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Abstract. We study singularities of smooth mappings F̄ of R2n into symplectic
space pR2n, ωq by their isotropic liftings to the corresponding symplectic tangent bundle
pTR2n, ω̇q. Using the notion of local solvability of lifting as a generalized Hamiltonian
system, we introduce new symplectic invariants and explain their geometric meaning.
We prove that a basic local algebra of singularity is a space of generating functions of
solvable isotropic mappings over F̄ endowed with a natural Poisson structure. The global
properties of this Poisson algebra of the singularity among the space of all generating
functions of isotropic liftings are investigated. The solvability criterion of generalized
Hamiltonian systems is a strong method for various geometric and algebraic investigations
in a symplectic space. We illustrate this by explicit classification of solvable systems in
codimension one.

1. Introduction
Let M be a submanifold of TRm, dimM “ m, transversal to the fibers

of the tangent bundle projection π : TRm Ñ Rm, then M as a system of
first order ordinary differential equations is locally solvable at each point
of M. If γ : I Ñ Rm is a differentiable curve, where I is an open interval
I “ p´ε, εq, ε ą 0, we denote by γ̇ptq the vector tangent to γ at γptq
and introduce the prolongation γ̇ of γ, γ̇ : I Ñ TRm : t ÞÑ γ̇ptq. A curve
γ : I Ñ Rm is called an integral curve of M Ă TRm if impγ̇q Ă M. A
submanifold M is said to be solvable if for each p PM there is an integral
curve γ of M such that γ̇p0q “ p. If additionally, the integral curve γ depends
smoothly on initial conditions in a neighborhood of every point ofM , then we
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say thatM is smoothly solvable (cf. [6, 7, 4]). If π|M is a diffeomorphism then
M is a smoothly solvable vector field on Rm. If M is not transversal to the
fibers of π, i.e. the smooth mapping π|M Ñ Rm is no longer a diffeomorphism,
then M may not be solvable in the critical points of π|M which is a common
property for typical position of M (see [3, 14]). The simplest representative
example of such situation is given by M “ tpx, ẋq P TR : x “ pẋ´ aq2u for
a “ 0 with non-solvable point p0, aq P M , which is a singular point of the
projection π|M .

Solvability is a local property of M, thus we suppose M to be the image
of an embedding

F “ pF̄ , Ḟ q : U Ñ TRm

of an open set U of Rm with coordinates u “ pu1, u2, . . . , umq into TRm with
coordinates px, ẋq “ px1, x2, . . . , xm, ẋ1, ẋ2, . . . , ẋmq, where F̄ “ π ˝ F.

Definition 1.1. An implicit differential equation M “ F pUq of TRm,
where F “ pF̄ , Ḟ q : U Ñ TRm is an embedding, is said to be smoothly
solvable if there exists a smooth tangent vector field X on U such that

(1.1) pF̄ puq, Ḟ puqq “ dF̄ pXpuqq, @u P U.

If an implicit differential equationM “ F pUq of TRm is smoothly solvable
with a smooth vector field X on U , then every point px0, ẋ0q PM is a solvable
point ofM. Indeed, let u0 be a point in U such that pF̄ pu0q, Ḟ pu0qq “ px0, ẋ0q,
let α : I Ñ U be an integral curve of the vector field X with αp0q “ u0.
Then γptq :“ F̄ pαptqq is a solution of the implicit differential equation of M
such that pγp0q, γ̇p0qq “ px0, ẋ0q. Thus px0, ẋ0q PM is a solvable point of M .
Moreover, in this way, integral curves of the vector field X give a family of
general solutions of M smoothly depending on initial conditions.

A smooth vector field X on U has the form Xpuq “
řm
i“1 aipuq

B
Bui
|u,

where aipuq are smooth. Thus an equality (1.1) is equivalent to

(1.2) Ḟ puq “ JF̄ puqapuq,

where JF̄ is a Jacobian matrix of F̄ . Thus, we immediately have (cf. [5]) that
an implicit differential equation M “ F pUq of TRm given by an embedding
F “ pF̄ , Ḟ q : U Ñ TRm is smoothly solvable if and only if (1.2) has a smooth
solution apuq “ pa1puq, . . . , ampuqq. The condition (1.2) fulfilled to each u P U
is called tangential solvability condition.

Now, solvability of implicit differential equations becomes equivalent to a
smooth solvability of linear algebraic equations. Using the classical result by
J. Mather [13], we get the basic solvability result.

Let Em denote the germs at 0 P Rm of smooth functions of m variables.
Let Mpmq denote the set of all mˆm real matrices and Σrpmq denote the
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set of all m ˆm real matrices with rank r. If we suppose that (1.2) has a
solution apuq at every point u P U and that the rank of the jacobian matrix
JF̄ p0q of pF̄1puq, ¨ ¨ ¨ , F̄mpuqq at the origin is r. Then using the classical result
by J. Mather [13], we can get the basic solvability result. It is proved in
[11] that if JpF̄1, . . . , F̄mq : U ÑMpmq is transversal to Σrpmq at the origin
0, then an implicit differential equation M “ F pUq of TRm, given by an
embedding F “ pF̄ , Ḟ q : U Ñ TRm, is smoothly solvable in a neighborhood
of pF̄ p0q, Ḟ p0qq.

The more general algebraic version of this result reads,

Theorem 1.2. (see [5]) Suppose that (1.2) has a solution apuq at every point
u P U . If the ideal xdet JF̄ puqy has property of zeros (i.e. if any function
hpuq vanishes on the variety defined by xdet JF̄ puqy, then hpuq belongs to
xdet JF̄ puqy), then (1.2) has a smooth solution defined in a neighborhood of
each u P U .

In what follows, we consider R2n (m “ 2n) endowed with a symplectic
structure ω and generalize the notion of Hamiltonian system (cf. [3, 11]). An
implicit Hamiltonian system is a solvable isotropic embedding F : R2n Ą U Ñ
TR2n into the tangent bundle TR2n endowed with a symplectic structure
ω̇ defined by the canonical flat morphism between tangent and co-tangent
bundles of the symplectic space pR2n, ωq, (see [15]). The solvability properties
of F pUq were partially investigated in [5]. In this paper, we extend the notion
of implicit Hamiltonian system allowing F̄ to be singular (see [2, 12]). In
this case, all the properties of the implicit Hamiltonian system are defined
by its parametrization F and we will call F a Hamiltonian mapping if it
is isotropic, F ˚ω̇ “ 0 solvable and F ˚θ̇ “ ´dh for some smooth function h
(called the generating function of F ). To each F we associate F̄ “ π ˝ F,
where π : TR2n Ñ R2n is a tangent bundle projection and look at F as a
vector field along F̄ . We investigate the space RF̄ of all generating functions
of F for fixed singular F̄ (all vector fields along F̄ ). Thus for the corank 1
case of F̄ the generating function h for isotropic F along F̄ , or more precisely
its derivative Beh belongs to the ideal generated by the determinant of a
Jacobian matrix ∆F̄ “ detpJF̄ q, where e spans the kernel of the Jacobian
matrix at singular point. The sufficient solvability condition for isotropic
mappings we prove reads as follows

Theorem A. Let F̄ : R2n Ą U Ñ R2n be a smooth mapping with corank k
singularity at the origin p0, 0q P R2n and we assume that the jet exten-
sion j1F̄ : U Ñ J1pR2n,R2nq is transversal to the corank k stratum Σk of
J1pR2n,R2nq. If an isotropic mapping F along F̄ satisfies the tangential
solvability condition, then F is smoothly solvable on U .
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The smoothly solvable isotropic mappings F are characterized by the
image property, F “ dF̄ pXhq for some smooth vector field, called Hamiltonian
vector field on U generated by smooth function h called Hamiltonian function
associated to F̄ . Flows of solvable Hamiltonian mappings are characterized
by the following

Theorem B. Let F : U Ñ TR2n be a solvable isotropic mapping along
F̄ : U Ñ R2n and let h be a Hamiltonian function of F . Suppose that fold
singular points of F̄ are dense in the singular point set of F̄ . Then integral
curves of the vector field Xh preserve the singular point set of F̄ .

In the space HF̄ of all Hamiltonians associated to F̄ , we introduce the
Poisson bracket t., .uF̄˚ω and show its basic meaning.

Theorem C. Let F : pU, 0q Ñ TR2n be a smooth isotropic map-germ along
a smooth map-germ F̄ : pU, 0q Ñ R2n such that the regular point set of F̄ is
dense in U. Let h : pU, 0q Ñ R be a generating function-germ of F. Then F
is smoothly solvable if and only if h P HF̄ , i.e. h is a Hamiltonian function.
Moreover the space of Hamiltonians associated to F̄ , pHF̄ , t., .uF̄˚ωq is a local
Poisson algebra.

In this way, we found the fundamental object of singularity theory which
traditionally is a local algebra of singular point. In our case which is a
symplectically invariant singularity of F̄ it is the corresponding Poisson
algebra pHF̄ , t., .uF̄˚ωq. This structurally invariant property is discovered by
collecting all of solvable Hamiltonian systems over the singularity of F̄ .

Isotropic mappings into tangent symplectic space are investigated in Sec-
tion 2. Smoothly solvable isotropic mappings with the solvability conditions
and flows of solvable generalized Hamiltonian systems are studied in Section
3. In Section 4, a Lie algebra of generating functions based on the space of
solvable isotropic mappings is constructed and relation to its Poisson struc-
ture is described. Solvability condition in the case of corank 1 singularity is
also formulated. The canonical ideals of Poisson algebra of the singularity are
characterized in Section 5, and existence of periodic solutions in the singular
case is investigated in Section 6.

2. Isotropic mappings
Let pR2n, ωq be a symplectic space with ω “

řn
i“1 dyi ^ dxi in canonical

Darboux coordinates px, yq “ px1, . . . , xn, y1, . . . , ynq.
Let θ be the Liouville 1-form on the cotangent bundle T ˚R2n. Then dθ is

a standard symplectic structure on T ˚R2n. Let β : TR2n Ñ T ˚R2n be the
canonical bundle map defined by ω,

β : TR2n Q v ÞÑ ωpv, ¨q P T ˚R2n.
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Then we can define the canonical symplectic structure ω̇ on TR2n,

ω̇ “ β˚dθ “ dpβ˚θq “
n
ÿ

i“1

pdẏi ^ dxi ´ dẋi ^ dyiq,

where px, y, ẋ, ẏq are local coordinates on TR2n and β˚θ “
řn
i“1pẏidxi ´

ẋidyiq.
Throughout the paper unless otherwise stated all objects are germs at

0 of smooth functions, mappings, forms etc. or their representatives on an
open neighborhood of 0 in R2n.

Definition 2.1. Let F : pR2n, 0q Ñ TR2n be a smooth map-germ. We say
that F is isotropic if F ˚ω̇ “ 0.

If we assume that F : pR2n, 0q Ñ TR2n is an isotropic map-germ, then the
germ of a differential of a 1-form pβ ˝F q˚θ vanishes, dpβ ˝F q˚θ “ F ˚β˚dθ “
F ˚ω̇ “ 0. Thus pβ ˝ F q˚θ is a germ of a closed 1-form. And there exists a
smooth function-germ h : pR2n, 0q Ñ R such that

(2.1) pβ ˝ F q˚θ “ ´dh.

For each smooth isotropic map-germ F , the function-germ h is uniquely
defined up to an additive constant.

Let pu, vq “ pu1, . . . , un, v1, . . . , vnq denote coordinates of the source space
U – R2n. In local coordinates we define

F “ pf, g, ḟ , ġq : pU, 0q Ñ TR2n,

and
F̄ “ π ˝ F “ pf, gq : pU, 0q Ñ R2n,

where π denotes the canonical projection, π : TR2n Ñ R2n.
In general, F can be regarded as a vector field along F̄ , i.e. a section of

an induced fiber bundle F̄ ˚TR2n. By EU (ER2n-respectively) we denote the R-
algebra of smooth function germs at 0 on U (and on “the target space” R2n,
respectively). To each isotropic map-germ F along F̄ , there exists a unique
h belonging to the maximal ideal mU of EU , h PmU , which is a generating
function-germ for F.

Let F : pU, 0q Ñ TR2n and G : pU, 0q Ñ TR2n be two isotropic map-
germs along F̄ : pU, 0q Ñ R2n and Ḡ : pU, 0q Ñ R2n, respectively. Now
we introduce the natural equivalence group acting on isotropic mappings
through a natural lifting of diffeomorphic or symplectic equivalences of F̄
and Ḡ. The C8 map-germs F̄ : pU, 0q Ñ R2n and Ḡ : pU, 0q Ñ R2n are
said to be symplectomorphic or symplectically equivalent if there exist a
diffeomorphism-germ ϕ : pU, 0q Ñ pU, 0q and a symplectomorphism-germ
Φ : pTR2n, 0 Ñ pTR2n, 0q such that Ḡ “ Φ ˝ F̄ ˝ ϕ.

First we recall the standard equivalence of Lagrange projections (cf. [10]).
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Let F : pU, 0q Ñ TR2n andG : pU, 0q Ñ TR2n be two isotropic map-germs.
We say that F and G are Lagrangian equivalent (L-equivalent [1]) if there exist
a diffeomorphism-germ ϕ : pU, 0q Ñ pU, 0q, and a symplectomorphism-germ
Ψ : pTR2n, 0q Ñ pTR2n, 0q, Ψ˚ω̇ “ ω̇, preserving the fibering π such that
G “ Ψ ˝ F ˝ ϕ.
Definition 2.2. Let F : pU, 0q Ñ TR2n and G : pU, 0q Ñ TR2n be
two isotropic map-germs along F̄ : pU, 0q Ñ R2n and Ḡ : pU, 0q Ñ R2n,
respectively. We say that F and G are L-symplectic equivalent if there exist
a diffeomorphism-germ ϕ : pU, 0q Ñ pU, 0q, and a symplectomorphism-germ
Ψ : pTR2n, 0q Ñ pTR2n, 0q, Ψ˚ω̇ “ ω̇, preserving the fibering π and a
symplectomorphism-germ Φ : pR2n, 0q Ñ pR2n, 0q, Φ˚ω “ ω, π ˝Ψ “ Φ ˝ π,
such that G “ Ψ˝F ˝ϕ and Ḡ “ Φ˝ F̄ ˝ϕ. In this case F̄ and Ḡ are naturally
symplectomorphic.

To F̄ we associate a symplectically invariant algebra RF̄ of all generating
function-germs,

RF̄ “ th P EU : h generates an isotropic map-germ along F̄ u.
It is easy to check that if F̄ and Ḡ are symplectomorphic, Ḡ “ Φ˝ F̄ ˝ϕ, then
we have an isomorphism ϕ˚ : RF̄ Ñ RḠ. And if F̄ has a maximal rank, then
RF̄ “ EU . It seems that if F̄ and Ḡ are symplectomorphic, then for h P RF̄ ,
the isotropic map-germ F generated by h and the isotropic map-germ G
generated by ϕ˚phq are L-symplectic equivalent, G “ Ψ ˝ F ˝ ϕ. In this
case Ψ : TR2n Ñ TR2n is a symplectic lifting of the symplectomorphism
Φ : R2n Ñ R2n. The aim of this section is to study the case when F̄ does
not have maximal rank and establish the structure of RF̄ . In the rest of this
section, we study isotropic mappings with F̄ of corank 1.

Let e P T0U span the kernel of the Jacobian matrix JF̄ of a corank one
map-germ F̄ at zero. By ∆F̄ , we denote the determinant of JF̄ and by Be
the derivation into e-direction.
Theorem 2.3. (cf. [7]) Let F be a smooth map-germ such that F̄ has a
corank one singularity at 0. If F is isotropic then there exists uniquely defined
function-germ h : pU, 0q Ñ pR, 0q such that Beh P x∆F̄ y and pβ ˝F q˚θ “ ´dh,
where x∆F̄ y is the ideal generated by ∆F̄ in EU . Conversely, for every smooth
function-germ h : pU, 0q Ñ R such that Beh P x∆F̄ y there is a uniquely
defined isotropic map-germ F : pU, 0q Ñ TR2n such that F̄ “ π ˝ F and
pβ ˝ F q˚θ “ ´dh.

Proof. In coordinates of a source space U we write

JF̄ “

˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸

and by In we denote the unit matrix of dimension n.
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In matrix form we get that a smooth map-germ F is isotropic if and only
if there exists a smooth function-germ h : pU, 0q Ñ R such that

(2.2)

˜

Bh
Bu

Bh
Bv

¸

“

t
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸˜

O ´In

In O

¸˜

ḟ

ġ

¸

.

Since we have assumed that the corank of F̄ “ pf, gq : pU, 0q Ñ R2n is
one at the origin, then we can choose coordinates in U and R2n such that

fipu, vq “ ui, i “ 1, . . . , n,

gipu, vq “ vi, i “ 1, . . . , n´ 1,(2.3)
Bgn
Bvn

p0, 0q “ 0

and e “ B
Bvn

. Then

JF̄ “

¨

˚

˝

In O 0

O In´1 0
Bgn
Bu

Bgn
Bv̄

Bgn
Bvn

˛

‹

‚

,

where v̄ “ pv1, . . . , vn´1q.

Since ḟ , ġ in the equation (2.2) are smooth, we can write equivalently
˜

ḟ

ġ

¸

“

˜

O In

´In O

¸

t
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1 ˜
Bh
Bu

Bh
Bv

¸

.(2.4)

From the form of

tJF̄´1 “

t
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1

“

¨

˚

˝

In O ´
Bgn
Bu {∆F̄

O In´1 ´
Bgn
Bv̄ {∆F̄

0 0 1{∆F̄

˛

‹

‚

.(2.5)

We get
Bh

Bvn
P x∆F̄ y.(2.6)

For the other implication, if we have h PmU which fulfills the condition (2.6)
then by the formula (2.4), we construct F in the unique way.

Remark 2.4. Instead of isotropic F associated to F̄ , we consider pairs
pF̄ , hq with a smooth function-germ h belonging to RF̄ . An algebra RF̄ of
all generating function-germs associated to F̄ is represented by F̄ in the
following form (cf. [9]),

RF̄ “ th P EU : dh P EUdpF̄ ˚ER2nqu.
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Thus by Theorem 2.3, we get an algebra RF̄ of all generating function-germs
(which is also an ER2n-module) for a smooth map-germ F̄ of corank one,

RF̄ “ th P EU : Beh P x∆F̄ yu.

Remark 2.5. Let F : pU, 0q Ñ TR2n be a smooth isotropic map-germ such
that F̄ “ π ˝ F : pU, 0q Ñ R2n has corank one singular point at p0, 0q. Then
F has corank at most one at p0, 0q. The corank of F is exactly one if and
only if

BepBeh{∆F̄ qp0, 0q “ 0.

2.1. Symplectic classification of corank 1 mappings. Let F “ pF̄ , Ḟ q,
G “ pḠ, Ġq : U Ă R2n Ñ TR2n be two smooth mappings. Suppose that F̄
and Ḡ are symplectomorphic with a diffeomorphism-germ φ : pU, 0q Ñ pU, 0q
and a symplectomorphism Φ : pR2n, 0q Ñ pR2n, 0q such that Ḡ “ Φ ˝ F̄ ˝ φ.
Moreover, suppose that Ġ is given by

(2.7) Ġpu, vq “ JΦpF̄ ˝ φpu, vqqḞ pφpu, vqq,

where JΦpF̄ pφpu, vqqq is the Jacobian matrix of Φ at F̄ ˝ φpu, vq and is
regarded as a linear transformation of the fiber over F̄ ˝ φpu, vq of the
tangent bundle TR2n. Then F is isotropic if and only if G is isotropic and
F is smoothly solvable if and only if G is smoothly solvable. Moreover, if
γ : pa, bq Ñ R2n is a solution of implicit differential equation F pUq Ă TR2n,
then Φ ˝ γ : pa, bq Ñ R2n is a solution of implicit differential equation
Gpφ´1pUqq Ă TR2n.

To describe RF̄ in more clear way, we will classify corank 1 stable map-
germs F̄ up to symplectic equivalence. If F̄ : pU, 0q Ñ pR2n, 0q is a corank 1
stable map-germ, then F̄ is diffeomorphically equivalent (or diffeomorphic,
[12]) to one of the Ak-type normal forms p0 ă k ă 2nq,

pw1, . . . , w2nq ÞÑ pw1, . . . , w2n´1, w
k`1
2n `

k´1
ÿ

i“1

wiw
k´i
2n q,(2.8)

where we use the notation pw1, . . . , w2nq “ pu1, . . . , un, v1, . . . , vnq.

Theorem 2.6. Let F̄ : pU, 0q Ñ pR2n, 0q be an Ak-type singular map-germ.
Then F̄ is symplectically equivalent to the following map-germ

w “ pw1, . . . , w2nq ÞÑ pw1, . . . , w2n´1, w
k`1
2n `

k´1
ÿ

i“1

aipwqw
k´i
2n q,(2.9)

where a1pwq, . . . , ak´1pwq are smooth function-germs such that da1, . . . , dak´1

and dw2n are linearly independent at the origin.

Proof. Let F̄ : pU, 0q Ñ pR2n, 0q be an Ak type singularity. Let
pw̄1, . . . , w̄2nq be coordinates in U . Then there exist diffeomorphism-germs
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φ “ pφ1, φ2, . . . , φ2nq : pU, 0q Ñ pU, 0q and ψ “ pψ1, ψ2, . . . , ψ2nq : pR2n, 0q Ñ
pR2n, 0q such that

ψi ˝ F̄ ˝ φpw̄1, . . . , w̄2nq “ w̄i, i “ 1, . . . , 2n´ 1,

ψ2n ˝ F̄ ˝ φpw̄1, . . . , w̄2nq “ w̄k`1
2n `

k´1
ÿ

i“1

w̄iw̄
k´i
2n .(2.10)

We replace coordinates ψ by the symplectic ones. In fact, since dψ2n

does not vanish at the origin, there exists a symplectic coordinate system
pϕ1, . . . , ϕ2nq on pR2n, 0q with ϕ2n “ ψ2n. Set

wi “ ϕi ˝ F̄ ˝ φpw̄1, . . . , w̄2nq, i “ 1, . . . , 2n´ 1,

w2n “ w̄2n.(2.11)

We see that pw1, . . . , w2nq is a new coordinate system in pU, 0q. Indeed,
for functions α1 . . . , αk and variables w̄1, . . . , w̄m, let us denote the Jacobian
matrix at the origin of α1, . . . , αk with respect to w̄1, . . . , w̄m by

J

ˆ

α1, α2, . . . , αk
w̄1, . . . , w̄m

˙

p0q.

We have

rank J

ˆ

w1, . . . , w2n´1

w̄1, . . . , w̄2n´1

˙

p0q “

“ rank J

ˆ

ϕ1 ˝ F̄ ˝ φ, . . . , ϕ2n´1 ˝ F̄ ˝ φ

w̄1, . . . , w̄2n´1

˙

p0q “ 2n´ 1.

Thus pw1, . . . , w2n´1, w2n “ w̄2nq is a coordinate system. Now, from (2.10)
and (2.11), we have

ϕi ˝ F̄ ˝ φ “ wi, i “ 1, . . . , 2n´ 1,

ϕ2n ˝ F̄ ˝ φ “ wk`1
2n `

k´1
ÿ

i“1

w̄iw
k´i
2n .

Taking inverse of (2.11), we write aipwq “ w̄i, and obtain (2.9).

Corollary 2.7. (symplectic fold) Let F̄ : pU, 0q Ñ pR2n, 0q be an A1-type
singularity, i.e. fold singularity. Then F̄ is symplectically equivalent to

pu1, . . . , un, v1, . . . , vnq ÞÑ pu1, . . . , un, v1 . . . , vn´1, v
2
nq,(2.12)

which is a simple symplectic normal form.

3. Smoothly solvable isotropic mappings
The natural property of smooth dynamical systems defined by smooth

vector fields is their local solvability. This notion was generalized in [11, 5]
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to smooth submanifolds of tangent bundle with possible singular projection
into the base space.

Let pM, 0q Ă TR2n be a submanifold-germ defined as an image of smooth
F : pU, 0q Ñ TR2n which has a maximal rank at 0. Then a point px, yq PM is
called solvable point of M if there exists a smooth curve γpx,yq : p´ε, εq Ñ R2n

such that γpx,yqp0q “ px, yq, γ1px,yqp0q “ pẋ, ẏq, and

κpx,yqptq :“ pγpx,yqptq, γ
1
px,yqptqq PM,

for all t P p´ε, εq, ε ą 0, and the map px, y, tq ÞÑ κpx,yqptq is at least
continuous. pM, 0q is called solvable if M (a representative of the germ
pM, 0q) consists of only solvable points.

A necessary condition for a smooth submanifoldM Ă TR2n to be solvable
was found in [11] (cf. [5]). If π is a tangent bundle projection then the
necessary solvability condition

pẋ, ẏq P dpπ|M qpx,y,ẋ,ẏqpTpx,y,ẋ,ẏqMq

at px, y, ẋ, ẏq PM is called a tangential solvability condition and extended to
the general smooth mapping F “ pf, g, ḟ , ġq : pU, 0q Ñ TR2n is written in
the form

pḟ , ġqpu, vq P JF̄ pu, vqpR2nq,(3.1)

where F pu, vq “ px, y, ẋ, ẏq.
Conditions for smooth solvability of implicit differential systems were

investigated in [5] (cf. [14]). Now, we extend the solvability property intro-
duced for a smooth submanifold of a tangent bundle defined by an immersion
mapping F to the general smooth isotropic mappings into tangent bundle.

Definition 3.1. Let F : pU, 0q Ñ TR2n be a smooth isotropic map-germ
with a generating function h : pU, 0q Ñ R. We say that F is smoothly solvable
if there exists a smooth vector field Xh on U such that

F “ dF̄ pXhq.

In other words the following diagram commutes

TU dF̄

F π

-

��
��

�
��

�
��*

?

6
TR2n

Xh

U R2n-F̄

Example 3.2. It was shown in [5] (Example 5.1) that the tangential
solvability condition is not sufficient for M to be solvable. An example of
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isotropic map-germ F : pU, 0q Ñ TR2n, which fulfills the tangential solvability
condition but is not solvable, is given by

F pu, vq “ pvp1´ u2q, v2u` u3, u` 1, vq,

with a generating function h P RF̄ ,

hpu, vq “ ´
3

2
v2u2 ´ v2u´

3

4
u4 ´ u3 `

1

2
v2.

In this case does not exist a smooth vector field (germ) X “ a B
Bu ` b

B
Bv

such that

(3.2)
ˆ

ḟ

ġ

˙

“ JF̄ pXq “

ˆ

´2vu 1´ u2

v2 ` 3u2 2vu

˙ˆ

a

b

˙

“

ˆ

u` 1

v

˙

.

Indeed, if X exists then there is a local smooth solution t ÞÑ puptq, vptqq of
X (i.e. u1 “ a, v1 “ b) such that

u` 1 “ ´2vuu1 ` p1´ u2qv1,

v “ pv2 ` 3u2qu1 ` 2vuv1.

From the first equation, we have vptq “ t ` t2φptq and because uptq “
αt` t2ψptq from the second equation, we get a contradiction.

The geometric meaning of the solvability property is explained in the
following sufficient condition.

Theorem 3.3. Let F̄ “ pf, gq : U Ă R2n Ñ R2n be a smooth mapping such
that F̄ has a corank k singularity at the origin p0, 0q P R2n and that the jet
extension j1F̄ : U Ñ J1pR2n,R2nq is transversal to the corank k stratum Σk

of J1pR2n,R2nq. If an isotropic mapping F along F̄ satisfies the tangential
solvability condition, then F is smoothly solvable.

Proof. Let F̄ “ pf, gq : U Ă R2n Ñ R2n be a smooth mapping such that
F̄ has a corank k singularity at the origin p0, 0q P R2n and that the jet
extension j1F̄ : U Ñ J1pR2n,R2nq is transversal to the corank k stratum Σk

of J1pR2n,R2nq.
Let F “ pf, g, ḟ , ġq be an isotropic mapping along F̄ which satisfies the

tangential solvability condition:

(3.3)
ˆ

ḟpu, vq

ġpu, vq

˙

P Image JF̄ pu, vq.

Since F is a smooth isotropic mapping, F is generated by a smooth function
h:

(3.4)
ˆ

ḟpu, vq

ġpu, vq

˙

“

ˆ

O In
´In O

˙

tJF̄´1

˜

Bh
Bu
Bh
Bv

¸

.
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We know that F is smoothly solvable if and only if

(3.5) JF̄´1

ˆ

O In
´In O

˙

tJF̄´1

˜

Bh
Bu
Bh
Bv

¸

is smooth,

which, on the basis of (3.4) is the case if and only if

(3.6) JF̄´1

ˆ

ḟpu, vq

ġpu, vq

˙

is smooth,

which is true if and only if the linear equation

(3.7) JF̄

ˆ

a

b

˙

“

ˆ

ḟpu, vq

ġpu, vq

˙

has a smooth solution papu, vq, bpu, vqq.
Since, from (3.3),

ˆ

ḟpu, vq

ġpu, vq

˙

P Image JF̄ pu, vq, for every point pu, vq P U

and j1F̄ : U Ñ J1pR2n,R2nq is transversal to the corank k stratum Σk

of J1pR2n,R2nq, then from J. Mather’s theorem [13], Equation (3.7) has a
smooth solution and F is smoothly solvable. This completes the proof.

3.1. Flows of solvable generalized Hamiltonian systems. A general-
ized Hamiltonian system is the image of F : U Ă R2n Ñ TR2n, which is
an isotropic map generated by a smooth function h. If it is solvable then
solutions of a generalized Hamiltonian system F pUq Ă TR2n are the images
under F̄ “ pf, gq : U Ñ R2n of integral curves of the vector field

(3.8) Xpu, vq “
n
ÿ

i“1

ξipu, vq
B

Bui
` ηipu, vq

B

Bvi

on U .

Proposition 3.4. Let F : U Ñ TR2n be a solvable isotropic mapping
along F̄ : U Ñ R2n and let h be a generating function of F . Then the vector
field Xh is tangent to the fold singular point set FoldpF̄ q of F̄ and integral
curves of the vector filed Xh preserve the fold singular point set FoldpF̄ q of F̄ .

Proof. Suppose that F̄ : pU, 0q Ñ pR2n, 0q has a fold singular point at 0.
Then from the normal form of fold we may assume that in U , F̄ has the form

(3.9) pu1, ¨ ¨ ¨ , un, v1, . . . , vnq ÞÑ pu1, . . . , un, v1, ¨ ¨ ¨ , vn´1, v
2
nq.
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Therefore

JF̄ pu, vq “

¨

˚

˝

In O 0

O In´1 0

0 0 2vn

˛

‹

‚

and JF̄´1pu, vq “

¨

˚

˝

In O 0

O In´1 0

0 0 1{2vn

˛

‹

‚

and the singular point set ΣpF̄ q of F̄ is

(3.10) ΣpF̄ q “ tpu, vq | vn “ 0u.

The vector field Xh has a form

Xhpu, vq “
n
ÿ

i“1

ξipu, vq
B

Bui
` ηipu, vq

B

Bvi
, Ḟ “ JF̄Xh,(3.11)

ˆ

ξ

η

˙

“ JF̄´1

˜

O In

´In O

¸

tJF̄´1

˜

Bh
Bu

Bh
Bv

¸

“

¨

˚

˚

˚

˚

˝

O 0 In´1 0

0 0 0 1{2vn

´In´1 0 O 0

0 ´1{2vn 0 0

˛

‹

‹

‹

‹

‚

˜

Bh
Bu

Bh
Bv

¸

.

Since Xh is a smooth vector field,
Bh

Bun
{vn and

Bh

Bvn
{vn

must be smooth and hpu, vq has the form

hpu, vq “ vn
2αpu, vq ` βpu1, v1q, pu1, v1q “ pu1, . . . , un´1, v1, . . . , vn´1q,

for some smooth functions αpu, vq and βpu1, v1q. Therefore

˜

ξ

η

¸

“

¨

˚

˚

˚

˚

˚

˝

v2
n
Bα
Bv1 pu, vq `

Bβ
Bv1 pu

1, v1q

2αpu, vq ` vn
Bα
Bvn
pu, vq

´v2
n
Bα
Bu1 pu, vq ´

Bβ
Bu1 pu

1, v1q

´vn
Bα
Bun
pu, vq

˛

‹

‹

‹

‹

‹

‚

.

Thus, the restriction of Xh to the singular point set ΣpF̄ q “ tpu, vq | vn “ 0u
of F̄ has the form

Xh “

n´1
ÿ

i“1

Bβ

Bvi
pu1, v1q

ˆ

B

Bui

˙

´

n´1
ÿ

i“1

Bβ

Bui
pu1, v1q

ˆ

B

Bvi

˙

` 2αpu, vq

ˆ

B

Bun

˙

´ 0 ¨

ˆ

B

Bvn

˙

.
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Thus, the vector field Xh is tangent to the singular point set ΣpF̄ q. This
completes the proof of Proposition 3.4.

Theorem 3.5. Let F : U Ñ TR2n be a solvable isotropic mapping along
F̄ : U Ñ R2n and let h be a generating function of F . Suppose that fold
singular points of F̄ are dense in the singular point set of F̄ . Then integral
curves of the vector filed Xh preserve the singular point set of F̄ .

Proof. From Proposition 3.4, integral curves of the vector field Xh preserve
the fold singular point set FoldpF̄ q. Since integral curves of the vector field
Xh depend smoothly on initial conditions and fold singular points of F̄ are
dense in the singular point set ΣpF̄ q thus the integral curves of the vector
field Xh preserve the whole singular point set ΣpF̄ q.

Now we consider a global situation. Let M2n be a compact smooth
manifold of dimension 2n. The isotropicity and the solvability are local
notions, we may define isotropicity and solvability for global smooth mappings
F “ pF̄ .Ḟ q : M Ñ TR2n. A Hamiltonian mapping is a smoothly solvable
isotropic mapping F “ pF̄ .Ḟ q : M Ñ TR2n. Then F is locally generated by
a function h and there exists a global vector field X, which is locally of the
form (3.8) such that Ḟ “ dF̄X.

Theorem 3.6. Let M2n be a compact smooth manifold. Let F “

pF̄ .Ḟ q : M Ñ TR2n be a Hamiltonian mapping such that fold singular
points are dense in the singular point set ΣpF̄ q of F̄ . Then integral curves of
the vector filed X preserve the singular point set of F̄ . Consequently, solutions
of the generalized Hamiltonian system F pMq Ă TR2n preserve the singular
value set of F̄ .

3.2. Poincaré’s recurrence theorem. In the present situation, Poincaré’s
recurrence theorem (see [8]) can be summarized as follows,

Theorem 3.7. (Poincaré’s recurrence theorem) LetM be a smooth manifold
having a countable basis. Suppose that M has a measure m with mpMq ă 8.
Let ϕ : M ÑM be a volume preserving homeomorphism. Then,

1) almost every point (with respect to m) on M is a recurrent point; for
almost every x PM , there is a sequence nj Ò 8 satisfying

lim
jÑ8

ϕnj pxq “ x,

or, equivalently
2) for any point x PM and for any neighborhood U of x, there exist a point

y P U and a number n P N such that ϕnpyq P U .

We can apply this theorem to our global situation. Let M2n be a compact
smooth manifold of dimension 2n. F : M Ñ TR2n be a solvable isotropic
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mapping along F̄ : M Ñ R2n such that fold singular points of F̄ are dense in
the singular point set ΣpF̄ q of F̄ . Let X be the unique smooth vector field
on M such that F “ dF̄X.

The map F̄ : M Ñ R2n induces a symplectic structure F̄ ˚ω on the regular
point set M ´ ΣpF̄ q, where ω is the canonical symplectic structure on R2n.
We see that the vector field X is a complete hamiltonian vector field on the
symplectic manifold pM´ΣpF̄ q, F̄ ˚ωq and the flow of X is volume preserving.
Thus Poincaré’s recurrence theorem holds as a straightforward consequence
of Theorem 3.6.

Theorem 3.8. Let M2n be a compact smooth manifold of dimension 2n.
F : M Ñ TR2n be a solvable isotropic mapping along F̄ : M Ñ R2n such
that fold singular points of F̄ are dense in the singular point set ΣpF̄ q of F̄ .
Let X be the unique smooth vector field on M such that F “ dF̄X. Then
almost every regular point p of F̄ is a recurrent point of the integral curve
ϕtppq of X; there is a sequence tj Ò 8 satisfying

lim
jÑ8

ϕtj ppq “ p.

4. Poisson algebra of solvable isotropic mappings
Let F̄ : R2n Ą U Ñ pR2n, ωq be a smooth map-germ, then F̄ induces a

possibly degenerate two-form F̄ ˚ω on U. For a smooth function h defined on
U , we formally define the Hamiltonian vector field Xh (which may not be
smooth) on U by the equality

F̄ ˚ωpXh, ξq “ ´ξphq for each vector field ξ on U.(4.1)

For smooth functions k, h defined on U Ă R2n, we can define also the
formal brackets tk, huF̄˚ω, by

tk, huF̄˚ω :“ F̄ ˚ωpXk, Xhq.(4.2)

It may happen that Xh, Xk and tk, huF̄˚ω diverge on the singular point set
of F̄ . However, they are ordinary Poisson brackets outside of this set. Now,
we search for conditions on h such that Xh is smooth.

Definition 4.1. Let h : R2n Ą U Ñ R be a smooth function. If Xh

defined by (4.1) is smooth then Xh is called a Hamiltonian vector field and
h is called the Hamiltonian function. By

HF̄ “ th P C8pUq : Xh is smoothu(4.3)

we denote the space of all Hamiltonians associated to F̄ (F̄´ Poisson algebra).

We notice that if h, k P HF̄ , then hk P HF̄ .
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Theorem 4.2. Let F̄ : R2n Ą U Ñ pR2n, ωq be a smooth map whose regular
point set is dense in U. Then HF̄ is closed under the brackets t¨, ¨uF̄˚ω and
the space pHF̄ , t¨, ¨uF̄˚ωq is a Poisson algebra.

Proof. Let U be an open ball neighborhood of the origin of Rm. Let
∆px1, . . . , xmq be a smooth function defined on U and let Ω be the set
tx P U | ∆pxq ‰ 0u. Suppose that Ω is dense in U. Let apxq be a fractional
function whose numerator is a smooth function defined on U and whose
denominator is ∆pxq:

apxq “
αpxq

∆pxq
.

If the restriction a|Ω to Ω is extendable to a smooth function on U , then apxq
itself is smooth on U , i.e. α is divisible by ∆.

Let U be an open ball neighborhood of the origin p0, 0q in R2n. Let
F̄ : R2n Ą U Ñ pR2n, ωq be a map whose regular point set is dense in U. Let
∆F̄ pu, vq be the Jacobian determinant of F̄ .

Let Ω “ tpu, vq P U | ∆F̄ pu, vq ‰ 0u be the set of regular points of F̄
which we assume is dense in U. Then the restriction F̄ ˚ω|Ω to Ω of the 2-form
F̄ ˚ω is non-degenerate. Let h be a smooth function defined on U . Then the
Hamiltonian vector field Xh is defined by the equality

F̄ ˚ωpXh, ξq “ ´ξphq, for each vector field ξ on U.

Let us express Xh in the form

(4.4) Xh “

n
ÿ

i“1

ˆ

aipu, vq
B

Bui
` bipu, vq

B

Bvi

˙

.

Then, after some calculations we have that each coefficient aipu, vq or
bipu, vq of Xh is a sum of a smooth function, a fractional function whose
numerator is a smooth function and denominator is ∆F̄ and a fractional
function whose numerator is a smooth function and denominator is ∆2

F̄
, in

which numerators may vanish as well.
For any smooth function h, the restriction Xh|Ω to Ω of the vector field

Xh is always smooth. Therefore, the restrictions ai|Ω, bi|Ω’s to Ω of the
coefficients ai, bi’s are also always smooth. Thus from the form of (4.4), we
see that Xh is smooth if and only if ai|Ω, bi|Ω’s are extendable to smooth
functions defined on U .

Now let h, k P HF̄ . Then h, k,Xh, Xk are all smooth on U . Hence
th, kuF̄˚ω “ Xhpkq is smooth on U . And we have

(4.5) Xth,kupf,gq˚ω
|Ω “ rXh|Ω, Xk|Ωs “ Xh|ΩXk|Ω ´Xk|ΩXk|Ω.

SinceXh andXk are smooth on U , the right-hand side of (4.5) is extendable to
the bracket vector field rXh, Xks which is smooth on U. Since the coefficients
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of Xth,kuF̄˚ω
|Ω are extendable to the coefficients of rXh, Xks which are smooth

on U , then the coefficients of Xth,kuF̄˚ω
themselves are smooth on U . Thus

Xth,kuF̄˚ω
is also smooth on U . Thus th, kuF̄˚ω P HF̄ .

Definition 4.3. The space pHF̄ , t¨, ¨uF̄˚ωq endowed with

tk, huF̄˚ω :“ F̄ ˚ωpXk, Xhq, h, k P HF̄ ,
is called the Poisson algebra associated to F̄ (or F̄ -Poisson algebra) endowed
with the Poisson brackets tk, huF̄˚ω.

Theorem 4.4. Let F : pU, 0q Ñ TR2n be a smooth isotropic map-germ
along a smooth map-germ F̄ : pU, 0q Ñ R2n such that the regular point set
of F̄ is dense in U. Let h : pU, 0q Ñ R be a generating function-germ of F.
Then F is smoothly solvable if and only if h P HF̄ , i.e. h is a Hamiltonian
function.

Proof. Following the proof of Theorem 4.2, we need to show that the equation
(4.1) defining the Hamiltonian vector field Xh is equivalent to the equation
(2.1) expressed in the form

pβ ˝ dF̄ pXhqq
˚θ “ ´dh.(4.6)

Then we get solvability of an isotropic map F immediately.
Let Xh “

řn
i“1paipu, vq

B
Bui

` bipu, vq
B
Bvi
q. Putting B

Bui
, B
Bvi

into (4.1)
instead of ξ, we obtain

Bh

Bwi
“ ´F̄ ˚ω

ˆ

Xh,
B

Bwi

˙

“

n
ÿ

j“1

n
ÿ

k“1

ajpu, vq

ˆ

´
Bfk
Bwi

Bgk
Buj

`
Bgk
Bwi

Bfk
Buj

˙

(4.7)

`

n
ÿ

j“1

n
ÿ

k“1

bjpu, vq

ˆ

´
Bfk
Bwi

Bgk
Bvj

`
Bgk
Bwi

Bfk
Bvj

˙

,

where pw1, . . . , w2nq “ pu1, . . . , un, v1, . . . , vnq. It is easy to see that (4.7) is
equivalent in the matrix form to the equation

˜

Bh
Bu

Bh
Bv

¸

“

t
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸˜

O ´In

In O

¸˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸

ˆ

a

b

˙

.

Thus (4.6) is smoothly invertible for Xh.

Remark 4.5. Since smooth solvability of an isotropic map F generated
by a smooth function h : U Ñ R is defined by smoothness of Xh, then an
equivalent condition for smooth solvability of F can be given in terms of the
Poisson bracket, namely:

F is smoothly solvable or equivalently h is a Hamiltonian function on U
if th, αuF̄˚ω is smooth on U for all smooth functions α defined on U.
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4.1. Smooth solvability related to Poisson structure. Smooth solv-
ability is a structural property preserved by Poisson bracket defined on the
space of Hamiltonians HF̄ . However, the space of generating functions RF̄ is
not preserved by the Poisson bracket t¨, ¨uF̄˚ω. As an example, we consider
the fold map

F̄ : R2 Ñ R2, F̄ pu, vq “ pu, v2{2q.

In this case RF̄ “ th : Bh
Bv P xvyu. Taking h “ u P RF̄ , k “ v3 P RF̄ we find

th, kuF̄˚ω “ ´3v thus

Bth, kuF̄˚ω
Bv

R xvy and th, kuF̄˚ω R RF̄ .

Let us consider the natural subspace RT
F̄

of the space of generating
functions for isotropic mappings along F̄ satisfying the tangential solvability
condition (3.1).

RTF̄ “ th P C
8pUq : h P RF̄ and F generated by h satisfies p3.1qu,

which will be called the space of tangential generating functions.
In the case if F̄ has a corank k singularity at 0 and the transversality

assumption of Theorem 3.3 is satisfied then RT
F̄
“ HF̄ . In general, HF̄ is a

proper subset of RT
F̄
and there is a natural question if the Poisson structure

t., .uF̄˚ωcan be extended to RT
F̄
? By the following example, we know that

this is impossible.

Example 4.6. Let F̄ : R2 Ñ pR2, ωq be defined by

F̄ pu, vq “

ˆ

u, u2v `
1

3
v3

˙

.

We show that RT
F̄
is not closed under the Poisson bracket. First we calculate

the jacobian matrix of F̄

JF̄ pu, vq “

˜

1 0

2uv u2 ` v2

¸

, JF̄´1pu, vq “

˜

1 0
´2uv
u2`v2

1
u2`v2

¸

.

From the condition of isotropicity (cf. Theorem 2.3), we have

Bh

Bv
P x∆F̄ y “ xu

2 ` v2y

thus

h “ pu2 ` v2q2αpu, vq ` βpuq.
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Now, we check the tangential solvability condition at p0, 0q
˜

0 1

´1 0

¸

tJF̄´1pu, vq

˜

Bh
Bu

Bh
Bv

¸

pu,vq“p0,0q

P ImageJF̄ p0, 0q.

And obtain

hpu, vq “ pu2 ` v2q2αpu, vq ` u4βpuq ` const.(4.8)

Thus,

RTF̄ “ th P C
8pUq | hpu, vq “ pu2 ` v2q2αpu, vq ` u4βpuq ` const(4.9)

for some smooth αpu, vq and βpuqu.

Consider the following two elements of RT
F̄

hpu, vq “ pu2 ` v2q2 ` u4,

kpu, vq “ pu2 ` v2q2v ` u4.

The Poisson bracket of h and k is given by

th, kuF̄˚ω “ ´4upu2 ` v2q2 ´ 4u3pu2 ` v2q ´ 16u3v2 ` 16u3v.

And consequently
th, kuF̄˚ω R RTF̄ .

Thus, RT
F̄
is not closed under the Poisson bracket.

We can easily see that the transversality condition of Theorem 3.3 is only
a sufficient condition. We can find examples of F̄ such that the jet extension
j1F̄ : U Ñ J1pR2n,R2nq is not transversal to the corank k stratum Σk of
J1pR2n,R2nq but RT

F̄
is closed under the Poisson bracket. In fact, we can

take

F̄ : pR2, 0q Ñ pR2, 0q, F̄ pu, vq “

ˆ

u,
1

k ` 1
vk`1

˙

.

We see that F̄ has corank 1 at pu, 0q but j1F̄ is not transversal to the corank
1 stratum in the jet space for k ≥ 2. Then by straightforward calculations,
we show also that RT

F̄
is closed under the Poisson bracket. Moreover, in this

example we have RT
F̄
“ HF̄ . Then the natural question arises: If there is

any smooth mapping F̄ such that RT
F̄
is closed under the Poisson bracket

but RT
F̄
‰ HF̄ , or we conjecture that

RT
F̄
“ HF̄ holds always if RT

F̄
is closed under the Poisson bracket.

4.2. Solvability condition for corank 1 case. Now we find conditions
describing the Poisson space associated to F̄ which has a corank 1 singularity
at the origin p0, 0q P U Ă R2n.
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Theorem 4.7. Let F : pU, 0q Ñ TR2n be a smooth isotropic map-germ
such that F̄ “ π ˝ F has a corank 1 singularity at p0, 0q P U Ă R2n expressed
in local coordinates pu, vq defined in (2.3). Let h : pU, 0q Ñ R be a smooth
generating function-germ for F defined on U. Then F is smoothly solvable if
and only if

Bh

Bvn
P x∆F̄ y,(4.10)

and
n´1
ÿ

i“1

ˆ

Bgn
Bvi

Bh

Bui
´
Bgn
Bui

Bh

Bvi

˙

´
Bh

Bun
P x∆F̄ y.(4.11)

Proof. From (4.1) taking Xh “
řn
i“1paipu, vq

B
Bui
` bipu, vq

B
Bvi
q for the local

form of F̄ given by (2.3), we calculate the coefficients of Xh

ai “
Bh

Bvi
´
Bgn
Bvi

Bh

Bvn
{∆F̄ , i “ 1, . . . , n´ 1,(4.12)

an “
Bh

Bvn
{∆F̄ ,

bi “ ´
Bh

Bui
`
Bgn
Bui

Bh

Bvn
{∆F̄ , i “ 1, . . . , n´ 1,

bn “
1

∆F̄

ˆ

´
Bh

Bun
`

n´1
ÿ

i“1

Bgn
Bvi

Bh

Bui
´

n´1
ÿ

i“1

Bgn
Bui

Bh

Bvi

˙

,

which are smooth if and only if (4.10) and (4.11) are fulfilled.

Remark 4.8. By straightforward calculations, we get

th, vnuF̄˚ω :“ F̄ ˚pωqpXh, Xvnq “ Xhpvnq “
n
ÿ

i“1

ˆ

ai
Bvn
Bui

` bi
Bvn
Bvi

˙

“
1

∆F̄

ˆ

´
Bh

Bun
`

n´1
ÿ

i“1

Bgn
Bvi

Bh

Bui
´

n´1
ÿ

i“1

Bgn
Bui

Bh

Bvi

˙

Bvn
Bvn

.

The condition (4.11) may be rewritten in the form

th, vnuF̄˚ω is smooth on U.

Remark 4.9. The space of Hamiltonian functionsHF̄ and its corresponding
space of smoothly solvable isotropic mappings along F̄ are symplectically
invariant Poisson algebras. HF̄ is an R-subalgebra of the R-algebra RF̄ which
is an ER2n-submodule of EU ,

HF̄ Ă RF̄ Ă EU .
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For the corank 1 mapping F̄ “ pf, gq : pU, 0q Ñ R2n, we can write the
Poisson bracket

th, kuF̄˚ω̄ “

ˆ

Bk

Bu
,
Bk

Bv

˙

˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1 ˜

O In

´In O

¸

t
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1 ˜
Bh
Bu

Bh
Bv

¸

,

and
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1 ˜

O In

´In O

¸

t
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1

“

¨

˚

˝

In O 0

O In´1 0
Bgn
Buj

Bgn
Bvj

Bgn
Bvn

˛

‹

‚

´1
˜

O In

´In O

¸

t

¨

˚

˝

In O 0

O In´1 0
Bgn
Buj

Bgn
Bvj

Bgn
Bvn

˛

‹

‚

´1

“

¨

˚

˝

In O 0

O In´1 0

´
Bgn
Buj
{∆F̄ ´

Bgn
Bvj
{∆F̄ 1{∆F̄

˛

‹

‚

˜

O In

´In O

¸

¨

˚

˚

˝

In O ´
Bgn
Buj
{∆F̄

O In´1 ´
Bgn
Bvj
{∆F̄

0 0 1{∆F̄

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

O 0 In´1 ´
Bgn
Bvj
{∆F̄

0 0 0 1{∆F̄

´In´1 0 O Bgn
Buj
{∆F̄

Bgn
Bvj
{∆F̄ ´1{∆F̄ ´

Bgn
Buj
{∆F̄ 0

˛

‹

‹

‹

‹

‚

.

Thus, for the fold singularity (2.12)

th, kuF̄˚ω̄ “
n´1
ÿ

i“1

ˆ

Bh

Bvi

Bk

Bui
´
Bk

Bvi

Bh

Bui

˙

`
1

2vn

ˆ

Bh

Bvn

Bk

Bun
´
Bk

Bvn

Bh

Bun

˙

,

where h, k P HF̄ , and

HF̄ “ th :
Bh

Bvn
,
Bh

Bun
P x∆F̄ yu.

5. Structure of the Poisson algebra HF̄
The natural ideals of HF̄ are those generated by powers of the Jacobian

determinant. We recall that a function h belongs to HF̄ if and only if

JF̄´1

˜

O In

´In O

¸

tJF̄´1

˜

Bh
Bu

Bh
Bv

¸

is smooth. Let ∆F̄ denote the jacobian determinant det JF̄ and let ĄJF̄
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denote the cofactor matrix of JF̄ . Then we have

JF̄´1 “
1

∆F̄

ĄJF̄.

Therefore, h belongs to HF̄ if and only if

1

∆F̄
2
ĄJF̄

˜

O In

´In O

¸

tĄJF̄

˜

Bh
Bu

Bh
Bv

¸

is smooth. Thus, if h belongs to the ideal x∆F̄
3y, then h P HF̄ . Now, we

prove the following stronger result.

Theorem 5.1. Let F̄ “ pf, gq : pU, 0q Ñ R2n be a smooth map-germ, then
following holds:

1) x∆F̄
2y Ă HF̄ .

2) For ` ≥ 3, x∆F̄
`y is a Poisson subalgebra of HF̄ .

3) For ` ≥ 3, x∆F̄
`y is an ideal of x∆F̄

3y.

Before we prove this theorem, we need the following

Lemma 5.2. Let Jn denote the matrix

Jn “

˜

O In

´In

¸

.

Let A “ paijq be a square matrix of size 2n and let rA denote its cofactor
matrix. Let

B “ pbk`q “ rAJn
t
rA, where t

rA denotes the transpose of rA.

Then we have

(5.1) bk` P xdetAyRra11,a12,...,anns.

In other words, detA divides every entry bk` of the matrix rAJn
t
rA as poly-

nomials of the variables a11, a12, . . . , ann.

Proof. Let us denote by Apk,`;i,n`iq, the square matrix of size 2n´2 obtained
from A deleting kth and `th rows and ith and n` ith columns. Then we can
state our Lemma in more precise form:

(5.2) bk` “
´

n
ÿ

i“1

detApk,`;i,n`iq

¯

detA.

Let Ji,n`i denote the matrix Ji,n`i “ pεklq given by

εkl “

$

’

&

’

%

1, for pk, lq “ pi, n` iq,
´1, for pk, lq “ pn` i, iq,

0, otherwise.
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Namely

Ji,n`i “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0
. . .

0 ¨ ¨ ¨ 1
...

. . .
...

´1 ¨ ¨ ¨ 0
. . .

0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Consider the matrix
Ci “ pck`q “ rAJi,n`i

t
rA.

Since

Jn “ J1,n`1`¨ ¨ ¨`Jn,2n and rAJn
t
rA “ rAJ1,n`1

t
rA`¨ ¨ ¨` rAJn,2n

t
rA,

to prove (5.2), it suffices to prove

ck` “ detApk,`;i,n`iq ¨ detA,(5.3)

which can be proved as follows:
We calculate Ci.

Ci “ pck`q “ rAJi,n`i
t
rA

“ rA

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0
. . .

0 ¨ ¨ ¨ 1
...

. . .
...

´1 ¨ ¨ ¨ 0
. . .

0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

ã11 ã21 ¨ ¨ ¨ ã2n,1

ã12 ã22 ¨ ¨ ¨ ã2n,1

...
...

. . .
...

...
...

. . .
...

ã1,2n ã2,2n ¨ ¨ ¨ ã2n,2n

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ rA

¨

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ 0

ã1,n`i ¨ ¨ ¨ ã2n,n`i

0 ¨ ¨ ¨ 0

´ã1,i ¨ ¨ ¨ ´ã2n,i

0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‚

.

Thus we have

(5.4) ck,l “ ãk,iã`,n`i ´ ãk,n`iã`,i.
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Now consider the matrix obtained from A permuting rows and columns so
that the n´ 1th row is replaced by the ith row, the nth row by n´ ith row,
the n´ 1th column is replaced by the kth column, the nth column by `th
column;

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1k a1`

papqq
...

...
a2n´1,k a2n´1,`

a2n,k a2n,`

ai1 ¨ ¨ ¨ ai,2n aik ai`
an`i,1 ¨ ¨ ¨ an`i,2n an`i,k an`i,`

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

and consider the multiplication of it by a matrix obtained from the transpose
t
rA of rA:

(5.5)

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ak1 a`1

paqpq
...

...
ak,2n´1 a`,2n´1

ak,2n a`,2n

a1i ¨ ¨ ¨ a2n,i aki a`i

a1,n`i ¨ ¨ ¨ a2n,n`i ak,n`i a`,n`i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ã1,i ã1,n`i

I2n´2
...

...
ã2n´1,i ã2n´1,n`i

ã2n,i ã2n,n`i

0 ãk,i ãk,n`i

0 ã`,i ã`,n`i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Then the p2n ´ 2q ˆ p2n ´ 2q minor paqpq at the upper left corner of the
left-hand matrix of (2) is the transpose tApk,`;i,n`iq of Apk,`;i,n`iq.

Note that

(5.6) the determinant of the matrix on the left is equal to detA

and the determinant of the matrix on the right is equal to

(5.7) ãk,iã`,n`i ´ ãk,n`iã`,i “ ck`.

Since tA t
rA “ I2n and

2n
ÿ

q“1

aqpãq,r “ δpr detA,

we see that (5.5) is equal to

(5.8)

¨

˚

˚

˚

˚

˚

˝

0 0

tApk,`;i,n`iq
...

...
0 0

a1i ¨ ¨ ¨ a2n,i detA 0
a1,n`i ¨ ¨ ¨ a2n,n`i 0 detA

˛

‹

‹

‹

‹

‹

‚

.
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From (5.5)–(5.8), we have

detA ¨ pãk,iã`,n`i ´ ãk,n`iã`,iq “ detApk,`;i,n`iq ¨ detA2.

Thus we have

(5.9) ck` “ pãk,iã`,n`i ´ ãk,n`iã`,iq “ detApk,`;i,n`iq ¨ detA.

This proves Lemma 5.2.

Proof of Theorem 5.1. Let F̄ : UpĂ R2nq Ñ R2n be a smooth mapping.
A function h generates a solvable isotropic mapping if and only if

JF̄´1

˜

O In

´In O

¸

tJF̄´1

˜

Bh
Bu
Bh
Bv

¸

is smooth. Let ∆F̄ denote the jacobian determinant det JF̄ and let ĄJF̄
denote the cofactor matrix of JF̄ . Then we have

JF̄´1 “
1

∆F̄

ĄJF̄.

Therefore h belongs to HF̄ if and only if

1

∆F̄
2
ĄJF̄Jn

tĄJF̄

˜

Bh
Bu
Bh
Bv

¸

is smooth. Now applying Lemma 5.2 to A “ JF̄ , we see that every entry of
ĄJF̄Jn

tĄJF̄ is an element of x∆F̄ y. Therefore if h P x∆2
F̄
y, then

1

∆F̄
2
ĄJF̄Jn

tĄJF̄

˜

Bh
Bu
Bh
Bv

¸

is smooth and h P HF̄ . Thus x∆2
F̄
y Ă HF̄ . This proves 1).

Let ` ≥ 3 and let h, k P x∆F̄
`y. From the Definition 4.3

th, kuF̄˚ω̄ “

ˆ

Bk

Bu
,
Bk

Bv

˙

˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1 ˜

O In

´In O

¸

t
˜

Bf
Bu

Bf
Bv

Bg
Bu

Bg
Bv

¸´1 ˜
Bh
Bu

Bh
Bv

¸

.

Since h, k P x∆F̄
`y, then

Bh

Bu
,
Bh

Bv
,
Bk

Bu
,
Bk

Bv
P x∆F̄

`´1y

and on the basis of Lemma 5.2

th, kuF̄˚ω̄ P x∆F̄
2`´2´1y.

Since ` ≥ 3, 2`´ 2´ 1 ≥ `. This proves 2).
3) can be proved in the same way.
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6. Existence of periodic solutions
Let pM,ωq be a symplectic manifold and let H be a smooth function

on M . For a value λ P R, the level set Sλ :“ H´1pλq is called an energy
surface of the Hamiltonian vector field XH . An energy surface Sλ is said to
be regular if dH ‰ 0 on Sλ.

Theorem 6.1. [8] Let S “ S1 be a compact regular energy surface for
the Hamiltonian vector field XH on pM,ωq. Assume that there is an open
neighborhood U of S such that the symplectic capacity c0pU, ωq ă 8. Then

1) there exists a sequence λj Ñ 1 of energy values, such that XH possesses a
periodic solution on every energy surface Sλj .

2) Moreover, there is a small open interval I with 1 P I such that
ď

λPI

Sλj Ă U

and in this case, there is a dense set Λ Ă I such that for λ P Λ, the energy
surface Sλ has a periodic solution of XH .

Let M2n be a compact manifold of dimension 2n and let F̄ “ pf1, . . . , fn,
g1, . . . , gnq : M Ñ pR2n, ωq be a smooth mapping.

Let HF̄ denotes the set of all functions h on M such that Xh is smooth:

HF̄ “ th P C8pMq | h generates a solvable isotropic mappingu .

For a point p P M , let C8pM,pq denote the ring of the germs at p of
smooth functions on M .

Let

(6.1) x∆F̄
`yC8pMq “ th P C

8pMq | at any singular point p P ΣpF̄ q

the germ of h at p belongs to x∆F̄
`yC8pM,pqu.

Then x∆F̄
`yC8pMq is an ideal in C8pMq.

From Theorem 5.1, we have
1) x∆F̄

3yC8pMq Ă HF̄ ,
2) if the corank of the Jacobian matrix JF̄ ppq is at most 1 everywhere,

then x∆F̄
2yC8pMq Ă HF̄ .

Note that as in the proof of Theorem 5.1, x∆F̄
3yC8pMq ( or x∆F̄

2yC8pMq

in the case that the corank of JF̄ ppq is at most 1) dominates an essential part
of HF̄ . Actually, it is not easy to find an element h P HF̄ ´ x∆F̄

3yC8pMq ( or
h P HF̄ ´ x∆F̄

2yC8pMq in the case that the corank of JF̄ ppq is at most 1).
Now, we consider existence of periodic solutions for the global solvable

isotropic mappings.
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Let M2n be a compact manifold of dimension 2n and let F̄ “ pf1, . . . , fn,
g1, . . . , gnq : M Ñ pR2n, ωq be a smooth mapping with fold singular points be-
ing dense in ΣpF̄ q. Let h P x∆F̄

3yC8pMq Ă HF̄ (respectively h P x∆F̄
2yC8pMq

in the case F̄ has only corank 1 singularities). Then h generates a Hamiltonian
vector field Xh and flows of Xh preserve the singular point set ΣpF̄ q.

Let λ0 ‰ 0 be a regular value of h such that h´1pλ0q ‰ ∅. Let Sλ0 be a
connected component of h´1pλ0q and let Ω be the connected component of
the regular point set M ´ ΣpF̄ q of F̄ such that S´λ0 Ă Ω . Then pΩ, F̄ ˚ωq
is a symplectic manifold which contains Sλ0 .

Let U Ă Ω be a small open neighborhood of Sλ0 . Take an interval
I “ pλ0 ´ ε, λ0 ´ εq so small that it does not contain 0 and that for every
λ P I, Sλ :“ h´1pλq X U ‰ ∅, Sλ is a connected component of h´1pλq and is
a regular hypersurface. Consider the set

ď

λPI

Sλ.

Then, from the Hofer–Zender theorem (See Theorem 1, p. 106 of [8])), we
obtain

Theorem 6.2. If c0pU, F̄
˚ωq ă 8, then there is a dense set Λ Ă I such

that for λ P Λ, the energy surface Sλ has a periodic solution of Xh.

So far, we did not mention any thing about the Hofer–Zender capacity c0.
However, it is known that for any bounded open subset O of pR2n, ωq, we
have c0pO,ωq ă 8. And, since the Hofer–Zender capacity c0 is a symplectic
invariant, if F̄ : U Ñ R2n is an embedding, then F̄ : pU, F̄ ˚ωq Ñ pR2n, ωq
is a symplectic embedding, F̄ pUq is open subset of R2n and c0pU, F̄

˚ωq “
c0pF̄ pUq, ωq. Note that since F̄ is a smooth mapping from a compact manifold,
its image is a bounded subset of R2n and so is F̄ pUq.

Suppose that the restricted mapping F̄ : Sλ0 Ñ R2n is an embedding.
Then, since F̄ : Ω Ñ R2n is an immersion and since Sλ0 is compact, there is
an open neighborhood U of Sλ0 such that F̄ : U Ñ R2n is an embedding, so
that c0pU, F̄

˚ωq ă 8. Thus we have

Corollary 6.3. Suppose that the restricted mapping F̄ : Sλ0 Ñ R2n is an
embedding. Then there is a dense set Λ Ă I such that for λ P Λ, the energy
surface Sλ has a periodic solution of Xh.

There is a trivial example. Let p0 be an isolated local minimal or maximal
point of our Hamiltonian function h “ α∆`. Then there exists a small
neighborhood of p0 such that U contains no critical points except for p and
that F̄ : U Ñ R2n is an embedding. Then F̄ : pU, F̄ ˚ωq Ñ pR2n, ωq is a
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symplectic embedding and c0pU, F̄
˚ωq ă 8. Let p be a local maximal point

of h and let hpp0q “ c0. Then there exists a small positive number ε0 ą 0
such that for any point q in U with c0 ´ ε0 ă hpqq ă c0, the connected
component containing q of the energy surface h´1phpqqq is a subset of U . In
this situation, we have

Corollary 6.4. In the above situation, there is a dense set Λ Ă pc0´ε0, c0q

such that for λ P Λ, the energy surface Sλ X U has a periodic solution of Xh.

In the end of this section we came to the following,

Problem. Let M be a smooth manifold of dimension 2n and let F̄ : M Ñ

pR2n, ωq be a submersion such that F̄ pMq is a bounded open subset of R2n

and that the numbers of elements of inverse images F̄´1pqq, q P R2n are
bounded:

supt7F̄´1pqq | q P R2nu ă 8.

Then
c0pM, F̄ ˚ωq ă 8 ?
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