ dv3 ∧ dv4).

Then,

Ω = dv1 ∧ dv2 ∧ dv3 ∧ dv4 and ΩΣ2(F ∗ω0) ∧ df = 2ΩΣ2(F ∗ω0) ∧ dΔ

define the same orientation on R
4. Recall that the function f was defined by the equality

(F ∗ω0)
2 = fΩ

and also recall that

F ∗ω0 = dv1 ∧ dv2 +Δ dv3 ∧ dv4 −
∑

i=1,2

∂f2n
∂vi

dvi ∧ dv3, (F ∗ω0)
2 = 2ΔΩ.

Now we seek the vector field X on Σ2(F
∗ω0) such that

F ∗ω0|Σ2(F ∗ω0) = i(X)(ΩΣ2(F ∗ω0)). (4.5)
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Letting

X =

4∑

i=2

αi(v2, v3, v4)
∂

∂vi
,

we solve equation (4.5). Recall that ΩΣ2(F ∗ω0) = −dv2 ∧ dv3 ∧ dv4. Then we have

− ∂ϕ

∂v3
− ∂f4

∂v1

∂ϕ

∂v2
− ∂f4

∂v2
= F ∗ω0|Σ2(F ∗ω0)

(
∂

∂v2
,

∂

∂v3

)

= i(X)(ΩΣ2(F ∗ω0))

(
∂

∂v2
,

∂

∂v3

)

= −dv2 ∧ dv3 ∧ dv4

(
4∑

i=2

αi
∂

∂vi
,

∂

∂v2
,

∂

∂v3

)

= −α4,

− ∂ϕ

∂v4
= F ∗ω0|Σ2(F ∗ω0)

(
∂

∂v2
,

∂

∂v4

)

= −dv2 ∧ dv3 ∧ dv4

(
4∑

i=2

αi
∂

∂vi
,

∂

∂v2
,

∂

∂v4

)

= α3,

∂f4
∂v1

∂ϕ

∂v4
= F ∗ω0|Σ2(F ∗ω0)

(
∂

∂v3
,

∂

∂v4

)

= −dv2 ∧ dv3 ∧ dv4

(
4∑

i=2

αi
∂

∂vi
,

∂

∂v3
,

∂

∂v4

)

= −α2.

Now we consider the Jacobian matrix
(
∂αi

∂vj
(0)

)

2≤i,j≤4

(4.6)

at 0 of the coefficients
(

α2 = −∂f4
∂v1

∂ϕ

∂v4
, α3 = − ∂ϕ

∂v4
, α4 =

∂ϕ

∂v3
− ∂f4

∂v1

∂ϕ

∂v2
− ∂f4

∂v2

)

of the vector field X. According to Roussarie’s theorem, we see that

rank

(
∂αi

∂vj
(0)

)

2≤i,j≤4

= 2,

which implies (4.3), and we see that
(1) F ∗ω0 is isomorphic to Roussarie’s normal form Σh

2,2,0 if and only if the two nonzero eigen-
values of (4.6) are real;

(2) F ∗ω0 is isomorphic to Roussarie’s normal form Σe
2,2,0 if and only if the two nonzero eigen-

values of (4.6) are imaginary.
This completes the proof of Theorem 4.6. �

5. CONDITIONS FOR Ak TYPE SINGULARITIES

In this section we apply the results of the previous sections to various examples containing Ak

map-germs. Let F be a map-germ of the form (2.2) such that dΔ(0) �= 0. Then F ∗ω0 is isomorphic
to Martinet’s normal form of Σ2,0 singularities of closed 2-forms

n−1∑

i=1

dv2i−1 ∧ dv2i + v2n−1 dv2n−1 ∧ dv2n
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if and only if
(e1(Δ)(0), e2(Δ)(0)) �= (0, 0).

Let F be a fold map-germ:

F = (f1, . . . , f2n) : (R2n, 0) → (R2n, 0),

fi(v) = vi (i ≤ 2n− 1), f2n(v) = v22n.

Then

F ∗ω0 =
n−1∑

i=1

dv2i−1 ∧ dv2i + 2v2n dv2n−1 ∧ dv2n.

The above form is obviously isomorphic to Martinet’s normal form Σ2,0 given in Theorem 4.4:

n−1∑

i=1

dv2i−1 ∧ dv2i + v2n−1 dv2n−1 ∧ dv2n.

Since
Δ = 2v2n, e1(Δ) = 0, e2(Δ) = 2

and
(e1(Δ)(0), e2(Δ)(0)) = (0, 2) �= (0, 0),

F ∗ω0 satisfies the condition given in Theorem 4.4 for it to be isomorphic to Martinet’s normal
form Σ2,0.

Proposition 5.1 (Ak map-germs, k ≥ 2). Let F = (f1, . . . , f2n) : (R
2n, 0) → (R2n, 0) be an

Ak map-germ of the form

fi(v) = vi (i ≤ 2n − 1),

f2n(v) = vk+1
2n +

k−1∑

i=1

ai(v1, . . . , v2n−1)v
i
2n + b(v1, . . . , v2n−1) (k ≥ 2).

In particular, when n = 1, let F = (f1, f2) : (R
2, 0) → (R2, 0) be a cusp map-germ :

f1(v) = v1, f2(v) = v32 + v1v2. (5.1)

Then

(1) F ∗ω0 is isomorphic to the above Martinet’s normal form if and only if

e1(Δ)(0) �= 0, (5.2)

or equivalently, if and only if

∂a1
∂v2n−1

(0) +

n−1∑

i=1

(

− ∂a1
∂v2i

(0)
∂b

∂v2i−1
(0) +

∂a1
∂v2i−1

(0)
∂b

∂v2i
(0)

)

�= 0; (5.3)

(2) in particular, if b = 0, F ∗ω0 is isomorphic to Martinet’s normal form if and only if

∂a1
∂v2n−1

(0) �= 0;

(3) if n = 1, then, for the cusp map-germ (5.1), F ∗ω0 is isomorphic to Martinet’s normal form.
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Proof. Let us prove (1). Since k ≥ 2, e2(Δ)(0) = 0. So,

(e1(Δ)(0), e2(Δ)(0)) �= (0, 0) if and only if e1(Δ)(0) �= 0.

Thus, F ∗ω0 is isomorphic to the above Martinet’s normal form if and only if condition (5.2) holds,
or equivalently, if and only if (5.3) holds.

Assertions (2) and (3) follow easily from assertion (1). �
Example 5.1. Consider the following two map-germs:

F1 = (f1, . . . , f2n) : (R2n, 0) → (R2n, 0),

fi(v) = vi (i ≤ 2n − 1), f2n(v) = v32n + v2n−1v2n,

and
F2 = (f1, . . . , f2n) : (R2n, 0) → (R2n, 0),

fi(v) = vi (i ≤ 2n− 1), f2n(v) = v32n + vkv2n

(for some fixed k, k < 2n− 1).
Then

(1) F ∗
1 ω0 is isomorphic to Martinet’s normal form, since

∂a1
∂v2n−1

(0) =
∂v2n−1

∂v2n−1
(0) = 1 �= 0;

(2) F ∗
2 ω0 is not isomorphic to Martinet’s normal form, since

∂a1
∂v2n−1

(0) =
∂vi

∂v2n−1
(0) = 0.

Example 5.2. We revise F2 in Example 5.1 adding the term b as follows:

F3 = (f1, . . . , f2n) : (R2n, 0) → (R2n, 0),

fi(v) = vi (i ≤ 2n− 1), f2n(v) = v32n + v2k−1v2n + v2k (or v32n + v2kv2n + v2k−1)

(for some fixed k, k < n).
Then F ∗

3ω0 is isomorphic to Martinet’s normal form, since

e1(Δ)(0) =
∂a1

∂v2n−1
(0) +

n−1∑

i=1

(

− ∂a1
∂v2i

(0)
∂b

∂v2i−1
(0) +

∂a1
∂v2i−1

(0)
∂b

∂v2i
(0)

)

= − ∂a1
∂v2k

(0)
∂b

∂v2k−1
(0) +

∂a1
∂v2k−1

(0)
∂b

∂v2k
(0) = ±1 �= 0.

Example 5.3. Let

F4 = (f1, . . . , f2n) : (R
2n, 0) → (R2n, 0),

fi(v) = vi (i ≤ 2n− 1), f2n(v) = v2n−1v2n.

Then, although F4 is very degenerate as a map-germ, F ∗
4 ω0 is stable as a closed 2-form and isomor-

phic to Martinet’s normal form, since Δ = v2n−1 and

e1(Δ)(0) =
∂v2n−1

∂v2n−1
(0) +

n−1∑

i=1

(

−∂v2n−1

∂v2i
(0)

∂b

∂v2i−1
(0) +

∂v2n−1

∂v2i−1
(0)

∂b

∂v2i
(0)

)

= 1 �= 0.
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Since the classification of Σ2,2,0 singularities of closed 2-forms is completed only for n = 2, we
consider only the case where n = 2. In this case, we consider the introductory pre-normal form
of type (2.2). Let us suppose that F ∗ω0 is not isomorphic to Martinet’s normal form of Σ2,0 type
singularities, i.e., suppose that

e1(Δ)(0) =
∂a1
∂v3

(0)− ∂a1
∂v2

(0)
∂b

∂v1
(0) +

∂a1
∂v1

(0)
∂b

∂v2
(0) = 0.

Then F ∗ω0 is isomorphic to Roussarie’s Σ2,2,0 normal form (see Theorem 4.5) if and only if

rank

(
e1(Δ)(0) e1(e1(Δ))(0) e1(e2(Δ))(0)

e2(Δ)(0) e2(e1(Δ))(0) e2(e2(Δ))(0)

)

= 2.

Theorem 5.1. Let F = (f1, . . . , f4) : (R
4, 0) → (R4, 0) be an Ak map-germ with b = 0 of the

form

fi(v) = vi (i ≤ 3), f4(v) = vk+1
4 +

k−1∑

i=1

ai(v1, v2, v3)v
i
4 (2 ≤ k ≤ 4)

such that F ∗ω0 is not isomorphic to Martinet’s normal form of Σ2,0 type singularities. Then F ∗ω0

is isomorphic to Roussarie’s Σ2,2,0 normal forms

dv1 ∧ dv2 + v3dv2 ∧ dv3 + d

(

v1v3 + v2v4 −
v33
3

)

∧ dv4 (Σe
2,2,0)

or

dv1 ∧ dv2 + v3dv2 ∧ d3 + d

(

v1v3 − v2v4 −
v33
3

)

∧ dv4 (Σh
2,2,0)

if and only if

rank

(
∂2a1
∂v23

(0) 2 ∂a2
∂v3

(0)

2 ∂a2
∂v3

(0) 6

)

= 2.

Proof. In this case,

Δ = (k + 1)vk4 +

k−1∑

i=1

iai(v1, v2, v3)v
i−1
4 ,

e1 = −∂f4
∂v2

∂

∂v1
+

∂f4
∂v1

∂

∂v2
+

∂

∂v3
= −

(
k−1∑

i=1

∂ai
∂v2

vi4

)
∂

∂v1
+

(
k−1∑

i=1

∂ai
∂v1

vi4

)
∂

∂v2
+

∂

∂v3
,

e2 =
∂

∂v4
,

e1(Δ) = −
(

k−1∑

i=1

∂ai
∂v2

vi4

)(
k−1∑

j=1

j
∂aj
∂v1

vj−1
4

)

+

(
k−1∑

i=1

∂ai
∂v1

vi4

)(
k−1∑

j=1

j
∂aj
∂v2

vj−1
4

)

+
k−1∑

j=1

j
∂aj
∂v3

vj−1
4 ,

e2(Δ) = (k + 1)kvk−1
4 +

k−1∑

j=2

j(j − 1)ajv
j−2
4 .

Thus, by straightforward calculations for k = 2, 3, 4 we have
(
e1(Δ)(0) e1(e1(Δ))(0) e1(e2(Δ))(0)

e2(Δ)(0) e2(e1(Δ))(0) e2(e2(Δ))(0)

)

=

(
0 ∂2a1

∂v23
(0) 2 ∂a2

∂v3
(0)

0 2 ∂a2
∂v3

(0) 6

)

.

This completes the proof of Theorem 5.1. �
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Example 5.4. Consider the following two cusp map-germs:

F5± = (f1, . . . , f4) : (R4, 0) → (R4, 0),

fi(v) = vi (i ≤ 3), f4(v) = v34 + (v1 ± v23)v4,

and
F6 = (f1, . . . , f4) : (R4, 0) → (R4, 0),

fi(v) = vi (i ≤ 3), f4(v) = v34 + v1v4.

Using Theorem 4.4 or its corollary, one can easily check that neither F ∗
5±ω0 nor F ∗

6ω0 is isomorphic
to Martinet’s Σ2,0. We see that F ∗

5±ω0 is isomorphic to Roussarie’s Σ2,2,0 but F ∗
6 ω0 is not. To prove

this fact, we apply Theorem 5.1 for k = 2. First we consider F ∗
5±ω0. In this case

rank

(
∂2a1
∂v23

(0) 2 ∂a2
∂v3

(0)

2 ∂a2
∂v3

(0) 6

)

= rank

(
±2 0
0 6

)

= ±2.

Therefore, by Theorem 5.1, F ∗
5±ω0 is isomorphic to Roussarie’s Σ2,2,0. Moreover, F ∗

5+ω0 is of type
Σe
2,2,0 and F ∗

5−ω0 is of type Σh
2,2,0.

Now we consider F ∗
6ω0. In this case, since f4 = v34 + v1v4,

rank

(
∂2a1
∂v23

(0) 2 ∂a2
∂v3

(0)

2 ∂a2
∂v3

(0) 6

)

= rank

(
0 0
0 6

)

�= 2.

Therefore, by Theorem 5.1, F ∗
6 ω0 is not isomorphic to Roussarie’s Σ2,2,0 form.

6. POISSON–LIE ALGEBRA OF HAMILTONIANS ASSOCIATED
TO SINGULAR SYMPLECTIC FORMS

In this section we present the basic properties of the Poisson–Lie algebras of singular Hamilto-
nians determined by singular closed 2-forms.

Two germs ω and ω′ of closed 2-forms on R
2n at p and q, respectively, are said to be isomorphic

if there exists a diffeomorphism-germ ϕ : (R2n, q) → (R2n, p) such that ω′ = ϕ∗ω.
Let ω be the germ at 0 ∈ R

2n of a closed 2-form on R
2n. For a function-germ h at 0 ∈ R

2n,
the Hamiltonian vector field of h with respect to ω is the vector field Xω,h formally defined by the
equation (cf. [11, 21])

ω(Xω,h, Y ) = −Y (h) for any vector field Y on R
2n. (6.1)

We often abbreviate Xω,h as Xh.
The reason why we say “formally defined” in the above definition is that if ω is a degenerate

closed 2-form, there are functions h for which the Hamiltonian vector fields Xω,h are not defined on
the singular point set of ω (see the example at the end of this section).

For the germ ω of a closed 2-form on R
2n at 0 ∈ R

2n, we set

Hω = {h ∈ E2n | Xh is smooth}. (6.2)

Now, for two elements h, k ∈ Hω, we define formally degenerate Poisson–Lie bracket {h, k}ω with
respect to the degenerate 2-form ω by

{h, k}ω = ω(Xh,Xk) = Xk(h) = −Xh(k). (6.3)

In the case where ω is a degenerate 2-form, it is not trivial that {h, k}ω ∈ Hω. However, we can
show that {h, k}ω ∈ Hω under a generic condition on ω that it has a representative closed 2-form
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defined on an open neighborhood U of 0, which we also denote by the same symbol ω, such that
the set

O = {p ∈ U | corankp ω = 0} (6.4)

is open and dense in U , where corankp ω is the corank of ω at p.
Theorem 6.1. Let ω be the germ of a closed 2-form satisfying the above generic condition.

Then Hω is a Poisson–Lie algebra with the degenerate Poisson–Lie bracket {· , ·}ω .
Proof. Since the restriction ω|O of ω to O is a nondegenerate 2-form on O, for any smooth

function h on U the restriction Xh|O of Xh to O is an ordinary Hamiltonian system with respect to
the symplectic structure ω|O.

Let h, k ∈ Hω. Then h, k, Xh and Xk are all smooth on U . Now {h, k}ω = Xh(k) is smooth
on O and we have

X{h,k}ω |O =
[
Xh|O,Xk |O

]
. (6.5)

Since h, k ∈ Hω, Xh and Xk are smooth on U . Therefore, the right-hand side of (6.5) is extendable
to the Lie bracket vector field [Xh,Xk] of Xh and Xk, which is smooth on U . Thus X{h,k}ω |O is also
extendable to a smooth vector field on U , which must be X{h,k}ω , for O is open and dense in U .
Thus X{h,k}ω is smooth and {h, k}ω ∈ Hω. This completes the proof of the theorem. �

Theorem 6.2. Let ω and ω′ be the germs of closed 2-forms. If they are isomorphic and
ω′ = ϕ∗ω, then their associated Poisson–Lie algebras are isomorphic:

ϕ∗ : Hω
∼= Hω′ . (6.6)

Let ω and ω′ be the germs of closed 2-forms at 0 ∈ R
2n. Suppose that ω and ω′ are isomorphic:

ω′ = ϕ∗ω for the germ of a diffeomorphism ϕ : (R2n, 0) → (R2n, 0). To prove that Hω and Hω′ are
isomorphic, we prove that the ring isomorphism

ϕ∗ : E2n → E2n, ϕ∗(h) = h ◦ ϕ

induces an isomorphism
ϕ∗ : Hω → Hω′

of Lie algebras. We prove this fact by proving the following two lemmas.
Lemma 6.1. If h ∈ Hω, then ϕ∗(h) ∈ Hω′.
Lemma 6.2. Let h, k ∈ Hω. Then ϕ∗({h, k}ω) = {ϕ∗(h), ϕ∗(k)}ω′ .
Since ϕ : (R2n, 0) → (R2n, 0) is a diffeomorphism, from Lemma 6.1 we see that ϕ∗(Hω) ⊂ Hω′

and (ϕ−1)∗(Hω′) ⊂ Hω and hence ϕ∗ : Hω → Hω′ is a bijection. Since ϕ∗ : E2n → E2n is a ring
isomorphism, we see that for h, k ∈ Hω

ϕ∗(h+ k) = ϕ∗(h) + ϕ∗(k).

Then, with Lemma 6.2, we see that ϕ∗ : Hω → Hω′ is an isomorphism of Lie algebras.
Proof of Lemma 6.1. Suppose that ω′ = ϕ∗ω for a diffeomorphism-germ ϕ and let h ∈ Hω.

Then we are going to show that ϕ∗(h) = h ◦ ϕ ∈ Hω′ . By definition,

Hω = {h ∈ E2n | Xω,h is smooth}

and Xω,h is defined by the equation

ω(Xω,h, Y ) = −Y (h)

for any vector field Y on R
2n.
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We are going to prove that if Xω,h is smooth then Xω′,h◦ϕ is also smooth. We prove this using
local coordinates. Let (u1, u2, . . . , u2n) be local coordinates in a neighborhood of 0 ∈ R

2n and let
ϕ = (ϕ1, . . . , ϕ2n) : (R

2n, 0) → (R2n, 0). Since Xω,h and Xω′,h◦ϕ are vector fields, they are formally
of the form

Xω,h =

2n∑

i=1

ai(u)
∂

∂ui
, Xω′,h◦ϕ =

2n∑

i=1

bi(u)
∂

∂ui
.

Since ω′ = ϕ∗ω, we have

ω′
(

∂

∂ui
,

∂

∂uj

)

=
2n∑

k=1

2n∑

�=1

∂ϕk

∂ui
ω

(
∂

∂uk
,

∂

∂u�

)
∂ϕ�

∂uj
. (6.7)

Therefore,

ω′
(

Xω′,h◦ϕ,
∂

∂uj

)

= ω′
(

2n∑

i=1

bi(u)
∂

∂ui
,

∂

∂uj

)

=

2n∑

i=1

bi(u)

2n∑

k=1

2n∑

�=1

∂ϕk

∂ui
ω

(
∂

∂uk
,

∂

∂u�

)
∂ϕ�

∂uj
.

On the other hand, we have

ω′
(

Xω′,h◦ϕ,
∂

∂uj

)

= − ∂

∂uj
(h ◦ ϕ) = −

2n∑

m=1

∂h

∂um
(ϕ(u))

∂ϕm

∂uj

=
2n∑

m=1

ω

(

Xω,h(ϕ(u)),
∂

∂um

)
∂ϕm

∂uj
=

2n∑

m=1

2n∑

p=1

ap(ϕ(u))ω

(
∂

∂up
,

∂

∂um

)
∂ϕm

∂uj
,

where the first equality holds by the definition of Xω′,h◦ϕ, and the third, by the definition of Xω,h.
Thus we have

2n∑

i=1

bi(u)
2n∑

k=1

2n∑

�=1

∂ϕk

∂ui
ω

(
∂

∂uk
,

∂

∂u�

)
∂ϕ�

∂uj
= ω′

(

Xω′,h◦ϕ,
∂

∂uj

)

=

2n∑

m=1

2n∑

p=1

ap(ϕ(u))ω

(
∂

∂up
,

∂

∂um

)
∂ϕm

∂uj
.

Expressing this equality in matrices, we have

(b1(u), . . . , b2n(u))
t(∂ϕk

∂ui
(u)

)(

ω

(
∂

∂uk
,

∂

∂u�

)

(ϕ(u))

)(
∂ϕ�

∂uj
(u)

)

=
(
a1(ϕ(u)), . . . , a2n(ϕ(u))

)
(

ω

(
∂

∂up
,

∂

∂um

)

(ϕ(u))

)(
∂ϕm

∂uj
(u)

)

and hence

(b1(u), . . . , b2n(u))
t(∂ϕk

∂ui
(u)

)

=
(
a1(ϕ(u)), . . . , a2n(ϕ(u))

)
. (6.8)

Since Xω,h =
∑2n

i=1 ai(u)(∂/∂ui) is smooth, a1, . . . , a2n are smooth functions and t(∂ϕk/∂ui) is an
invertible matrix smoothly depending on u, we see that b1, . . . , b2n are smooth functions. Thus
Xω′,h◦ϕ =

∑2n
i=1 bi(u)(∂/∂ui) is smooth and ϕ∗(h) = h ◦ ϕ ∈ Hω′ . �

Proof of Lemma 6.2. By definition,

{h, k}ω(u) = ω(Xω,h,Xω,k)(u), {h ◦ ϕ, k ◦ ϕ}ω′(u) = ω′(Xω′,h◦ϕ,Xω′,k◦ϕ)(u).
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We express Xω,h, Xω,k, Xω′,h◦ϕ and Xω′,k◦ϕ again using local coordinates u1, . . . , u2n:

Xω,h =
2n∑

i=1

ai(u)
∂

∂ui
, Xω′,h◦ϕ =

2n∑

i=1

αi(u)
∂

∂ui
,

Xω,k =

2n∑

i=1

bi(u)
∂

∂ui
, Xω′,k◦ϕ =

2n∑

i=1

βi(u)
∂

∂ui
.

Then from (6.8) we have

(α1(u), . . . , α2n(u))
t(∂ϕk

∂ui
(u)

)

=
(
a1(ϕ(u)), . . . , a2n(ϕ(u))

)
,

(β1(u), . . . , β2n(u))
t(∂ϕk

∂ui
(u)

)

=
(
b1(ϕ(u)), . . . , b2n(ϕ(u))

)
.

Thus

{h ◦ ϕ, k ◦ ϕ}ω′(u) = ω′(Xω′,h◦ϕ,Xω′,k◦ϕ)(u) = ω′
(

2n∑

i=1

αi(u)
∂

∂ui
,

2n∑

i=1

βi(u)
∂

∂ui

)

=
2n∑

i=1

2n∑

j=1

αi(u)βi(u)ω
′
(

∂

∂ui
,

∂

∂uj

)

= (α1(u), . . . , α2n(u))

(

ω′
(

∂

∂ui
,

∂

∂uj

)

(u)

)
t(β1(u), . . . , β2n(u)).

Since ω′ = ϕ∗ω, from the proof of Lemma 6.1 we have

ω′
(

∂

∂ui
,

∂

∂uj

)

(u) =
2n∑

k=1

2n∑

�=1

∂ϕk

∂ui
(u)ω

(
∂

∂uk
,

∂

∂u�

)

(u)
∂ϕ�

∂uj
(u)

and hence
(

ω′
(

∂

∂ui
,

∂

∂uj

)

(u)

)

=
t(∂ϕk

∂ui
(u)

)(

ω

(
∂

∂uk
,

∂

∂u�

)

(u)

)(
∂ϕ�

∂uj
(u)

)

.

Thus

{h ◦ ϕ, k ◦ ϕ}ω′(u)

= (α1(u), . . . , α2n(u))
t(∂ϕk

∂ui
(u)

)(

ω

(
∂

∂uk
,

∂

∂u�

)

(u)

)(
∂ϕ�

∂uj
(u)

)
t(β1(u), . . . , β2n(u))

=
(
a1(ϕ(u)), . . . , a2n(ϕ(u))

)
(

ω

(
∂

∂uk
,

∂

∂u�

)

(u)

)
t(b1(ϕ(u)), . . . , b2n(ϕ(u))

)

= ω(Xω,h,Xω,k)(ϕ(u)) = {h, k}ω(ϕ(u)).

And we have
{ϕ∗h, ϕ∗k}ω′ = ϕ∗{h, k}ω .

This completes the proof of Lemma 6.2. �
Example 6.1. Consider the closed 2-form

ω = u1 du1 ∧ du2 on R
2
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and a function h = u2. Then Xh is defined by

ω

(

Xh,
∂

∂ui

)

= − ∂h

∂ui
.

Since Xh has the form Xh = a1(u)(∂/∂u1) + a2(u)(∂/∂u2), the equation becomes

u1 du1 ∧ du2

(

a1(u)
∂

∂u1
+ a2(u)

∂

∂u2
,

∂

∂ui

)

= − ∂h

∂ui
, i = 1, 2.

Then we have

−u1a2(u) = − ∂h

∂u1
= 0, u1a1(u) = − ∂h

∂u2
= −1.

Since u1(0) = 0, there are no functions a1(u) such that u1a1 = −1. In this case, Xh is not defined
on the set {u1 = 0}, which is the singular point set of ω.

7. POISSON–LIE ALGEBRAS FOR Σ2,0, Σe
2,2,0 AND Σh

2,2,0 STABLE SINGULARITIES

In this section we will characterize properties of the Poisson–Lie algebra for the singular sym-
plectic structures of Martinet’s and Roussarie’s forms.

Proposition 7.1. Let ω2,0 denote Martinet’s normal form :

ω2,0 = v1 dv1 ∧ dv2 + dv3 ∧ dv4 + . . .+ dv2n−1 ∧ dv2n. (7.1)

Then
Hω2,0 = 〈v21〉Ev1,...,v2n + Ev3,...,v2n . (7.2)

Proof. In what follows, let ∂i = ∂/∂vi. Then for 1 ≤ i ≤ j ≤ 2n

ω2,0(∂i, ∂j) =

⎧
⎨

⎩

v1 for i = 1, j = 2,

1 for i = 2k − 1, j = 2k, 2 ≤ k ≤ n,

0 otherwise
and we have

ω−1
2,0(∂i, ∂j) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1

v1
for i = 1, j = 2,

−1 for i = 2k − 1, j = 2k, 2 ≤ k ≤ n,

0 otherwise.

Then h ∈ Hω2,0 if
∑

j ω
−1
2,0(∂i, ∂j)(∂h/∂vj) is smooth for 1 ≥ i ≤ 2n. But this implies

∂h

∂v1
,
∂h

∂v2
∈ 〈v1〉Ev .

So we express h in the form

h(v) = v21α(v) + v1β(v2, . . . , v2n) + γ(v2, . . . , v2n).

Then ∂h/∂v1, ∂h/∂v2 ∈ 〈v1〉Ev if and only if

β(v2, . . . , v2n),
∂γ

∂v2
(v2, . . . , v2n) ∈ 〈v1〉Ev ,

which holds if and only if

β(v2, . . . , v2n) = 0,
∂γ

∂v2
(v2, . . . , v2n) = 0,
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which holds if and only if h has the form

h(v) = v21α(v) + γ(v3, . . . , v2n).

Therefore, h ∈ Hω2,0 if and only if h ∈ 〈v21〉Ev + Ev3,...,v2n . �
For comparison with the general calculations we continue with an example and Roussarie’s

elliptic and hyperbolic normal forms.
Example 7.1 (Σ2,2,0-type cusps). We consider the following two cusps F5±:

F5± = (f1, . . . , f4) : (R4, 0) → (R4, 0),

fi(v) = vi (i ≤ 3), f4(v) = v34 + (v1 ± v23)v4.

Then F ∗
5+ω0 is of type Σe

2,2,0 and F ∗
5−ω0 is of type Σh

2,2,0, and

F ∗
5±ω0 = dv1 ∧ dv2 − v4 dv1 ∧ dv3 + (3v24 + v1 ± v23) dv3 ∧ dv4. (7.3)

Let ωe and ωh denote Roussarie’s elliptic and hyperbolic normal forms, respectively:

ωe = dv1 ∧ dv2 + v3 dv1 ∧ dv4 + v3 dv2 ∧ dv3 + v4 dv2 ∧ dv4 + (v1 − v23) dv3 ∧ dv4, (7.4)

ωh = dv1 ∧ dv2 + v3 dv1 ∧ dv4 + v3 dv2 ∧ dv3 − v4 dv2 ∧ dv4 + (v1 − v23) dv3 ∧ dv4. (7.5)

In what follows, let ∂i = ∂/∂vi. Then from (7.4), (7.5) and (7.3) we have

(ωe(∂i, ∂j))
−1 =

1

v1

⎛

⎜
⎜
⎝

0 −(v1 − v23) v4 −v3
v1 − v23 0 −v3 0
−v4 v3 0 −1
v3 0 1 0

⎞

⎟
⎟
⎠,

(ωh(∂i, ∂j))
−1 =

1

v1

⎛

⎜
⎜
⎝

0 −(v1 − v23) −v4 −v3
v1 − v23 0 −v3 0

v4 v3 0 −1
v3 0 1 0

⎞

⎟
⎟
⎠,

(
F ∗
5±ω0(∂i, ∂j)

)−1
=

1

v1 ± v23 + 3v24

⎛

⎜
⎜
⎝

0 −(v1 ± v23 + 3v24) 0 0
v1 ± v23 + 3v24 0 0 −v4

0 0 0 −1
0 v4 1 0

⎞

⎟
⎟
⎠.

We also get

det(ωe(∂i, ∂j)) = det(ωh(∂i, ∂j)) = v21 , det
(
F ∗
5±ω0(∂i, ∂j)

)
=

(
v1 ± v23 + 3v24

)2
.

Now we provide implicit formulas for the Poisson–Lie algebras Hωe , Hωh and HF ∗
5±ω0 , associated

to Roussarie’s hyperbolic and elliptic normal forms ωe and ωh as well as to Σ2,2,0-type cusp example.
By straightforward calculations we get

Proposition 7.2 (first implicit formula). 1. Let h ∈ Ev. Then h ∈ Hωe if and only if h
satisfies the following conditions:

−v4
∂h

∂v1
+ v3

∂h

∂v2
− ∂h

∂v4
∈ 〈v1〉Ev , v3

∂h

∂v1
+

∂h

∂v3
∈ 〈v1〉Ev . (7.6)

2. Let h ∈ Ev. Then h ∈ Hωh if and only if h satisfies the following conditions:

v4
∂h

∂v1
+ v3

∂h

∂v2
− ∂h

∂v4
∈ 〈v1〉Ev , v3

∂h

∂v1
+

∂h

∂v3
∈ 〈v1〉Ev . (7.7)
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3. Let h ∈ Ev. Then h ∈ HF ∗
5±ω0 if and only if h satisfies the following conditions:

∂h

∂v4
∈ 〈v1 ± v23 + 3v24〉Ev , v4

∂h

∂v2
+

∂h

∂v3
∈ 〈v1 ± v23 + 3v24〉Ev .

Next, for Hωe and Hωh we get less implicit differential algebraic formulas. Expressing h in the
form

h = v21α(v) + v1β(v2, v3, v4) + γ(v2, v3, v4), (7.8)

we have
Proposition 7.3 (second implicit formula).

Hωe = 〈v21〉Ev +
{

v1β + γ

∣
∣
∣
∣ β, γ ∈ Ev2,v3,v4 satisfying the equations

−v4β(v2, v3, v4) + v3
∂γ

∂v2
(v2, v3, v4)−

∂γ

∂v4
(v2, v3, v4) = 0,

v3β(v2, v3, v4) +
∂γ

∂v3
(v2, v3, v4) = 0

}

and

Hωh = 〈v21〉Ev +
{

v1β + γ

∣
∣
∣
∣ β, γ ∈ Ev2,v3,v4 satisfying the equations

v4β(v2, v3, v4) + v3
∂γ

∂v2
(v2, v3, v4)−

∂γ

∂v4
(v2, v3, v4) = 0,

v3β(v2, v3, v4) +
∂γ

∂v3
(v2, v3, v4) = 0

}

.
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