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Abstract—We show that there exists a natural Poisson-Lie algebra associated to a singular
symplectic structure w. We construct Poisson—Lie algebras for the Martinet and Roussarie
types of singularities. In the special case when the singular symplectic structure is given by
the pullback from the Darboux form, w = F*wy, this Poisson—Lie algebra is a basic symplectic
invariant of the singularity of the smooth mapping F into the symplectic space (R?",wg). The
case of Ay, singularities of pullbacks is considered, and Poisson-Lie algebras for ¥ o, 35 5 5 and
22’270 stable singularities of 2-forms are calculated.
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1. INTRODUCTION

Let w be the germ of a closed 2-form at 0 € R?". For a function-germ h at 0 € R?" and
nondegenerate w, the Hamiltonian vector field of h with respect to w is the vector field X, ; such
that (see [11, 21])

w(Xo s §) = —E(h) (L.1)

for any vector field & on R?".
If w is singular, then the smooth vector field X, defined by formula (1.1) may not exist
(cf. [14, 19, 6]). Thus we define the space of Hamiltonians H,,,

He = {h € &, | Xy is smooth}. (1.2)

If h,k € Hy, we show that {h,k}, = w(Xyn, Xo k) belongs to H,. And under a certain generic
condition we prove that H,, equipped with the bracket {-, -}, is a Poisson-Lie algebra.

Let (R?",wg) be a symplectic space with wy in Darboux form. Let  be the Liouville 1-form on
the cotangent bundle T*R?”. Then df is a standard symplectic structure on T*R?". Let 3: TR?*" —
T*R?" be the canonical bundle map defined by wg, 8: TR?" 3 v + wo(v,-) € T*R?". Then we can
define the canonical symplectic structure w on TR?", & = 3*df = d(*6). Throughout the paper,
unless otherwise stated, all objects are germs at 0 of smooth functions, mappings, forms, etc., or
their representatives on an open neighborhood of 0 in R?".

Let F: (R?",0) — TR?" be a smooth map-germ. We say that F' is isotropic if F*&w = 0. If we
assume that F': (R?", 0) — TR?" is an isotropic map-germ, then the germ of the differential of the
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130 T. FUKUDA, S. JANECZKO

1-form (/5 o F')*@ vanishes, d(f o F)*0 = F**df = F*w = 0. Thus (8 o F')*f is a germ of a closed
1-form. And there exists a smooth function-germ g: (R?",0) — R such that

(BoF)6=—dg. (1.3)

For each smooth isotropic map-germ F' the function-germ ¢ is uniquely defined up to an additive
constant.

Let F: R?" — (R?" wg) be a smooth map, 7: TR?"® — R?® and F = 7o F. In general, F can
be regarded as a vector field along F, i.e., a section of an induced fiber bundle F*TR?*". By &y
(Er2n, respectively) we denote the R-algebra of smooth function-germs at 0 on U (and on “the
target space” R?", respectively). For each isotropic map-germ F along F' there exists a unique g
belonging to the maximal ideal my of &7, g € myy, which is a generating function-germ for F'. If F’
is an embedding, then its image M = F(R?") C TR?" is an implicit differential system branching
along singular values of F' (cf. [7]). Singularities of such systems were studied by many authors
(cf. [3, 4, 19]). In this paper we assume the smooth solvability of M and find their local classification
and invariants.

To F we associate a symplectically invariant algebra Rp of all function-germs generating
isotropic map-germs F along F. Let F: R?" — (R?" wg) be as above; then F induces a possi-
bly degenerate 2-form F*wg. For a smooth function h defined on U C R??, we formally define the
Hamiltonian vector field X} (which may not be smooth) on U by equality (1.1) with w replaced
by F*wgy. To F we associate the Poisson—Lie algebra (1.2),

Hp ={h € &y, | Xp is smooth}. (1.4)
Then Hr C Rp is a Poisson—Lie algebra endowed with the Poisson—Lie bracket
{k‘, h}F*wo = F*WO(Xkth)' (15)

Assume F: (R?™,0) — TR?" is a smooth isotropic map-germ along a smooth map-germ F':
(R?",0) — R?" such that the regular point set of F is dense, and h: (R?",0) — R is a generating
function-germ of F. Then F is smoothly solvable (cf. [8, 9]) as an implicit differential system if and
only if h belongs to the Poisson—Lie algebra Hp. Thus the elements of Hp are considered to be
Hamiltonians, which satisfy the equation

(B0 dF(X,))*0 = —dh.

In this paper we introduce the symplectic A-equivalence to classify the smooth map-germs F
into a symplectic space. We use this equivalence to classify the normal forms of such mappings in
Section 2. Then, in Section 3 we use the classified normal forms to investigate the structure of the
singular pullback F*wgy. In Section 4 we find conditions for a smooth map-germ F under which
F*wq is a stable 2-form. Calculations are done for Martinet and Roussarie normal forms, but in
Section 5 for the special case of Ay type singularities of mappings. The Poisson—Lie algebra of a
singular symplectic form is introduced in Section 6 (cf. [8-10]). And the Poisson—Lie algebras for
Y20, 2§90 and 227270 stable singularities of 2-forms are calculated in Section 7.

2. NORMAL FORMS OF MAPPINGS INTO A SYMPLECTIC SPACE

Let F': (R?,0) — (R?",0) and G: (R?",0) — (R?",0) be two C* map-germs, where the target
space R?" is endowed with the standard symplectic structure wy = > i, dy; A dz;. We say that
F and G are symplectomorphic if there exist a diffeomorphism-germ ¢: (R?”,0) — (R?",0) of the
source space and a symplectomorphism ®: (R?",0) — (R?",0) of the target space such that

G=®oFodg. (2.1)
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POISSON-LIE ALGEBRAS AND SINGULAR SYMPLECTIC FORMS 131

In this paper, we use new (modified) pre-normal forms of Ay, singularities of map-germs (cf. [1, 2,
5, 12, 13]). Before that, we give an introductory pre-normal form of not necessarily stable corank 1
map-germs F': (R?",0) — (R?",0).

Proposition 2.1 (introductory pre-normal form). Let G: (R?** 0) — (R?",0) be a C*° map-
germ of corank 1. Then G is symplectomorphic to a map-germ of the form

F = (fl?“‘7f2n)7

(2.2)
filu)=u; (i <2n—-1), fon(u) is a C* function.

Proof. Suppose G: (R?",0) — (R?",0) is a C*™ map-germ of corank 1. Then there exist a
C*> diffeomorphism h: (R?",0) — (R?",0) of the source space and a C* diffeomorphism ¢ =
(01, pan): (R?"0) — (R?",0) of the target space such that

pioGoh(uy,... ,uy) =u; (1 < 2n),

©Yon oGoh(ul,...,u2n) = g(ul,--~7u2n)7

where g is a C* function with dg/dusa,(0) = 0.
Now we use this differential normal form to construct a symplectomorphic change of coordinates
of the target space. There is a symplectic diffeomorphism on the target space

Y= (Y1,...,P2,): (R?0) = (R* 0)  such that 1o, = po,.
Next, let
vi =1Y;0Goh(uy,...,uz) (i <2n), Vo = Uy,
Then, (v1,...,v2,) are new coordinates on the source space and we have
YioGoh=wv (i<2n), o0 Goh =g(vy,...,v9,). O
Now for A map-germs, we have
Proposition 2.2. Let G: (R?>",0) — (R?",0) be an Ay, type singularity.
1. If G is a fold map-germ, i.e., A1, then G is symplectomorphic to a map-germ of the form

F:(f17"'7f2n)7
filw)=w; (<20 —1),  fon(u) =,

2. If G is an Ay type map-germ with k > 2, then G is symplectomorphic to a map-germ of the
form

(2.3)

filu) =y (i <2n—1),

k-1 , (2.4)
fon(u) = ubtt + Zai(m, ey U2p 1)Uy, + b(ug, . U2p 1),
i=1
where ay(uy, ..., Up—1)s- -, @k—1(U1, ..., U2p—1) and b(uq,...,usp—1) are smooth functions and the
differentials day,das,...,dag_1 are linearly independent at the origin.

3 (cusp for n=1). If G: (R%0) — (R?,0) is an Ay map-germ with k > 2, then k = 2 and it
is symplectomorphic to the normal form of a cusp:

F = (f1, f2), fi(u) = uq, fa(u) = uj + uyus. (2.5)

Proof. The proof of assertion 1 is almost the same as the proof of Proposition 2.1. Suppose
that G is a fold map-germ, i.e., A; map-germ. Then there exist a C* diffeomorphism h: (R?",0) —
(R2™0) of the source space and a C™ diffeomorphism ¢ = (1, ..., p2,): (R?",0) — (R?",0) of the
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132 T. FUKUDA, S. JANECZKO

target space such that
pioGoh(uy,...,uzy) =1u; (i<2n), Yan 0 Goh(uy,...,uy) = u%n
Then, there is a symplectic diffeomorphism on the target space
Y= (Y1,...,02,): (R¥,0) = (R*™ 0)  such that 1o, = .
Let

vi =1Y;0Goh(uy,...,us) (i <2n), Vo = Uy,
Then, (v1,...,v9,) are coordinates on the source space and we have
YioGoh=wv; (i<2n), o 0 Goh =ud, =03 .

Now suppose that G is an A, map-germ. Then, by Morin’s theorem (cf. [17]), there exist a
C*> diffeomorphism h: (R?",0) — (R?",0) of the source space and a C* diffeomorphism ¢ =
(01, pan): (R?"0) — (R?",0) of the target space such that

wioGoh(uy,...,uy) =u; (1 < 2n),

. k-1 , (2.6)
won 0 Goh(uy,...,usy) = uz:[ + Zuzuén
i=1
Then, there is a symplectic diffeomorphism on the target space
Y= (Y1,...,P2,): (R?0) = (R*™ 0)  such that 1o, = po,. (2.7)
Let
vi =1Y;0Goh(uy,...,uzy) (i <2n), Vap, = Uy, (2.8)
Then, (v1,...,v9,) are new coordinates on the source space, and from (2.6) and (2.8) we have
;0 Goh(vy,...,ve,) =1; (1 < 2n),
k—1
¢2n oGo h('l)l, cee 7v2n) = U2p = vlg;l_l + Zulvén
=1
Taking the inverse of the source coordinates (2.8), we get the final form
;o Goh(vy,...,ve,) =1; (i < 2n),
k—1
1/}271 oGo h(’Ul, oo 77)271) = U2n = 0126:1 + Z ui(v)vén‘
i=1
Note that the coefficients u;(v) are functions of the variables vy, vo, ..., v2,—1,v2,. However, the
coefficients u;(v) are desirable to be functions of the variables vy, vo, ..., v2,—1.
Since u;(v)’s are functions of the variables vy, ..., v9,, they can be expressed in the form
2n—1

’LLZ'(Ul, ... ,UQn) = Z UjOéZ"j(Ul, ... ,Ugn) + ﬁi(vgn).
7j=1

Since G is an Ay type map-germ, the order of ;(ve,) must be greater than k — i:
ord Bi(ven) > k —i;
indeed, if ord 3;(vay,) < k — 4, then G must be an Ay-singularity for some ¢ < k.
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Then with the coordinates

k—1
w; =v; (i <2n), Wop = ué”:l + Zﬁi(vgn)vén
i=1
in the source space, 19, o G o h(wy,...,ws,) becomes an unfolding of w;;r 1 with parameters
w1,...,Wa,—1 in the sense of unfolding theory (see, e.g., [20]):

k+1
Yon 0 G o h(0,...,0,ws,) = wy' .
Then again under new coordinates of the form
w; =w; =v; (1< 2n), Way = Wop (V1, -+, V2p),

1on © G o h becomes of the form
k-1 '
Yo, 0 Goh = wzkrj_l + Z ai(wl, ... ,QUQn_l)’UJQZn + b(wl, ... ,’wgn_l). (2.9)
i=1

Note that after (2.7) we have not changed coordinates in the target space. So the map-germ G
and the map-germ 1 o G o h,

;0 G o h(w) = w; (i < 2n),

k—1
thop, 0 G o h(w) = w2kn+1 + Zai(wl, e Wop—1)We, + b(w1, ..., won—1),
i=1

are symplectomorphic. This completes the proof of assertion 2.
The proof of assertion 3 is a straightforward application of assertion 2. [J

3. INDUCED CLOSED 2-FORMS FROM THE SYMPLECTIC STRUCTURE

Now we want to investigate the induced closed 2-forms F*wgy. In order to avoid unnecessarily
complicated calculations, we choose the following new coordinates in the target space (R?", wo =

Sy dyi A day):
Z21=—T1, Z22=Yl, ..., Zop_1= —Tp, Zon=Yn.
Then
wog=dz1 Ndzg + ...+ dzop—1 N dzop,.

Following the above change, we also use the corresponding new coordinates in the source space:
U1 = —u1, V2 =Un+tl, ---5 V2pn—1= —Un, V2n = U2n.

In this section, we formulate our results on the induced closed 2-forms F*wg. This is stated for
the corank 1 map-germ and expressed for the symplectic pre-normal form (2.2) of F'.

Let (z1,...,22,) be the standard coordinates in the target space R?" and let wy = dz; A dzs +
...+ dzop_1 A dzop, be the symplectic form on the target space R?". With the assumptions of
Proposition 2.1 we have the following result.

Proposition 3.1. Let F be in the pre-normal form (2.2). Then

n—1
F*wo = Z dvo;_1 N dvg; + A(U) dvo,—1 N dvgy, — Z 88];2” dv; N\ dvgn_l, (3.1)

i=1 i#£2n—1,2n

where A(v) = 0 fan /Ovan(v) is the Jacobian of F'.
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From now on, we assume that

dA(0) # 0. (3.2)

Let us introduce the notation
Yo(F*wp) = {v € R* | A(v) = 0}, (3.3)
Apsy(v) = {w € T,R? | i(w)F*wo(v) = 0}, the kernel of F*wy(v), (3.4)

where i(w)F*wgy(v) denotes the inner product of the vector w and the 2-form F*wg(v).

Since dA(0) # 0, Sa(F*wp) is a (2n — 1)-dimensional submanifold of R?".

Proposition 3.2. Suppose that dA(0) # 0. If v € ¥o(F*wy), then dim Ap«,,(v) = 2 and it
1s spanned by the following two vectors:

n—1
Z(‘)fgn B Zafzn o . 0 = 7 (3.5)

Ouyi Ovgi—1 4= Ovgimy Ovy;  Ouap—1’ Ovay,

Proof. Let v € Xa(F*wp). Since dim Ap«,, () = 2 and e; and ey are linearly independent, it
is enough to show that e, ea € Ap«yy(v)-
From Proposition 3.1, we have

n—1
0
F*uwg = E dvoi_1 N dvg; + A dvgy_1 A dvgy, — E Jon dv; N\ dvoy,_1,
6212'
=1 i#2n—1,2n

where A = 0fs,/0vay, is the Jacobian of F.
Since v € Xo(F*wp), A(v) = 0. Thus

n—1
F*wy = Z dvo; 1 N dvg; — Z Ofon dv; N dvoy, 1 on ZQ(F*WO).

i=1 i#2n—1,2n Ov;
Let
2n 9
_ ) 2
e= Zwlavi e T,R“™.
=1
Then
0
e € A+, (v) if and only if  F*wp(v) <e, 9 > =0 (j=1,...,2n).
Uj
Now we solve the following equation for the coefficients wy, ..., wan:
2n
o 0
F* i =0 i=1,...,2n).
(X g ) =0 =12
We have

2n
0= Fuwo (; Y g, 8v2j—1)
n—1
8 fon o 9
= (Z dvo;_1 N dve; — Z 8fj dvi N dvgp— 1> (Z Wi Ov;’ Ovy; 1>
i j—

i=1 i#£2n—12n  ° i=1
af2n

Wy — | <n
8U2j_1 2n—1 (] )

= —wy; +
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and
2n
o 0 0 fan .
0=F* i , = wWy,;_ e .
wo (;w o, 8v2j) waj—1 + Dus; Wop—1 (j <n)

Thus we obtain

w2j—-1 = — Won—1, waj =
6212]'
Note that

2n P 9
F*uwy (Z Wi g, Do ) =0 for arbitrary wi,...,won_1,
i=1 ! "

since F*wg does not contain the term 9/0va, .
We also see that if we let

Wi—1 = — W2n—1, Wa; = W2n—1,
Ova; Ovagi—1

then we immediately have

2n
. 0 0 -
F*wy (ZZ:; w; v, av%_l) =0.

Thus we have no relations between wy, ..., ws, other than (3.6). Therefore, as a basis of Apxy,(v),
we can choose
-1
B 1 tt 1 = 17 — 07
Z Ovo; Ovgi—1 Z Ovg;_1 Ovo; 81;2”_1 etting  Wap—1 Wan

ey = letting wo,—1 =0, wy, =1.

8v2n

This completes the proof of Proposition 3.2. [

4. CLASSIFICATION OF MAPPINGS BY INDUCED CLOSED 2-FORMS

In this section we find the classification of singularities of corank 1 maps induced by the classi-
fication of “stable” singularities of closed differential 2-forms (cf. [15, 18, 16]).
Let

w = E Q; j dv; N\ d’Uj
1<i<j<2n

be the germ of a closed 2-form on R?" at 0. As a volume form on R?", we choose
Q=dvy Advgy A ... A dvgy,.

Let
wh = fQ.

If £(0) # 0, then by Darboux’s theorem, w is isomorphic to the Darboux form
dvy A dvg 4+ dvg ANdvg + ... + dvgp_1 A dvay,.
Now we assume that f(0) = 0 while df(0) # 0. Let
Sa(w) = {v € R™ | f(v) = 0},
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By the condition df(0) # 0, ¥(w) is a dimension 2n — 1 submanifold of R?" and at a point
v € Yg(w) the kernel

Au(v) ={we T,R* | i(w)w(v) = 0}
of w(v) is a two-dimensional vector subspace of T,R?", where i(w)w(v) denotes the inner product

of a tangent vector w and a 2-form w.

Definition 4.1 (J. Martinet). Suppose that f(0) = 0 while df(0) # 0. If A, (0) is transversal
to TpXa(w), we say that w has a Xg o singularity at 0.

Theorem 4.1 (J. Martinet). If a closed 2-form w has a Yo singularity at 0, then w is
isomorphic to the following closed 2-form:

vidvy A dvg + dvg A dvg + ... + dvgp—1 A dugy,.

Let us consider the set
2272(6«)) = {2) S Eg(w) | Aw(v) C Tvzg(u})}.

It is known that 3 9(w) is a dimension 2n — 3 submanifold of R?".

Definition 4.2 (J. Martinet). Suppose that 0 € 33 2(w). If A, (0) is transversal to Ty 2(w)
in TpXg(w), then we say that w has a 3a 9 ¢ singularity at 0.

Since X9 9o singularities of closed 2-forms are classified only for n = 2, from now on we only
consider closed 2-forms on R*.

Theorem 4.2 (R. Roussarie). If a closed 2-form w on R* has a Yo 2,0 singularity at 0, then
w is isomorphic to one of the following two closed 2-forms:

3

dvi A dvy + v3dug A dug + d(vlvg + vouy — 1;’) A duy,

3
dvi A dvy + v3dug A dug + d(vlvg — VoUy — 1;’) A duy.

Definition 4.3. If w is isomorphic to the first of the above two forms, we say that w has
aXfag (elliptic Xg9,0) singularity at 0, and if w is isomorphic to the second of the above forms, we
say that w has a 212172’0 (hyperbolic X9 9 ) singularity at 0.

These two cases are distinguished as follows: Suppose that a closed 2-form w on R* has a 22,0
singularity at 0. Let © be a positive volume form of R* with coordinates v1,..., vy, say, Q =
dvi A dvy A dvg A dvg. Then w? has the form

w? = fQ

for a function f such that f(0) =0 and df(0) # 0.
Let Qy, () be a volume form on ¥3(w) such that

Qs,w) Adf and Q define the same orientation on R*.

Let Y3(w) be oriented in such a way that (ly, ) is a positive volume form on ¥p(w). It is known
(see [18, p. 147]) that there exists a smooth vector filed X on ¥o(w) such that

(W5 w)) = UX)(Qsyw))s
where i(X)(s,(.)) is the inner product of the vector filed X with the 3-form Qy, ..
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Let wy, we, w3 be coordinates at 0 on Yo(w) which define a positive orientation on ¥o(w). Then
the vector field X has the form

3 9
X = Zai(w) P
i=1 v

By the definition of 3 2(w), w vanishes on X3 2(w). So, the Jacobian matrix of X at 0

(50)

has rank 2 and it has two nonzero eigenvalues A, 1 and A, 2, which are known to be either both
real or both imaginary.

Theorem 4.3 (R. Roussarie). Let w have a X320 singularity at 0.
1. If the two eigenvalues A\, 1 and M, o are real, then w has a 237270 singularity at 0.
2. If the two eigenvalues Ay1 and A, 2 are imaginary, then w has a ¥, o singularity at 0.

Theorem 4.4. Let F be a map-germ of the form (2.2). Then F*wq is isomorphic to the
Martinet’s normal form of ¥ singularities of closed 2-forms,

n—1
Z dve;_1 N dvg; + voy_1 dvop_1 A dvay, (4.1)
=1
if and only if
(e1(A)(0),e2(A)(0)) # (0,0). (4.2)

Proof. By (2.2) we have
(F*wo)" = nAdvy Advg A ... A\ dvgy,.

Since by the assumption da;(0) # 0, we have dA(0) = da;(0) # 0. So, by the definition of X5, it
is enough to seek the condition for A, (0) to be transversal to TpX2(w) at 0.
Since

Yo(w) = {v € R*™ | A(v) = 0}

and A, (0) is spanned by e; and e, we know that A, (0) is transversal to TpX2(w) at 0 if and only
if (e1(A)(0),e2(A)(0)) # (0,0). Thus, from Martinet’s theorem, F*wy is isomorphic to Martinet’s
normal form of ¥y o if and only if (e1(A)(0),e2(A)(0)) # (0,0). O

Theorem 4.5. Suppose that F*wq is not isomorphic to Martinet’s normal form of ¥ type
singularities; i.e., suppose that

(€1(A)(0),e2(A)(0)) = (0,0).

Then F*wq is isomorphic to Roussarie’s X920 normal forms if and only if

. <e1<e1<A>><o> e1<e2<A>><o>) ,
a1 (8)(0) eafea(A))(0)) T

Proof. Since
Yoo (Fwy) = {v e R* | A(w) =0, e1(A)(v) =0, ex(A)(v) = 0}

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 311 2020



138 T. FUKUDA, S. JANECZKO

and A, (0) is spanned by e; and ea, we know that A, (0) is transversal to TpXo 2(w) in ThXa(w) at 0
if and only if

. <e1<A><o> ex(e1(8))(0) e1<e2<A>><0>> ,
2(B)(0) ea(er(Q))(0) ealea(A)(0))

Therefore, by the definition of 3999, F*wp is isomorphic to Roussarie’s g9 o if and only if

ok <e1<A><o> e1(e1(8))(0) e1<e2<A>><o>> .
e2(8)(0) ea(er(A)(0) ea(ea(A)(0))
which holds if and only if

ronke [ €1(€1ANO) ea(e2(ANO)) _
e2(e1(A))(0)  ea(e2(A))(0) ’

for (e1(A)(0),e2(A)(0)) = (0,0) by assumption. O
Let F = (f1,...,f1): (R* 0) = (R* 0) be the pre-normal form of corank 1 map-germ given in
Proposition 2.1 such that

. <e1<A><o> (e (8)(0) e1<e2<A>><o>> ,
e2(A)(0) e2(e1(A))(0)  e2(e2(A))(0) ’
where
A:8!)"4 o) = 8f48+8f48 0 ey — 8'

62147 - 6212 6211 6211 8’02 + 8’03’

Then by Theorem 4.5, F*wy is of type 329 9.
Since dA(0) # 0,

So(F¥wp) = {v=(v1,...,v4) € RY| A = 0}

is a three-dimensional submanifold of R* and

0A .
oo, (0)#0 for some i=1,...,4.
Since (e1(A)(0),e2(A)(0)) = (0,0), we have
oA = ofy 0 ofy 0 0 B
6214 (0) - 07 <_ 8’02 6211 + 8’01 6212 + 6U3>A(0) =0

If 90A/0v1(0) = 0 and OA/Jv2(0) = 0, then by the above formula we have 9A /0v3(0) = 0, which
contradicts the fact that dA(0) # 0. Thus we have

Lemma 4.1.

(0)#£0 or (0) # 0.

So after the changes of coordinates
21 = —29, 29 =21, 23 = —23, Z4=24 in the target space,
V] = —Uy, Vg =01, U3= —U3, Uq=104 in the source space,
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we may assume that

0A
oy (O 0.

Then, by the implicit function theorem, there is a function ¢(vy,vs,v4) such that
Yo(F*wy) ={v € R4 | A(v) =0} = {(vl, ..., Vg) € R4 | v = gp(vg,vg,m)},
and we can choose vy, v3,v4 as coordinates on 3o(F*wp). Let us define

dfs Op dp dp Ofs 0p Ofs

Qg = a3 = — 4 = .
81)3 81)1 82)2 82)2

B 82)1 (92)4 ’ (92)4 ’

Considering the Jacobian matrix of as, ag, ay, we have

Jay;
rank( ' (0)> =2 (4.3)
dvj 2<i,j<4

Theorem 4.6. Let the assumptions of Theorem 4.5 be fulfilled. Then

(1) F*wy is isomorphic to Roussarie’s normal form 2}21’270 if and only if the two nonzero eigen-
values of
6042'
O (0) (44)
Yj 2<i,j<4

(2) F*wy is isomorphic to Roussarie’s normal form Y5 90 if and only if the two nonzero eigen-
values of the matriz (4.4) are imaginary.

Proof. Let ¢t = (t1,...,t4): Xo(F*wp) — RY,

are real;

t(v2,v3,v4) = (p(v2,v3,v4), V2, V3, V4),
be the inclusion map. Then we can easily check that
dvg A dvg A dvg = 1% (dvy A dog A duy).
Set
Qs (Frwy) = —dva Advz Advg = —1*(dva A dvg A doy).
Then,
Q = dvy A dvy A dug A dug and Qs (Frwe) N Af = 205, (pruw) N dA

define the same orientation on R*. Recall that the function f was defined by the equality

(F*wp)? = fQ
and also recall that
F*wg = dvy A dvg + Advs A dvg — Z 86‘)05:1 dv; N dvs, (F*w0)2 = 2A0.

i=1,2
Now we seek the vector field X on Xo(F*wg) such that
Frwo|sy(Frag) = (X)) (Qsy(Frwn))- (4.5)
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Letting
- )
X = Zai(w,v?ww)avi,
=2
we solve equation (4.5). Recall that Qs (p+y,) = —dva2 A dvz A dvy. Then we have

dp  Ofs 0p  Ofs _ o 9\ . o 9
_8’03 B 6211 6212 B 8’02 =r W0|22(F*w0) <6U27 8’03) - Z(X)(QEQ(F*UJO)) <6U27 8’03)

4
o 0 0
= —dvy A dvz N\ d’U4< E (%} , , > = —oy,
i— 8’[)2' 6212 8’03

dp * o 0
_8’04 =F w0|22(F*wo) <82)27 81)4)

4
o o0 0
= —dvy N dvg A duy (Zz:; o 90 Ovy’ 81)4) = a3,

Ofy Op o 0
8’01 6214 =r w0|22(F*w0) <6U3’ 8’04)

4
o 0 0
:—dvg/\dvg/\dm(E Q; , , > = —Qo.
i—o 8’[)2' 6213 8’04

Now we consider the Jacobian matrix

oo
‘) (46)
(c%j 2<4,j<4
at 0 of the coefficients
gy a0 0o Op 0fsdp Ofs
2 8’01 81)47 3 81)47 4 81)3 82)1 (92)2 8’02

of the vector field X. According to Roussarie’s theorem, we see that
s
rank( i (0)> =2,
dv; 2<i,j<4

(1) F*wy is isomorphic to Roussarie’s normal form 2}21’270 if and only if the two nonzero eigen-
values of (4.6) are real;

which implies (4.3), and we see that

(2) F*wp is isomorphic to Roussarie’s normal form 5, ; if and only if the two nonzero eigen-
values of (4.6) are imaginary.

This completes the proof of Theorem 4.6. [

5. CONDITIONS FOR A, TYPE SINGULARITIES

In this section we apply the results of the previous sections to various examples containing Ay,
map-germs. Let F' be a map-germ of the form (2.2) such that dA(0) # 0. Then F*wy is isomorphic
to Martinet’s normal form of ¥ singularities of closed 2-forms

n—1
> dvgi1 A dvy + vop—1 dvan—1 A dvan
i=1
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if and only if
(e1(A)(0), e2(A)(0)) # (0,0).
Let F be a fold map-germ:
F=(fi,-, fan): (R*",0) = (R™,0),
filv)=vi (i<2n=1),  fon(v) = v,
Then

n—1
Fruwy = Z dve;_1 N dvg; + 209y, dvo, 1 N dvgy,.
=1

The above form is obviously isomorphic to Martinet’s normal form ¥ ¢ given in Theorem 4.4:

n—1

Z dvoi—1 A dva; + vap—1 dvap—1 A dvay,.
i—1
Since
A = 21)2”, el(A) = 0, GQ(A) =2
and

(e1(A)(0), e2(A)(0)) = (0,2) # (0,0),

F*wqg satisfies the condition given in Theorem 4.4 for it to be isomorphic to Martinet’s normal
form X9 .

Proposition 5.1 (A4 map-germs, k > 2). Let F = (f1,..., fan): (R?™,0) — (R?",0) be an
A map-germ of the form

fZ(U) = U; (2 § 2n — 1),
f2n —2)]2{::1 ZCLZ vl,...,vgn_l)vén+b(v1,...,vgn_1) (/{322)

In particular, when n =1, let F = (f1, f2): (R%,0) — (R?,0) be a cusp map-germ:

fi(v) = vy, fa(v) = v3 + v1vy. (5.1)
Then
(1) F*wy is isomorphic to the above Martinet’s normal form if and only if
e1(A)(0) # 0, (5.2)
or equivalently, if and only if
n—1
8(11 6b 8a1 8()
0 0 0 0; 5.3
8v2n 1 +Z< 81}22 81}22-_1( )+ 81}22-_1( )81)22-( )> 70 (5:8)
(2) in particular, if b =0, F*wq is isomorphic to Martinet’s normal form if and only if
8a1
0) # 0;
6v2n_1( ) # 0;

(3) if n =1, then, for the cusp map-germ (5.1), F*wq is isomorphic to Martinet’s normal form.
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Proof. Let us prove (1). Since k > 2, ea(A)(0) = 0. So,
(e1(A)(0),e2(A)(0)) # (0,0) if and only if  e1(A)(0) # 0.

Thus, F*wy is isomorphic to the above Martinet’s normal form if and only if condition (5.2) holds,
or equivalently, if and only if (5.3) holds.
Assertions (2) and (3) follow easily from assertion (1). O

Example 5.1. Consider the following two map-germs:

Fy = (f1,..., fan): (R®,0) = (R?",0),

filv)=v; (i<2n—1),  fon(v) =03, + v2p_1020,
and
F2 = (fl, . ,fgn)i (R2n, 0) — (R2n, 0),
fl(v) = (Z <2n-— 1)7 fgn(’U) = ’Ugn + Ugv2n
(for some fixed k, k < 2n — 1).
Then

(1) Ffwp is isomorphic to Martinet’s normal form, since

day _ Ovgp1 .
8’02”_1 (0) - aUQn_l (0) =1 # 0)

(2) Fjwp is not isomorphic to Martinet’s normal form, since

8a1 8’UZ'

a'U2n—l - 87)271—1 (0) =0

Example 5.2. We revise F5 in Example 5.1 adding the term b as follows:
F3 = (fl, A ,fgn)i (R2n, 0) — (R2n, 0),
filty) =vi (i<2n=1),  fou(v) =03, + vop_1v2n +v2k  (Or V5, + vorvan + Vop—1)

(for some fixed k, k < n).
Then Fjwy is isomorphic to Martinet’s normal form, since

n—1
e1(A)(0) = ai‘;l_l (OHZ(_SZ; 0. % @ 0 g% (0)>

P g1 OQugi—1 "~ vy

8a1 8() 8a1 8()
— 0 0) + 0 0)==41+#0.
Ovg, ~ 7 Ovog—1 ) 8U2k—1( )5vzk( ) 7

Example 5.3. Let
F4 = (fl7’ .- 7f2n): (RQnao) — (RQnao)a

filv) =v; (1 <2n-1), Jon(v) = vap_1v2p.

Then, although Fj is very degenerate as a map-germ, F;wy is stable as a closed 2-form and isomor-
phic to Martinet’s normal form, since A = vg,,_1 and

n—1
el (A)(O) _ 8’[)2”_1 (0 + Z <_ 8’[)2”_1 8() aUQn_l 6b

- v i=1 Qi © Ovai—1 (0)+ Ovzi1 ©) Ova; (0)> =1#0
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Since the classification of X 5 ¢ singularities of closed 2-forms is completed only for n = 2, we
consider only the case where n = 2. In this case, we consider the introductory pre-normal form
of type (2.2). Let us suppose that F*wy is not isomorphic to Martinet’s normal form of 3 type
singularities, i.e., suppose that

el(A)(O) _ 8a1 8() 8(11 8()

8a1
6213 (0) B 6212 (0) 6211 (0) * 8’01 (0) 8’02 (0) =0

Then F*wy is isomorphic to Roussarie’s ¥g 2 o normal form (see Theorem 4.5) if and only if
[(a@)0) e @)0) ealead)0))
e2(A)(0) ea(e1(A))(0)  e2(e2(A))(0)
Theorem 5.1. Let F' = (f1,..., f1): (R*0) = (R*0) be an A map-germ with b =0 of the
form

filv)=v; (1<3),  falv —U§+1+Zaz v1,v2,03)vy  (2< k< 4)

such that F*wy is not isomorphic to Martinet’s normal form of ¥o type singularities. Then F*wy
is isomorphic to Roussarie’s Ya 20 normal forms

3

v
3) Aoy (S500)

dvi A dvy + v3dug A dug + d(vlvg + vovy — 3

or
3
dvi A dvg 4+ v3dvg A d3 + d(vlvg — VU4 — 1;?) A duy (227270)

if and only if

Proof. In this case,

k-1
A= (k+ 1)k + Ziai(vl,vg,vg)vf;l,
i=1
_ 0fs 0 Ofy 0 da; ; da; 0
“a= Ovy Oy + oy 81}2 Ovs (Z 81}2 ) ovy (Z (%1 ) Ovy 81}37
. 0
2 = 8'047
k—1 k—1 k—1 k-1
B Oa; ; ,8(1] 8@1 Oaj Oa;
k—1
ea(A) = (k + Dkoh™! + Z] Jj— 1)a]v4 2,
j=2

Thus, by straightforward calculations for k£ = 2, 3,4 we have

<e1<A><o> er(ex(8))(0) e1<e2<A>><o>>:<o 98 (0) 233;(0))
(8)(0) ea(er(A)0) ea(e2(AN©)  \o 202(0) 6 )

This completes the proof of Theorem 5.1. [
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Example 5.4. Consider the following two cusp map-germs:
Fsy = (fi,-.., fa): (R%,0) = (R%,0),
filwy=v; (i<3),  fa(v) =v]+ (v1 +v3)vs,
and
Fs = (f1,..., f1): (RY0) — (R%,0),
filv)y=v; (i<3),  falv) = v} +vivg

Using Theorem 4.4 or its corollary, one can easily check that neither F:, wo nor Fgwy is isomorphic
to Martinet’s Y9 g. We see that Ft wg is isomorphic to Roussarie’s X2 2 o but Fgwp is not. To prove
this fact, we apply Theorem 5.1 for £ = 2. First we consider FZwp. In this case

8%ay 0 28a2 0
rank 8(,? © 8v3( ) = rank <i2 0> = +2.
292 (0) 6 0 6

Therefore, by Theorem 5.1, F5wp is isomorphic to Roussarie’s ¥ 2 9. Moreover, F5, wy is of type
: h
35 90 and F5_wy is of type X3, .
Now we consider F§wy. In this case, since fy = v} + vy,

8%a; 0 28(12 0
rank 88v§ ) 250 (0) = rank <0 0> # 2.
25, (0) 6 06

Therefore, by Theorem 5.1, Fjfwg is not isomorphic to Roussarie’s ¥ 2 ¢ form.

6. POISSON-LIE ALGEBRA OF HAMILTONIANS ASSOCIATED
TO SINGULAR SYMPLECTIC FORMS

In this section we present the basic properties of the Poisson—Lie algebras of singular Hamilto-
nians determined by singular closed 2-forms.

Two germs w and w’ of closed 2-forms on R?" at p and ¢, respectively, are said to be isomorphic
if there exists a diffeomorphism-germ : (R??,q) — (R?", p) such that ' = p*w.

Let w be the germ at 0 € R?" of a closed 2-form on R?". For a function-germ h at 0 € R??,
the Hamiltonian vector field of h with respect to w is the vector field X, ;, formally defined by the
equation (cf. [11, 21])

w(Xwn,Y)=-Y(h) for any vector field Y on R?". (6.1)

We often abbreviate X, as Xj.

The reason why we say “formally defined” in the above definition is that if w is a degenerate
closed 2-form, there are functions h for which the Hamiltonian vector fields X, j, are not defined on
the singular point set of w (see the example at the end of this section).

For the germ w of a closed 2-form on R?" at 0 € R?", we set

Heo, = {h € &y | Xp is smooth}. (6.2)

Now, for two elements h,k € H,,, we define formally degenerate Poisson—Lie bracket {h,k}, with
respect to the degenerate 2-form w by

{h, kYo = w(Xp, Xg) = Xi(h) = —Xn(k). (6.3)

In the case where w is a degenerate 2-form, it is not trivial that {h, k}, € H,,. However, we can
show that {h,k}, € H, under a generic condition on w that it has a representative closed 2-form
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defined on an open neighborhood U of 0, which we also denote by the same symbol w, such that
the set

O = {p € U | corank,w = 0} (6.4)

is open and dense in U, where corank, w is the corank of w at p.

Theorem 6.1. Let w be the germ of a closed 2-form satisfying the above generic condition.
Then H,, is a Poisson—Lie algebra with the degenerate Poisson—Lie bracket {-,-},.

Proof. Since the restriction wjp of w to O is a nondegenerate 2-form on O, for any smooth
function h on U the restriction X0 of X}, to O is an ordinary Hamiltonian system with respect to
the symplectic structure wo.

Let h,k € H,. Then h, k, X} and X}, are all smooth on U. Now {h, k}, = Xj(k) is smooth
on O and we have

X{h,k}w|o = [Xh\07Xk|O]' (6.5)

Since h, k € H,,, X and X}, are smooth on U. Therefore, the right-hand side of (6.5) is extendable
to the Lie bracket vector field [ X}, Xx| of X}, and X}, which is smooth on U. Thus X{h,k}w|o is also

extendable to a smooth vector field on U, which must be Xy, 1y, for O is open and dense in U.
Thus Xy, 1y, is smooth and {h, k}, € H,. This completes the proof of the theorem. [

Theorem 6.2. Let w and W' be the germs of closed 2-forms. If they are isomorphic and
W' = p*w, then their associated Poisson—Lie algebras are isomorphic:

o He = Hy (6.6)

Let w and ' be the germs of closed 2-forms at 0 € R?". Suppose that w and «’ are isomorphic:
w' = ¢*w for the germ of a diffeomorphism ¢: (R?",0) — (R?",0). To prove that H, and H,, are
isomorphic, we prove that the ring isomorphism

" Eap = Em, @ (M) =hoyp
induces an isomorphism
('0* : %w — %w’

of Lie algebras. We prove this fact by proving the following two lemmas.
Lemma 6.1. If h € H,, then ¢*(h) € H,.
Lemma 6.2. Let h,k € Hy,. Then ¢*({h,k},) = {¢*(h), ¢* (k) }w -

Since ¢: (R?",0) — (R?",0) is a diffeomorphism, from Lemma 6.1 we see that ¢*(H,) C Her
and (¢~ 1)*(Hw) C My and hence ¢*: H, — H,s is a bijection. Since ¢*: €9, — oy, is a ring
isomorphism, we see that for h, k € H,,

¢ (h+ k) = ¢"(h) + " (k).

Then, with Lemma 6.2, we see that ¢*: H,, — H, is an isomorphism of Lie algebras.

Proof of Lemma 6.1. Suppose that w’ = p*w for a diffeomorphism-germ ¢ and let h € H,,.
Then we are going to show that ¢*(h) = ho ¢ € H,,. By definition,

Mo = {h € &, | Xy p, is smooth}
and X, j, is defined by the equation
w(Xyp,Y) = =Y (h)
for any vector field Y on R?”.
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We are going to prove that if X, is smooth then X, 3., is also smooth. We prove this using
local coordinates. Let (ui,us,...,us,) be local coordinates in a neighborhood of 0 € R2™ and let
0= (p1,---,p2n): (R?,0) — (R*,0). Since X, 5 and Xt hop are vector fields, they are formally
of the form

0
Xw,h = Z CLZ('LL) auZ 5 w’ yhop = Z b auZ

Since w’ = ¢*w, we have

/ %L: i 830k 0 8@5 (6 7)
auz au] auz 8uk dug ) Ouj '

k=1 (=1
Therefore,
2n 2n 8@]4 P 8@04
/
v <Xw hoer > - <Zb c‘?uZ du; ) Zb kz:l; ou; <8uk 8u£> Ou;
On the other hand, we have
0 0 o 8
/ _ m
“ <X‘“’7h°@’ auj> ~ oy (o) Z aum auj
— S 0 890771 o 2, o 0 0 8g0m
—mZ:lw(Xm(so(u)), o) o —;;apw(u))w(aup, o )

where the first equality holds by the definition of X, .., and the third, by the definition of X, .
Thus we have

2n 2n

2n
O 0\ _ ?
iz:; b Z Z aul (auk 8u£> au] =w Xw/’hogoy au]

k=1 (=1

Expressing this equality in matrices, we have

ot (52 @) (w7 - 2 ot (577 )

= (a1(p(w)), .. . , asn(p(w))) (w <a(zp ; aiﬂ) M“”) @i? (“)>

and hence
’ g
(b1(u), ..., bop(u)) <8u- (U)> = (a1(p(u)), ..., azn(p(u))). (6.8)
Since X, = 2?21 a;(u)(0/0u;) is smooth, ai,...,as, are smooth functions and *(d¢y/Ou;) is an
invertible matrix smoothly depending on u, we see that bq,...,by, are smooth functions. Thus

Xt hop = 2?21 bi(u)(9/0u;) is smooth and ¢*(h) =hop € Hy. O
Proof of Lemma 6.2. By definition,

{h’ k}w (u) = W(Xw7hy Xw7k)(u)7 {h °p, ko Sp}w’(u) = w/(Xw’,hoapa Xw’,kop)(u)-
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We express X, p, Xok, Xof hop and Xy pop, again using local coordinates u1, ..., ugy:

h — a ' h = a
w E 7 8’LLZ w op — E ) auz

2n P
w k= Z b auZ Xw’,kogp = ; /Bz (u) 8’U,Z .

Then from (6.8) we have

(@) am @) (570) = (@) an (o),

(Br(weee Ban ) (57 0) = (a0 b))

Thus

{10 k0 phur (1) = & (X hogs X g1 —“’(Zaz Zﬁz au)

2n 2n 9 9
—;;az fil <8uZ 8u]>

= @10 o) (& (- g )0 (Brlw.-.- B

Since w’ = p*w, from the proof of Lemma 6.1 we have

. o asok o 9\, O
<8ul 8uj ZZ 8uk’8u4 (u) du; (u)

k=1 (=1

<w/ <f9iz ’ 53;’) (u)> - t<‘?;2': (u)> (w <8ik ’ 834) (u)> <gij (u)>.
Thus

{hop, kol (u)

= @)eesam) (@) (o o )@) (577 ) it )

= (an(otw) - amn(ol) (0 ) @0) oot ()

Ouy,’ Ouy
- W(Xw,ha Xw’k)(@(’ll/)) = {h7 k}w(gp(u))

and hence

And we have
{e"h, "k} = @™ {h, k}e.
This completes the proof of Lemma 6.2. [
Example 6.1. Consider the closed 2-form

w = uy dui N dus on R?
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and a function h = us. Then X}, is defined by

0 oh
w<Xh7 8UZ> N _8’LLZ"

Since X}, has the form X = a1 (u)(9/0u1) + a2(u)(9/0us), the equation becomes

0 o 0 oh
d d =— i =1,2.
u1 duy A\ dug <CL1 (U) 8U1 + CLQ(U) au2 ) auz> 8uz ) 7 )
Then we have
h h
—uyag(u) = —§u1 =0, uiar(u) = —;?UQ = -1
Since u1(0) = 0, there are no functions aq(u) such that uja; = —1. In this case, X}, is not defined

on the set {u; = 0}, which is the singular point set of w.

7. POISSON-LIE ALGEBRAS FOR 50, %5, AND %5, | STABLE SINGULARITIES

In this section we will characterize properties of the Poisson—Lie algebra for the singular sym-

plectic structures of Martinet’s and Roussarie’s forms.

Proposition 7.1. Let wyo denote Martinet’s normal form:
w0 = vy dvyr A dvg + dvs Advg + ... + dvap—1 A dvay,.
Then
HUJZO = (U%>gu1 ,,,,, Von + 51)3,...,1)2,”'

Proof. In what follows, let 9; = 9/0v;. Then for 1 <i < j < 2n

vp fori=1, j=2,

wo0(05,0;) =41 for i=2k—1, j =2k 2<k<n,
0 otherwise

and we have

1
— for i=1, j =2,

1 U1
ai78' =
“0059) = 1 porizok_1, j=2k 2<k<n,
0 otherwise.
Then h € Hyy, if 35 wié(@iﬁj)(@h/@vj) is smooth for 1 > i < 2n. But this implies
oh Oh € (vn)
8’01’ 8’02 /&

So we express h in the form
h(v) = via(v) +v18(va,. .., van) + Y(v2, ..., V).
Then 0h/dv1,0h/0vs € (v1)g, if and only if

0
B(va, - .., vam), 832 (v, v2n) € (V1)e, s

which holds if and only if

oy

6212 (’Ug, e ,’Ugn) = 0,

ﬁ(m, e ,’Ugn) = 0,
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which holds if and only if A has the form
h(v) = via(v) + (v, .., v20)-
Therefore, h € Hyy,, if and only if h € (v})e, + Euy.vgn- O

For comparison with the general calculations we continue with an example and Roussarie’s
elliptic and hyperbolic normal forms.

Example 7.1 (X232 0-type cusps). We consider the following two cusps Fs:
Fse = (f1,..., f1): (R%,0) — (R%0),
filv) =v; (i <3), fa(v) = v3 + (v1 £ v3)vy.
Then F5*+w0 is of type 23’270 and F¥_wy is of type 227270, and
Fiiwo = dvy A dvy — vy doy A dos + (3vF 4 vy &+ 03) dvs A doy. (7.3)

Let we and wy, denote Roussarie’s elliptic and hyperbolic normal forms, respectively:

we = dvy A dvg + vz dvy A dvg + v3dvg A dvg + vg dvg A dvg + (v — vg) dvs A dvy, (7.4)

wp = dvy A dvg + v3 dvy A dog + v3 dvg A dvg — vy dvg A dvg + (v1 — vg) dvs A dvy. (7.5)
In what follows, let 9; = 9/0v;. Then from (7.4), (7.5) and (7.3) we have

0 —(v1 —v3) v —us
1| v — 02 0 —v3 0
(CUe(a’Ha])) V1 —U4 V3 0 _1 ’
V3 0 1 0
0 —(v1—v3) —vs —us
1| v — 02 0 —v3 0
R 17— U3 3
(Wh(817 8] )) v o U3 0 -1 ’
V3 0 1 0
0 —(vy £v3+30v7) 0 0
i ol 1 vy £ 03 + 33 0 0 —ug
(FSin(a’w 8])) - Ul j: 'U% + 3,1)2 0 0 0 _1
0 Uy 1 0

We also get
det(we(ds,0;)) = det(wn(d;,0;)) = o3, det(Fepwo(d:,9;)) = (v1 +v3 + 303) %

Now we provide implicit formulas for the Poisson-Lie algebras H,,, H., and Hpx - w» associated
to Roussarie’s hyperbolic and elliptic normal forms we and wy, as well as to Y2 2 o-type cusp example.
By straightforward calculations we get

Proposition 7.2 (first implicit formula). 1. Let h € &,. Then h € H,, if and only if h
satisfies the following conditions:

—vah+vah—ahe<v> v8h+8h€<v> 76)
46211 36212 Ovy /& 38,01 6213 1/Ey- .
2. Let h € &,. Then h € H,, if and only if h satisfies the following conditions:
oh Ooh Ooh Oh oh
4 By + v3 Dy Ous € (v1)e,, Y3 By + Dos € (v1)e,- (7.7)
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3. Let h € &. Then h € Hpz,w, tf and only if h satisfies the following conditions:

Oh Oh oh
Doy € (v +vi 4 30})e,, Uy Doy + Doy € (v1 £ v3 + 30}, .

Next, for H,, and H,, we get less implicit differential algebraic formulas. Expressing h in the
form

h = via(v) + v1B(ve, vs, vs) + ¥(v2, v3, va), (7.8)
we have

Proposition 7.3 (second implicit formula).
He, = (v3)e, + {vlﬁ + 7y ‘ B, € Evpwsva Satisfying the equations
—v4(v2,v3,v4) + V3 o (v2,03,01) = 5 (v3,v3,04) = 0,
8’02 8’04

0
v3f3(v2, v3,v4) + 87 (v2,v3,v4) = 0}
v3

and

Ho, = (v])e, + {vlﬁ + 7y ‘ B, € Evgsva Satisfying the equations
0 oy

va5(v2,v3,v4) + 3 81}72 (v2,v3,v4) — D04 (v2,v3,v4) =0,

0
v3f3(v2,v3,v4) + 87 (v2,v3,v4) = }
v3
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