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Abstract.

A constraint submanifold in a symplectic space after P.A.M. Dirac
is determined locally by geometric restriction of the symplectic form
to the constraint. The natural symplectic invariant associated to this
restriction is the space of Hamiltonian vector fields which uniquely
restrict to the solvable Hamiltonian ones on a constraint. By investiga-
tion of solvability of generalized Hamiltonian systems we characterize
the constraint invariants and find them explicitly in the generic cases.
Moreover the Poisson-Lie algebra of a constraint is calculated with di-
rect example of the 2-sphere in symplectic space.

§1. Introduction.

Let (M,ω) be a symplectic 2n-dimensional manifold, endowed with
the nondegenerate, closed two-form ω. By the vector bundle morphism
β : TM ∋ u 7→ ω(u, ·) ∈ T ∗M we introduce the canonical symplectic
structure ω̇ on TM, namely the pullback of the Liouville symplectic
form dθ defined on the cotangent bundle T ∗M, ω̇ = β∗dθ. A vector field
X : M → TM is said to be Hamiltonian if the form ω(X, ·) is closed and
exact. A function H : M → R is called Hamiltonian function for X if
ω(X, ·) = −dH(·). If X is Hamiltonian, then its image X(M) ⊂ TM is a
Lagrangian submanifold of (TM, ω̇) generated by H (cf. [15]). In local
Darboux coordinates, M ∼= R2n, ω =

∑n
i=1 dyi ∧ dxi, and ω̇ = β∗dθ =∑n

i=1(dẏi∧dxi−dẋi∧dyi), where (q, q̇) = ((x, y), (ẋ, ẏ)) are coordinates
on TR2n ≡ R2n×R2n.
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2 Hamiltonian systems

In what follows a smooth submanifold N ⊂ TM is called Hamilton-
ian system if N is Lagrangian, i.e. ω̇ |N= 0. In this case dimN = 2n,
and if τ |N : N → M is singular, where τ is a tangent bundle projection,
we also call N an implicit Hamiltonian system.

Fundamental property of a differential system which we investigate
in this paper is its local solvability. A point (q, q̇) ∈ N ⊂ TM is called
a solvable point of N if there exists a smooth curve γ : (−ε, ε) → M,
γ(0) = q such that its tangent lifting γ̇(t) belongs to N. N is called
a solvable manifold if N consists of solvable points only. N is called
smoothly solvable if it consists smoothly solvable points, i.e. around
each v ∈ N there exists a smooth family α : U × (−ϵ, ϵ) ∋ (v̄, t) 7→ M of
smooth solutions of N such that α̇v̄(0) = v̄.

If τ |N is a diffeomorphism, then N is smoothly solvable vector field
on R2n. If τ |N is singular, then N may not be solvable in the critical
points of τ |N . The simplest representative example of such manifold
is given by N = {(q, q̇) ∈ TR : q = (q̇ − a)2}. For a ̸= 0, N is not
solvable at (0, a) and this is a singular point of τ |N . In general case
(of any submanifold of TM) the necessary and sufficient conditions for
a manifold N ⊂ TM to be solvable are found in [4, 9].

1.1. Implicit Hamiltonian systems.

For a Hamiltonian system N let v = (q, q̇) ∈ N be a solvable point
of N. Then there exists a smooth curve γ : (−ε, ε) → M as above.
Thus an immediate necessary condition for a point v = (q, q̇) ∈ N to be
solvable is that (cf. [4])

q̇ ∈ d(τ |N )v(TvN),(1)

where d(τ |N )v is the tangent mapping to τ |N at v. In what follows we
will call this condition tangential solvability condition.

We can ask whether this condition is also a sufficient condition for
a submanifold N to be solvable. Although the answer for this question
is negative, there is a wide class of submanifolds of TR2n for which
the tangential solvability condition is also sufficient. An example of the
submanifold N for which the tangential solvability condition is fulfilled
but N is not solvable is given in [4].

In this work we concentrate only on Hamiltonian systems and sym-
plectic invariants connected to their solvability. As the solvability is
a local property investigated globally on a manifold, then we will use
the local coordinate systems and replace manifolds by their Euclidean
representatives.
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Let N ⊂ (TR2n, ω̇) be a Hamiltonian system. Suppose that

corankd(τ |N )v = k

for some v ∈ N. Then there exists an open neighborhood O of v in TR2n

and a smooth function F : R2n×Rk ∋ (q, λ) 7→ F (q, λ) ∈ R defined on
an open neighborhood of (q0, 0) in R2n×Rk, q0 = τ(v) such that

N ∩ O = {(q, q̇); ∃λ∈Rk , ẋi =
∂F

∂yi
(q, λ), ẏj = − ∂F

∂xj
(q, λ), 0 =

∂F

∂λl
(q, λ)},

where 1 ≤ i, j ≤ n, 1 ≤ l ≤ k, and

rank(
∂2F

∂xj∂λl
,

∂2F

∂yi∂λl
,

∂2F

∂λs∂λl
)(q0, 0) = k,

∂2F

∂λs∂λr
(q0, 0) = 0,(2)

where 1 ≤ s, r ≤ k. And F is called a generating family of N ∩ O.
If N is a Hamiltonian system generated by a generating family F :

R2n×Rk→R, then the tangential solvability condition for N is equivalent
to the existence of a solution µ = (µ1, . . . , µn) ∈ Rk of the following
linear equation (cf. [4]),

k∑
j=1

∂2F

∂λi∂λj
(q, λ)µj = { ∂F

∂λi
, F}(q, λ), i = 1, . . . , k(3)

for each (q, q̇) ∈ N, where {., .} denotes the Poisson bracket on R2n

induced by ω.
By the Cramer’s rule equation (3) is equivalent to

k∑
j=1

[
∂2F

∂λi∂λj
]{ ∂F
∂λj

, F} |{detH=0}∩CF
≡ 0,

where [ ∂2F
∂λi∂λj

] is a cofactor matrix of H(x, y, λ) = ( ∂2F
∂λi∂λj

(x, y, λ)) and

CF is a critical manifold defined by

CF = {(x, y, λ); ∂F
∂λi

(x, y, λ) = 0, 0 ≤ i ≤ k}.

Smooth solvability of N is implied by the condition that the linear equa-
tion (3) has a smooth solution (µ1(x, y, λ), . . . , µk(x, y, λ)) on the critical
manifold CF .

The natural problems concerning solvability phenomena of implicit
Hamiltonian systems are formulated as follows,
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a) find conditions to be posed on a smooth generating family F :
R2n×Rk→R, so that the linear equation (3) has a smooth so-
lution on CF .

b) specify the insolvability area in general implicit Hamiltonian
systems in particular those defined by constraints in the sym-
plectic space.

c) determine the Poisson-Lie algebras induced by smooth subman-
ifolds of symplectic space.

Point a) is already considered in [4]. The point b) needs an extra con-
ditions on regions of L fulfilling tangential solvability condition to be
finally solvable, and the point c) provides constructions of function alge-
bras which are equipped with the Poisson structure. This is the subject
of research in the rest of the paper.

1.2. Solvability conditions.

Let Es(k, k) denote the space of k×k symmetric matrices of real
numbers. For each integer r ≥ 0 let Sr denote the subset of Es(k, k)
consisting of all symmetric matrices of rank r. Then Sr is a submanifold
of Es(k, k) of codimension (k− r)(k− r+ 1)/2. Now we have a well de-
fined mapping of N into symmetric matrices Es(k, k). We can uniquely

represent this mapping by Ĥ : CF→Es(k, k),

Ĥ(x, y, λ) |{(x,y,λ)∈CF }= (
∂2F

∂λi∂λj
(x, y, λ)) |{(x,y,λ)∈CF } .(4)

Definition 1. An implicit Hamiltonian system N ⊂ TR2n, ge-
nerated by generating family F : R2n×Rk→R is called generic if the
map Ĥ : CF→Es(k, k) is transversal to all Sr, r = 0, . . . , k − 1.

Now we can formulate the main result we will use in this paper (cf.
[4, 11]).

Theorem 1. ([4]) The generic implicit Hamiltonian system N ⊂
TR2n is smoothly solvable if and only if it satisfies the tangential solv-
ability condition.

Using the results concerning solvability of general implicit differ-
ential systems in [4] we can get the corresponding results concerning
solvability of implicit Hamiltonian systems. Now our function-matrix
Ĥ |{(x,y,λ)∈CF }: CF→Es(k, k) corresponds to matrix A(x) in [4]. Let
OCF ,0 denote the ring of germs at 0 ∈ CF of real analytic functions on
CF . Then we get the following result.

Theorem 2. ([4]) Let F : (R2n×Rk, 0)→R be a real analytic function-
germ. Suppose that the implicit Hamiltonian system N generated by F
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fulfills the tangential solvability condition. If the ideal < det(Ĥ |CF

)(x, y, λ) > in OCF ,0 has the property of zeros (i.e. any function van-
ishing on the variety defined by this ideal belongs to it), then the germ
at (0, 0) of N is smoothly solvable.

1.3. Generalized Hamiltonian systems.

Let K be a submanifold of R2n and h : K → R be a smooth func-
tion on K. The notion of generalized Hamiltonian system (generalized
Hamiltonian dynamics) was introduced by P.A.M. Dirac in [2]. It is de-
fined as a sub-bundle of TR2n over K, being a Lagrangian submanifold
L of (TR2n, ω̇),(cf. [10])

L = {v ∈ TR2n : ω(v, u) = −dh(u) ∀u∈TK}.(5)

In local coordinates which we use in the setting, the generalized
Hamiltonian system (5) can be written by linear in λ as generating
family F : R2n × Rk → R,

F (x, y, λ) =

k∑
ℓ=1

aℓ(x, y)λℓ + b(x, y),(6)

where K, being a complete intersection, is defined by an ideal IK =<
a1, . . . , ak > having property of zeros with analytic generators ai, 1 ≤ i ≤
k. K is a zero-level set of the mapping a : (x, y) 7→ (a1(x, y), . . . , ak(x, y)),
K = {(x, y) ∈ R2n : ai(x, y) = 0, i = 1, . . . , k} , and b(x, y) is an ar-
bitrary smooth extension of the function h : K → R and the rank
condition (2) is fulfilled. In what follows we consider the smooth K and
b identified with h.

Generalized Hamiltonian systems are not generic in the sense of Def-
inition 1. For such systems the necessary tangential solvability condition
is also sufficient. The aim of this paper is to investigate conditions on
subvarieties of symplectic space on which the solvable generalized Hamil-
tonian systems may exist. We find conditions that L is smoothly solvable
under some properties of K and general function on K.

Let us notice that the tangential solvability condition for generalized
Hamiltonian system is reformulated after (3) as the system of equations
fulfilled in the smoothly solvable points of L,

{ ∂F
∂λi

, F}(x, y, λ) = 0 for (x, y, λ) ∈ CF .(7)

Concerning the solvability of the generalized Hamiltonian system L,
we have already the following basic result proved in [4]. L is smoothly
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solvable if (7) is fulfilled on K × Rk which is a very strong condition
expressed in the following,

Theorem 3. ([4]) A generalized Hamiltonian system L ⊂ (TR2n, ω̇)
generated by the generating family (6) is smoothly solvable if and only if

{ai, aℓ} = 0 and {b, aℓ} = 0, 1 ≤ i, ℓ ≤ k,

on K = {(x, y) ∈ R2n : ai(x, y) = 0, 1 ≤ i ≤ k},
and 1 ≤ k ≤ n. If k = n, then b ≡ 0.
Solvability property of L defines K to be an involutive, coisotropic

submanifold of (R2n, ω), i.e. geometrically TqK ⊃ (TqK)ω = {u ∈
TqR2n : ω(u, v) = 0,∀v∈TqK}, and b restricts to those functions who are
constant on leaves of the characteristic foliation of coisotropic K, (cf.
[13]).

Remark 1. If dimK < n and K is isotropic, i.e. (TK)ω ⊃ TK,
then TK is solvable submanifold of L with b ≡ 0. In this case L can not
be completely solvable Hamiltonian system. If dimK = n, and TK = L
is solvable with b ≡ 0, then K is Lagrangian.

Corollary 4. Let L be a generalized Hamiltonian system over the
submanifold K ⊂ R2n and its generating family F fulfills the tangential
integrability condition. Then K is a coisotropic submanifold of (R2n, ω)
and L is smoothly solvable.

In what follows we investigate the case when L is not smoothly sol-
vable. We clarify the properties of such L with respect to the structure of
non-solvable part of it and symplectic invariant properties of constraints.
The regions of solvability on L may be identified by analysis of (7) under
some assumptions on K.

§2. Solvability on even dimensional submanifolds.

The generalized Hamiltonian system L is given by an immersion

ϕ : CF → L ⊂ (TR2n, ω̇)

defined by

ϕ(x, y, λ) = (x, y,
∂F

∂y
(x, y, λ),−∂F

∂x
(x, y, λ)), (x, y, λ) ∈ CF .

Since ∂F
∂λℓ

(x, y, λ) = aℓ(x, y), we have CF = K × Rk. Then L can be
written as

L = ϕ(CF ) = {(x, y, ∂F
∂y

(x, y, λ),−∂F

∂x
(x, y, λ)) ∈ TR2n : (x, y, λ) ∈ K × Rk}.
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We find conditions for a submanifold or domain of L to be smoothly
solvable. Thus the traditionally solvable Hamiltonian system exists on
a submanifold K in the case where the generating family does not satisfy
the involutivity condition in Theorem 3, i.e. {ai, aℓ} = 0 and {b, aℓ} =
0 on K, 1 ≤ i, ℓ ≤ k.

Consider the k×k skew-symmetric matrix A(x, y) = ({ai, aj}(x, y))
and the linear equation

k∑
j=1

{ai, aj}(x, y)λj = {b, ai}(x, y), i = 1, . . . , k.(8)

Set

S̃F = {(x, y, λ) ∈ CF :

k∑
j=1

{ai, aj}(x, y)λj = {b, ai}(x, y), i = 1, . . . , k}

and SF = ϕ(S̃F ) ⊂ L.
Comparing to the general implicit Hamiltonian systems (cf. [4]) we

can easily see that the following three properties still hold in the present
irregular generalized Hamiltonian case. Thus before we proceed to the
more specified cases we formulate the following Lemmas.

Lemma 1.
1) ϕ : CF → L is a diffeomorphism.
2) The following three conditions are equivalent,

(a) a submanifold Q of L is smoothly solvable
(b) there exists a smooth vector field ξ tangent to Q such that

dτ(ξ(x, y, ẋ, ẏ)) =

n∑
i=1

ẋi
∂

∂xi
+

n∑
i=1

ẏi
∂

∂yi
,

(c) there exists a smooth vector field ξ̃ tangent to Q̃ = ϕ−1(Q) such
that

dπ̃(ξ̃(x, y, λ)) =
n∑

i=1

∂F

∂yi
(x, y, λ)

∂

∂xi
−

n∑
i=1

∂F

∂xi
(x, y, λ)

∂

∂yi
,

where π̃ : R2n × Rk → R2n, π̃(x, y, λ) = (x, y).

Lemma 2. 1) For (x, y, λ) ∈ CF , the vector field

n∑
i=1

∂F

∂yi
(x, y, λ)

∂

∂xi
−

n∑
i=1

∂F

∂xi
(x, y, λ)

∂

∂yi
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is tangent to K if and only if equation (8) is fulfilled.
2) Equivalently, for a point (x, y, ẋ, ẏ) ∈ L, the vector field

n∑
i=1

ẋi
∂

∂xi
+

n∑
i=1

ẏi
∂

∂yi

is tangent to K at (x, y) if and only if (x, y, ẋ, ẏ) ∈ SF .

Proof. Since K is defined by equations a1(x, y) = 0, . . . , ak(x, y) =
0, then the vector field

n∑
i=1

∂F

∂yi
(x, y, λ)

∂

∂xi
−

n∑
i=1

∂F

∂xi
(x, y, λ)

∂

∂yi

is tangent to K if and only if

(

n∑
i=1

∂F

∂yi
(x, y, λ)

∂

∂xi
−

n∑
i=1

∂F

∂xi
(x, y, λ)

∂

∂yi
)(aj(x, y)) = 0, j = 1, . . . , k,

which holds if and only if {F, aj}(x, y, λ) = 0, j = 1, . . . , k. Inserting
(6) the last equality holds if and only if

k∑
i=1

{ai, aj}(x, y)λi + {b, aj}(x, y) = 0, j = 1, . . . , k,

which gives an equation (8) and completes the proof of Lemma 2 2

Lemma 3. Let (x0, y0, ẋ0, ẏ0) ∈ L and let

(x0, y0, λ0) = ϕ−1(x0, y0, ẋ0, ẏ0) ∈ CF .

If (x0, y0, ẋ0, ẏ0) is a solvable point of L, then λ0 = (λ01, . . . , λ0k) is a so-

lution of the linear equation
∑k

j=1{ai, aj}(x0, y0)λj = {b, ai}(x0, y0), i =
1, . . . , k, which means that

(x0, y0, λ0) ∈ S̃F and (x0, y0, ẋ0, ẏ0) ∈ SF .

Consequently any solvable submanifold of L is a subset of SF = TK∩L.

Proof. Since (x0, y0, ẋ0, ẏ0) ∈ L is a solvable point of L, there
exists a smooth curve γ(t) = (x(t), y(t)) ∈ R2n, −ϵ < t < ϵ such that
(γ(t), γ̇(t)) ∈ L, −ϵ < t < ϵ, and (γ(0), γ̇(0)) = (x0, y0, ẋ0, ẏ0). Let
γ̃ : (ϵ, ϵ) → CF be the curve defined by γ̃(t) = (x(t), y(t), λ(t)), then
ϕ(γ̃(t)) = (γ(t), γ̇(t)).
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Since (x0, y0, λ0) = ϕ−1(x0, y0, ẋ0, ẏ0), we have λ(0) = λ0. Since
γ̃(t) ∈ CF , −ϵ < t < ϵ, we see that

dγ̃

dt
(0) = ẋ0

∂

∂x
+ ẏ0

∂

∂y
+

dλ

dt
(0)

∂

∂λ

is tangent to L. Since L is contained in TR2n |K and K is defined by
a1(x, y) = 0, . . . , ak(x, y) = 0, we have

(ẋ0
∂

∂x
+ ẏ0

∂

∂y
+

dλ

dt
(0)

∂

∂λ
)(aj) = 0, j = 1, . . . , k.

And

0 =
∂F

∂y
(x0, y0, λ0)

∂aj
∂x

(0)− ∂F

∂x
(x0, y0, λ0)

∂aj
∂y

(0) = {F, aj}(x0, y0, λ0).

And using the form (6) of F we have

k∑
i=1

{ai, aj}(x0, y0)λ0i + {b, aj}(x0, y0) = 0, j = 1, . . . , k.

Thus λ0 = (λ01, . . . , λ0k) is a solution of the system of linear equa-
tions

k∑
j=1

({ai, aj}(x0, y0))λj = {b, ai}(x0, y0), 1 ≤ i ≤ k.

This completes the proof of Lemma 3. 2
First we have the following introductory result.

Proposition 4.
1) If a submanifold Q of L is a solvable submanifold of the generalized

Hamiltonian system L, then it is a solvable submanifold of the tangent
bundle TK of K.
2) If the linear equation (8) has a smooth solution (λ1(x, y), · · · , λk(x, y))

defined on K, then the image Gλ = ϕ(G̃λ) by ϕ of the graph of this so-
lution

G̃λ = {(x, y, λ1(x, y), . . . , λk(x, y)) : (x, y) ∈ K}

is a smoothly solvable submanifold of L.

Proof. Part 1) is immediate by Lemma 3.
For part 2) suppose that the linear equation (8) has a smooth solution
λ(x, y) = (λ1(x, y), . . . , λk(x, y)) defined on K. Consider the image

Gλ = ϕ(G̃λ)
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by ϕ of the graph G̃λ = {(x, y, λ1(x, y), . . . , λk(x, y)) | (x, y) ∈ K} of the
solution (λ1(x, y), . . . , λk(x, y)).

Since λ(x, y) is a solution of the linear equation (8), from Lemma 2,
we see that the vector field

dπ̃(
∂F

∂y
(x, y, λ(x, y))

∂

∂x
− ∂F

∂x
(x, y, λ(x, y))

∂

∂y
)

is tangent to K. Since λ(x, y) is smooth, then this vector field depends

smoothly on (x, y). Since π̃ |G̃λ
: G̃λ → K is a diffeomorphism then there

exists a smooth vector field ξ̃ tangent to G̃λ such that

dπ̃(ξ̃(x, y, λ(x, y))) =
∂F

∂y
(x, y, λ(x, y))

∂

∂x
− ∂F

∂x
(x, y, λ(x, y))

∂

∂y
.

Then, from Lemma 1. 2), the image Gλ = ϕ(G̃λ) is a smoothly solvable
submanifold of L. This completes the proof of Proposition 4. 2

Remark 2. In Proposition 4. 1), in order to check that Q is
smoothly solvable, it is enough to check that Q is a submanifold of TK
and that Q is smoothly solvable as an implicit differential system, to
which one can apply results of [4].

We see that the Proposition 4. 1) is a direct consequence of Lemmas
2 and 3. Situation diametrically opposite to that in Theorem 3 is in the
case if

det ({aℓ, am}(x, y)) ̸= 0.(9)

Under this condition we have

Proposition 5. Let L be a generalized Hamiltonian system gen-
erated by a generating family (6). Suppose that

k is even and det ({aℓ, am}(x, y)) ̸= 0, on K.

Then SF is a smoothly solvable submanifold of L and it is the maximal
solvable submanifold of L in the sense that any other smoothly solvable
submanifold of L is a submanifold of SF . Moreover, the projection τ|SF

:
SF → K is a diffeomorphism and has no singular points. Consequently,
SF is a unique smoothly solvable submanifold of L such that τ(SF ) = K.

Proof. Consider the k × k matrix ({aℓ, am}(x, y)) and the linear
equation

k∑
m=1

{aℓ, am}(x, y)λm = {b, aℓ}(x, y), 1 ≤ ℓ ≤ k.(10)
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Since det ({aℓ, am}(x, y)) ̸= 0 onK, the linear equation (10) has a unique
smooth solution λ(x, y) = (λ1(x, y), . . . , λk(x, y)) on K. Then we have

S̃F = {(x, y, λ) ∈ R2n × Rk | λ = λ(x, y), (x, y) ∈ K}.

Thus S̃F is the graph of the map λ : K → Rk. Therefore the projection

map π̃ |S̃F
: S̃F → K is a submersion and so is τ|SF

: SF → K. Moreover,
from Lemma 2, SF is an implicit differential system as a submanifold
of TK. Thus SF is a smoothly solvable implicit differential system and
it is a smoothly solvable submanifold of L. Now the maximality of SF

follows from Lemma 3. This completes the proof of Proposition 5. 2

Remark 3. If b is a pre-Hamiltonian function defined on K for the
generalized Hamiltonian system L, then the corresponding Hamilton-
ian function for the solvable Hamiltonian vector field in the restricted
symplectic space (K,ω |K) is defined by

F̂ (x, y) = b(x, y) +
k∑

i=1

λi(x, y)ai(x, y),

where λ(x, y) is a unique smooth solution of the equation (10) and

∂F̂

∂y
(x, y)

∂

∂x
− ∂F̂

∂x
(x, y)

∂

∂y
|K

is a smooth section of TK.

§3. Solvability over constant rank constraints.

Let K be a submanifold of (M,ω). By (TqK)ω we denote the skew-
orthogonal subspace to TqK. The constant rank of matrix A(q) at all
points of K is related to the special cases of submanifolds of M.

K is said to be coisotropic if (TqK)ω ⊂ TqK at each q ∈ K is
isotropic if TqK ⊂ (TqK)ω at each q ∈ K. detA(q) is vanishing on K in
both these cases. K is said to be symplectic if TqK ∩ (TqK)ω = 0 at
each q ∈ K.

Let us denote the intersection Vq = TqK ∩ (TqK)ω and we assume
dimVq = l is constant at each q ∈ K. Vq is a kernel of A(q). The two
form induced on the quotient space (TqK)ω/Vq is nondegenerated for
k = 1, . . . , 2n− 1. dim(TqK)ω/Vq = k− l and there is a natural relation
for the kernel dimension, l ≤ max{k, 2n−k}. Obviously k− l is an even
number. We easily find that rankA(q) = k − l, l ≤ n, l ≤ 2n − k. The
kernel Nq = KerA(q) gives an intersection of skew-conormal fibre of K
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with the tangent space TK. The constant rank of A along K implies
that V =

∪
q∈K Vq is a distribution on K, this is the characteristic

distribution of ω |K . V is defined by the generating function

F (x, y, λ) =
k∑

i=1

λiai(x, y), (x, y) = q ∈ K.

corankA(x, y) ≤ 2n− k, rankA(x, y) ≥ 2k − 2n, for k > n

Vq = {
k∑

i=1

λi(
∂ai
∂y

(x, y)
∂

∂x
− ∂ai

∂x
(x, y)

∂

∂y
)},

where λ ∈ KerA(x, y), (x, y) ∈ K.

Proposition 6. V is an integrable distribution of TK and it is a
solvable submanifold of L with b ≡ 0.

Let λj(x, y), j = 1, . . . l be l−independent smooth sections of the
fibre bundle KerA(x, y) over K, then we can re-define the defining gen-
erators ai taking instead the new l functions, cj(x, y) ∈ IK ,

cj(x, y) =

k∑
i=1

λj
i (x, y)ai(x, y), j = 1, . . . , l.

We can easily check that

{cj , ai} |K= 0, j = 1, . . . , l, i = 1, . . . , k

and

{cj , cs} |K= 0, j = 1, . . . , l, s = 1, . . . , l.

After re-numeration of a1, . . . , ak assume that c1, . . . , cl, al+1, . . . , ak
are independent and defineK. Thus the matrix A reduces to the maximal
rank sub-matrix ({ai, aj})l+1≤i,j≤k.

Thus the problem reduces to the coisotropic submanifold C ∈ R2n

defined by cj = 0 with b preserving fibers of V on C. The rest of
functions ai define K as a section of the foliation defined by integral
surfaces of V.

§4. Solvable domains in generalized Hamiltonian systems.

When k is odd we have detA(x, y) = 0 everywhere. As a result
corresponding to Proposition 5, we have
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Proposition 7. Let L ⊂ TR2n be a generalized Hamiltonian
system generated by a generating family (6). Suppose that k is odd
and the rank of ({aℓ, am}(x, y)) is constant and equal to k − 1. Sup-
pose also that the linear equation (8) has a smooth solution λ(x, y) =
(λ1(x, y), . . . , λk(x, y)) on K. Then

1) SF is a smoothly solvable submanifold of L and it is the max-
imal solvable submanifold in the sense that any other smoothly solvable
submanifold of L is a submanifold of SF .

2) Moreover, SF is a line bundle over K with the submersion map
τ|SF

: SF → K.

Proof. Let L ⊂ TR2n be an implicit Hamiltonian system gener-
ated by a Morse family (6). Suppose that k is odd and the rank of
({ai, aj}(x, y)) is constant and equal to k− 1. Suppose also that the lin-
ear equation (8) has a smooth solution λ(x, y) = (λ1(x, y), . . . , λk(x, y))
on K.

Since the matrix ({ai, aj}(x, y)) depends smoothly on (x, y) ∈ K
and has a constant rank k − 1, the kernel set

K̃F = {(x, y, λ) ∈ CF | ({ai, aj}(x, y))λ = 0}

is a smooth line bundle over K and we see that

S̃F = {(x, y, λ(x, y) + λ) | (x, y) ∈ K, (x, y, λ) ∈ K̃F }.

Therefore S̃F is also a line bundle over K and so is SF = ϕ(S̃F ). Thus,
SF is a smooth manifold and the projection π : SF → K is a submersion.

From Proposition 5, SF = ϕ(S̃F ) is a smoothly solvable submanifold of
L. The maximality of SF follows from Lemma 3. This completes the
proof of Proposition 7. 2

The maximality of SF , both in Proposition 5 and Proposition 7,
follows from Lemma 3. Proposition 7. 1) is a direct consequence of
Proposition 5. 2), Lemma 3 and the following more general theorem.

Theorem 5. Let L ⊂ TR2n be a generalized Hamiltonian system
generated by a generating family (6). Let Q be a submanifold of L such
that the projection τ |Q: Q → K is a submersion. Then Q is smoothly
solvable if and only if Q ⊂ SF .

As a direct corollary of Theorem 5, we have the following Proposition
which is a generalization of Proposition 7.

Proposition 8. Let L ⊂ TR2n be a generalized Hamiltonian sys-
tem generated by (6). Suppose that the linear equation (8) has a smooth
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solution on K,

λ(x, y) = (λ1(x, y), . . . , λk(x, y)).

Suppose also that the kernel set

K̃F = ker ({ai, aj}) = {(x, y, λ) ∈ C × Rk | ({ai, aj}(x, y))λ = 0}

contains an m− dimensional smooth vector subbundle K̃ of the vector
bundle K × Rk over K. Then

RF = {(x, y, ∂F
∂y

(x, y, λ(x, y)+λ),−∂F

∂x
(x, y, λ(x, y)+λ)) | (x, y, λ) ∈ K̃}

is a (2n− k +m) dimensional smoothly solvable submanifold of L.

Proof. (of Theorem 5 and Proposition 8). Let L ⊂ TR2n be an
implicit Hamiltonian system generated by a Morse family (6). Suppose
that M is a submanifold of L such that the projection τ |M : M → K is
a submersion.

If M is smoothly solvable, then, from Lemma 3, we have M ⊂ SF .
Conversely, suppose that M ⊂ SF . Let

(x0, y0, ẋ0, ẏ0) ∈ M and (x0, y0, λ0) = ϕ−1(x0, y0, ẋ0, ẏ0).

Since
(x0, y0, ẋ0, ẏ0) ∈ SF and (x0, y0, λ0) ∈ S̃F ,

from the definition of SF and from Lemma 2, the vector

ẋ0
∂

∂x
+ ẏ0

∂

∂y
=

∂F

∂y
(x0, y0, λ0)

∂

∂x
− ∂F

∂x
(x0, y0, λ0)

∂

∂y

is tangent to K at (x0, y0) and smoothly depends on (x0, y0, ẋ0, ẏ0) ∈ M .
Since τ |M : M → K is a submersion, there exists a smooth vector field
ξ tangent to M such that

dτ(ξ(x0, y0, ẋ0, ẏ0)) = ẋ0
∂

∂x
+ ẏ0

∂

∂y
, ∀(x0, y0, ẋ0, ẏ0) ∈ M.

Thus, from Lemma 1, M is smoothly solvable. This completes the proof
of Theorem 5. Now Proposition 8 is a direct corollary of Theorem 5. 2

The condition in Proposition 8 that the kernel set K̃F contains
an m dimensional smooth vector subbundle is not generic condition
if m > 0 for k even, and if m > 1 for k odd. Because in general if
k is even, det ({aℓ, am}(x, y)) ̸= 0 almost everywhere, and if k is odd,
rank ({aℓ, am}(x, y)) = k − 1 almost everywhere. Note that smooth
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vector subbundles of K̃F are not unique in general: If K̄ is a smooth

vector subbundle of K̃F , then any smooth vector subbundle of K̄ is also

a smooth vector subbundle of K̃F . For k even we define

Kreg = {(x, y) ∈ K | det ({aℓ, am}(x, y)) ̸= 0},

for k odd we have

Kk−1 = {(x, y) ∈ K | rank ({aℓ, am}(x, y)) = k − 1}.

In generic situation, we have

Proposition 9. Suppose that k is even and det ({aℓ, am}(x, y)) ̸= 0
almost everywhere but det ({aℓ, am}(0, 0)) = 0. Then LF ∩ π̃−1(Kreg) is
smoothly solvable implicit differential system of TKreg. Moreover there
exists a smoothly solvable differential system Q such that π̃(Q) = K if
and only if the linear equation (8) has a smooth solution on K. Such a
smoothly solvable differential system Q is unique and it has the properties
that Q ∩ π−1(Kreg) = LF ∩ τ−1(Kreg) and that τQ : Q → K is a
diffeomorphism.

Proof. The fact that L∩ τ−1(Kreg) is a smoothly solvable implicit
differential system of TKreg is a direct corollary of Theorem 5. Now
suppose that the linear equation (8) has a smooth solution

(λ1(x, y), . . . , λk(x, y))

on K. Then, by Proposition 4. 2), the image Gλ = ϕ(G̃λ) of the

graph G̃λ of the solution (λ1(x, y), . . . , λk(x, y)) is a smoothly solv-
able submanifold of L. Take Gλ as M we seek. Then, by Theorem
5, M ∩TKreg = Gλ ∩TKreg and SF ∩TCreg must coincide. Since Kreg

is dense in K, the uniqueness of such M follows.
Conversely suppose that there exists a smoothly solvable differen-

tiable system M such that π(M) = K. Then, again by Proposition 5,
M ∩TKreg must coincide with SF ∩TKreg. Consider the inverse image

M̃ = ϕ−1(M) ⊂ CF ⊂ K×Rk. Since, by Proposition 5, S̃F ∩(Kreg×Rk)
is the graph of a smooth solution λ : Kreg → Rk of the linear equation

(8), M̃ ∩ (Kreg ×Rk) must coincide with the graph of this smooth solu-

tion λ(x, y), (x, y) ∈ Kreg. SinceKreg is dense inK and M̃ is a smooth

submanifold such that π̃(M̃) = K, λ(x, y) can be extended to a smooth
solution defined on K of the linear equation. Thus the linear equation
has a smooth solution on K. This completes the proof of Proposition 7
2.
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Remark 4. In the case where k is odd we can have a similar
result. However, when k is odd and the rank of the matrix ({ai, aj}(0, 0))
is less than k − 1,

1) There is a question, in a generic situation, whether the kernel
set

K̃F = ker ({ai, aj}) = {(x, y, λ) ∈ K × Rk | ({ai, aj}(x, y))λ = 0}

contains or not a smooth line bundle over K appeared in Proposition 8.
2) Moreover when k is odd, we can not apply our condition for the

linear equation to have a smooth solution. Since det({ai, aj}(x, y)) = 0,
the product of the matrix ({ai, aj}(x, y)) and its cofactor matrix is always
the zero matrix. Thus we can not apply our method.

Theorem 5 and Propositions 7, 5 and 8 are obtained by reducing
the fibers of the bundle τ : L → K. However reducing the base space
K, we obtain

Proposition 10. Suppose that L is not smoothly solvable. Let
g1, . . . , gs : R2n → R be smooth functions such that the Jacobian ma-
trix of the map (a, g) = (a1, . . . , ak, g1, . . . , gs) : R2n → Rk+s has the
maximal rank k + s. Let Cg ⊂ K be a submanifold defined by

Cg = {(x, y) ∈ K | g1(x, y) = · · · = gs(x, y) = 0}.

Then ϕ(Cg × Rk)(⊂ LF ) is smoothly solvable if and only if

{aℓ, am} = {b, am} = 0, {aℓ, gt} = {b, gt} = 0 on Cg,

1 ≤ ℓ,m ≤ k, 1 ≤ t ≤ s.

Proof. This Proposition can be proved in the same way as it was
done for Theorem 3. Let us consider the Morse family (6). Then we
have

∂F

∂λℓ
(x, y, λ) = aℓ(x, y).

Set

CF,g = {(x, y, λ) ∈ CF | g1(x, y) = · · · = gs(x, y) = 0} = Cg × Rk,

LF,g = ϕ(CF,g).

Now LF,g is smoothly solvable if and only if there exists a smooth
tangent vector filed ξ on LF,g = ϕ(CF,g) such that

dπ(ξ(x, y, ẋ, ẏ)) =
n∑

i=1

ẋi
∂

∂xi
+ ẏi

∂

∂yi
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where π : TR2n → R2n is the projection of the tangent bundle, then
there are smooth functions µℓ(x, y, λ), ℓ = 1, . . . , k, such that the vector
field

ξ̃(x, y, λ) =
n∑

i=1

∂F

∂yi
(x, y, λ)

∂

∂xi
− ∂F

∂xi
(x, y, λ)

∂

∂yi
+

k∑
ℓ=1

µℓ(x, y, λ)
∂

∂λℓ

is tangent to CF,g = Cg × Rk if and only if

n∑
i=1

∂F

∂yi
(x, y, λ)

∂

∂xi
− ∂F

∂xi
(x, y, λ)

∂

∂yi
is tangent to CF,g.

Then

(
n∑

i=1

∂F

∂yi

∂

∂xi
− ∂F

∂xi

∂

∂yi
)aℓ = 0 on CF,g, 1 ≤ ℓ ≤ k,

(
n∑

i=1

∂F

∂yi

∂

∂xi
− ∂F

∂xi

∂

∂yi
)gt = 0 on CF,g, 1 ≤ t ≤ s,

and

{F, aℓ} =

k∑
i=1

{ai, aℓ}λi + {b, aℓ} = 0 on CF , 1 ≤ ℓ ≤ k.

{F, gt} =
k∑

i=1

{ai, gt}λi + {b, gt} = 0 on CF,g, 1 ≤ t ≤ s.

Differentiating the equalities with respect to λi, we have

{ai, aℓ} = {ai, gt} = 0, and then {b, aℓ} = {b, gt} = 0,

on CF,g, 1 ≤ ℓ ≤ k, 1 ≤ t ≤ s.

Conversely, if

{ai, aℓ} = {ai, gt} = 0, then {b, aℓ} = {b, gt} = 0,

on CF,g, 1 ≤ ℓ ≤ k, 1 ≤ t ≤ s,

then LF,g = ϕ(CF,g) is smoothly solvable. This completes the proof of
Proposition 10. 2
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Example 1. Consider the following function.

F (x, y, λ) =

k∑
i=1

xiλi + b1(y1, . . . , yk)b2(xk+1, . . . , xm),

k + 1 ≤ m ≤ n, b1(0) = b2(0) = 0, b1, b2 are not constantly 0.

Then
{aℓ, am} = {xℓ, xm} = 0, 1 ≤ ℓ,m ≤ k.

However

{aℓ, b} = {xℓ, b} = −∂b1
∂yℓ

· b2 ̸= 0

on K = {a1 = · · · = ak = 0} = {x1 = · · · = xk = 0}.

Thus L itself is not smoothly solvable. Now consider functions

g1(x, y) = xk+1, . . . , gs(x, y) = xk+s = xm, where s = m− k,

and set

S = {(x, y) ∈ R2n | a1(x, y) = · · · = ak(x, y) = g1(x, y) = · · · = gs(x, y) = 0}.

Then

{aℓ, b} = −∂b1
∂yℓ

b2(xx+1, . . . , xm) = 0,

{aℓ, gt} = {xℓ, xk+t} = 0, {b, gt} = {b, xk+t} = 0,

1 ≤ ℓ ≤ k, 1 ≤ t ≤ s = m− k,

on S = {a1 = · · · = ak = g1 = · · · = gs = 0}.

Then, by Proposition 10, LF ∩ (S × R2n) is smoothly solvable.

§5. Poisson-Lie algebras on submanifolds.

The Poisson algebra is an associative algebra equipped with a Pois-
son bracket, which is a Lie bracket. Poisson structures on manifolds
are the basic mathematical structures of mechanics. The representa-
tive one is the algebra of all smooth functions on the phase space under
ordinary multiplication and the Lie structure induced by the Poisson
bracket usually defined by the symplectic form. For the implicit Hamil-
tonian systems, defined by singular mappings, the Poisson-Lie algebra is
formed by the solvable implicit Hamiltonian systems [6]. In this section
we search for Poisson-Lie algebras associated to generalized Hamiltonian
systems.
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Let Q be a submanifold of LF . If π |Q: Q → K is a diffeomorphism,
then Q is smoothly solvable. We showed that π |Q: Q → K is a dif-
feomorphism if and only if there exists a smooth solution λ(x, y) of (8)
such that

Q = ϕF

({
(x, y, λ(x, y)) | (x, y) ∈ K

})
= ϕF ( the graph of λ(x, y)).

Let us define

{a1, · · · , ak}⊥K = {h ∈ Ex,y | {h, ai} = 0 on K}.

If h ∈ {a1, · · · , ak}⊥K , then the corresponding Hamiltonian vector field
Xh is tangent to K.

Theorem 6. Equation (8) has a smooth solution defined on K if
and only if

b ∈ ⟨a1, · · · , ak⟩Ex,y + {a1, · · · , ak}⊥K .

Proof. Suppose that (8) has a smooth solution λ(x, y) defined on
K;

(
{aℓ, am}(x, y)

) λ1(x, y)
...

λk(x, y)

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

 , (x, y) ∈ K.

Let’s consider a function h(x, y) = b(x, y) −
∑k

m=1 λm(x, y)am(x, y).
Then {h, a1}(x, y)

...
{h, ak}(x, y)

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

−
(
{aℓ, am}(x, y)

) λ1(x, y)
...

λk(x, y)


is vanishing onK. In the above calculations we have {aℓ, λm}(x, y)am(x, y) =

0 onK. Thus h ∈ {a1, · · · , ak}⊥K and b(x, y) =
∑k

m=1 λm(x, y)am(x, y)+
h(x, y). Hence

b ∈ ⟨a1, · · · , ak⟩Ex,y + {a1, · · · , ak}⊥K .

Conversely suppose that b ∈ ⟨a1, · · · , ak⟩Ex,y + {a1, · · · , ak}⊥K . Then
b(x, y) has the form

b(x, y) =
k∑

m=1

µm(x, y)am(x, y)+h(x, y), µm ∈ Ex,y, h ∈ {a1, · · · , ak}⊥K .
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Then  {b, a1}(x, y)
...

{b, ak}(x, y)

 = −
(
{aℓ, am}(x, y)

) µ1(x, y)
...

µk(x, y)

+

 {h, a1}(x, y)
...

{h, ak}(x, y)

 = −
(
{aℓ, am}(x, y)

) µ1(x, y)
...

µk(x, y)


on K since h ∈ {a1, · · · , ak}⊥K . Thus −µ(x, y) = −(µ1(x, y), · · · , µk(x, y)
is a smooth solution of (8) defined on K. 2

Now we introduce the following notation:
Sa,b = {λ(x, y) | a smooth solution of (8) defined on K},
Fa,b,λ(x, y) =

∑k
i=1 ai(x, y)λi(x, y) + b(x, y), λ = (λ1, · · · , λk) ∈ Sa,b,

Ha,K = {Fa,b,λ(x, y) | λ(x, y) ∈ Sa,b, b ∈ ⟨a1, · · · , ak⟩Ex,y+{a1, · · · , ak}⊥K},

MFa,b,λ
= ϕF

({
(x, y, λ(x, y)) | (x, y) ∈ K

})
, λ = (λ1, · · · , λk) ∈ Sa,b.

Proposition 11. If Fa,b,λ ∈ Ha,K , then the Hamiltonian vector
field XFa,b,λ

is tangent to K and MFa,b,λ
is smoothly solvable.

Proof. Let Fa,b,λ ∈ Ha,K . λ(x, y) is a smooth solution of (8) defined
on K and Fa,b,λ has the form

Fa,b,λ(x, y) =

k∑
m=1

am(x, y)λm(x, y) + b(x, y).

Since λ(x, y) is a smooth solution of (8) defined on K, we have

{Fa,b,λ, aℓ}(x, y) =

k∑
m=1

{am, aℓ}(x, y)λm(x, y) + {b, aℓ}(x, y)

= −
k∑

m=1

{aℓ, am}(x, y)λm(x, y) + {b, aℓ}(x, y) = 0

on K. Thus {Fa,b,λ, aℓ}(x, y) = 0 on K. Hence XFa,b,λ
is tangent to K

and MFa,b,λ
is smoothly solvable. 2

Theorem 7.
1) Ha,K = {a1, · · · , ak}⊥K .
2) Ha,K = {a1, · · · , ak}⊥K is a Poisson algebra with respect to ω;

if Fa,b,λ, Fa,b′,λ′ ∈ Ha,K , then {Fa,b,λ, Fa,b′,λ′} ∈ Ha,K , and equivalently
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if h, h′ ∈ {a1, · · · , ak}⊥K , then {h, h′} ∈ {a1, · · · , ak}⊥K .

Proof. 1) Let Fa,b,λ ∈ Ha,K . Then as seen on the last line of
the proof of Proposition 11, we have {Fa,b,λ, aℓ}(x, y) = 0 on K for
1 ≤ ℓ ≤ k. Therefore Fa,b,λ ∈ {a1, · · · , ak}⊥K andHa,K ⊂ {a1, · · · , ak}⊥K .

Conversely let h ∈ {a1, · · · , ak}⊥K . For any k-tuple λ1, · · · , λk ∈ Ex,y
set

(11) b(x, y) =
k∑

m=1

−am(x, y)λm(x, y) + h(x, y).

Then we see that λ(x, y) = (λ1(x, y), · · · , λk(x, y)) is a smooth solution
of (8) defined on K and that Fa,b,λ = h. Thus h ∈ Ha,K .

 {b, a1}(x, y)
...

{b, ak}(x, y)

 = −
(
{am, aℓ}(x, y)

) λ1(x, y)
...

λk(x, y)

+

 {h, a1}(x, y)
...

{h, ak}(x, y)

 =
(
{aℓ, am}(x, y)

) λ1(x, y)
...

λk(x, y)


on K since h ∈ {a1, · · · , ak}⊥K . Thus λ(x, y) is a smooth solution of (8)
and Fa,b,λ(x, y) ∈ Ha,K . Then by the definition of Fa,b,λ(x, y) and (16)
we have,

Fa,b,λ(x, y) =

k∑
m=1

am(x, y)λm(x, y) + b(x, y) = h(x, y).

Thus h(x, y) ∈ Ha,K and {a1, · · · , ak}⊥K ⊂ Ha,K . This complete the
proof of 1).

2) Suppose that h, h′ ∈ {a1, · · · , ak}⊥K . Then the Hamiltonian vec-
tor fields Xh and Xh′ are both tangent to K. Then X{h,h′} = [Xh, Xh′ ]

is also tangent to K. Thus {h, h′} ∈ {a1, · · · , ak}⊥K . 2

Definition 2. We say that two map-germs (a1, · · · , ak) and (ā1, · · · , āk)
are symplecticK-equivalent if there exist a symplectic diffeomorphism
germ φ : (R2n, 0) → (R2n, 0) and a family of regular matrices G(x, y) ∈
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Gl(k,R) smoothly depending on (x, y) such that

(12)

 ā1(x, y)
...

āk(x, y)

 = G(x, y)

 a1 ◦ φ(x, y)
...

ak ◦ φ(x, y)

 .

Proposition 12. Suppose that (a1, · · · , ak) and (ā1, · · · , āk) are
symplectic K-equivalent. Then

{a1, · · · , ak}⊥K ∼= {ā1, · · · , āk}⊥φ−1(K)

as Poisson algebras.

Proof. If their symplectic K-equivalence relation is given by (12),
then the isomorphism is given by

φ∗ : {a1, · · · , ak}⊥K → {ā1, · · · , āk}⊥φ−1(K)

and for h, h′ ∈ {a1, · · · , ak}⊥K we have {h ◦ φ, h′ ◦ φ} = {h, h′} ◦ φ. 2
Proposition 13. Let k ≤ n. If

rank
(
{ai, aj}(x, y)

)
= 0 constantly on R2n,

then (a1, · · · , ak) is symplectic K-equivalent to the projection map-germ

p(x, y) = (y1, · · · , yk)

and
Ha,K

∼= ⟨y1, · · · , yk⟩2Ex,y
+ Exk+1,··· ,xn,y

Proof. Since rank ({ai, aj}(x, y)) = 0 constantly on R2n, by Dar-
boux Theorem there exists a symplectic coordinate systems ξ1, . . . , ξn, η1, . . . , ηn
such that ai = ηi, i = 1, . . . , k. Hence (a1, . . . , ak) is symplectic K-
equivalent to the projection map-germ p(x, y) = (y1, . . . , yk). This com-
pletes the proof. 2

Example 2. Let k = 2r. Let a = (a1, · · · , ak) : (R2n, (0, 0)) →
(Rk, 0).

rank
(
{ai, aj}(0, 0)

)
= k.

Then (a1, · · · , ak) is symplectic K-equivalent to the projection map-germ

p(x, y) = (y1, · · · , yr, x1, · · · , xr)

and

Ha,K
∼= ⟨x1, · · · , xr+s, y1, · · · , yr⟩2Ex,y

+ Exr+1,··· ,xn,yr+s+1,··· ,yn
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Example 3. Let k = 2r + s. If

rank
(
{ai, aj}(x, y)

)
= 2r constantly on R2n,

then (a1, · · · , ak) is symplectic K-equivalent to the projection map-germ

p(x, y) = (y1, · · · , yr, x1, · · · , xr+s)

and

Ha,K
∼= ⟨x1, · · · , xr+s, y1, · · · , yr⟩2Ex,y

+ Exr+1,··· ,xn,yr+s+1,··· ,yn .

§6. Hamiltonian vector fields on S2.

Let K be a submanifold of (R2n, ω). First we will prove the following
general property.

Proposition 14. Let U be an open subset of R2n. Suppose that
ω |T (K∩U) is a non-singular 2 form on K ∩U . Let h ∈ C∞(U) such that
Xh is tangent to K ∩ U . Then

(13) Xh |K∩U= Xω|T (K∩U),h|K∩U
,

where XωK∩U ,f denotes the Hamiltonian vector field on the symplectic
manifold (K ∩ U,ω |T (K∩U)) generated by a function f ∈ C∞(K ∩ U).

Proof. Since the problem is a local problem, it suffices to prove
the proposition in the case where U is a small open ball. Since ω |K∩U

is non-singular on K ∩ U , by the Darboux-Givental theorem, we may
assume that

ai(x, y) = yi, ar+i(x, y) = xi, i ≤ r, (x, y) ∈ U.

Then (xr+1, · · · , xn, yr+1, · · · , yn) is a coordinate system on K ∩ U and

ω |K∩U= dyr+1 ∧ dxr+1 + · · ·+ dyn ∧ dxn.

Let h ∈ C∞(U) such that Xh is tangent to K ∩ U . Then

Xh |K∩U =

(
n∑

i=1

∂h

∂yi

∂

∂xi
− ∂h

∂xi

∂

∂yi

)
|K∩U

=
n∑

i=r+1

∂h

∂yi
|K∩U

∂

∂xi
− ∂h

∂xi
|K∩U

∂

∂yi
, since Xh is tangent to K ∩ U,

=
n∑

i=r+1

∂h |K∩U

∂yi

∂

∂xi
− ∂h |K∩U

∂xi

∂

∂yi

= XωK∩U ,h|K∩U
.
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This completes the proof of Proposition 14. 2

Let us consider the two-dimensional case. If f is a smooth function
on a 2-dimensional symplectic manifold M , then an integral curve of
Hamiltonian vector field Xf passing through a point p ∈ M is contained
in the level set f−1(f(p)) = {q ∈ M : f(q) = f(p)} which is a curve in
a generic situation. For a proper Morse function we have the following
straightforward result.

Proposition 15. Suppose that f is a proper Morse function on
a 2-dimensional symplectic manifold M . Let c ∈ f(M) and let Γ be a
connected component of f−1(c).
1) If Γ does not contain critical points of f , then Γ is the orbit of a
periodic solution of Xf .
2) If Γ contains one and only one critical point p of f , then

Γ =

{
{p}, if p is a critical point of f with index 0 or 2,
{p} ∪Ws(p) ∪Wu(p), if p is a critical point of f with index 1,

where Ws(p) and Wu(p) are the stable and unstable manifolds of a sta-
tionary point p with index 1 respectively.

Let us consider the sphere K = S2 in the symplectic space (R4, ω).
We assume ω = dy1 ∧ dx1 + dy2 ∧ dx2, and

(14) a1(x, y) = y2, a2(x, y) = x2
1 + x2

2 + y21 + y22 − 1.

Thus

K = S2 = {(x, y) ∈ R4 | y2 = 0, x2
1 + x2

2 + y21 = 1}.

We see that {a1, a2} = 2x2 and a point (x1, x2, y1, 0) ∈ S2 is a singular
point of the restricted symplectic structure ω |TS2 if and only if x2 = 0:

(15) Σ(ω |TS2) = S1 = {(x1, x2, y1, 0) | x2 = 0, x2
1 + y21 = 1}.

Now we consider a Hamiltonian function on R4

(16) Fb(x, y) = a1(x, y)λ1(x, y) + a2(x, y)λ2(x, y) + b(x, y)

together with

(17) b(x, y) = x2
2

(
1 + 2x2

1

)
and the Hamiltonian vector field XFb

on R4

(18) XFb
=
∑
i=1,2

∂Fb

∂yi
(x, y)

∂

∂xi
− ∂Fb

∂xi
(x, y)

∂

∂yi
.
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generated by Fb(x, y). In (16)

λ1(x, y) = 4x1y1x2 + 2y2
(
1 + 2x2

1

)
,

λ2(x, y) = −(1 + 2x2
1)(19)

is a unique smooth solution of the structure equation

(20)

(
0 {a1, a2}

{a2, a1} 0

)(
λ1

λ2

)
=

(
{b, a1}
{b, a2}

)
,

which is precisely

(21)

(
0 2x2

−2x2 0

)(
λ1

λ2

)
=

(
−2x2

(
1 + 2x2

1

)
−8x1y1x

2
2 − 4x2y2

(
1 + 2x2

1

) ) ,

since

{a1, a2} = 2x2, {b, a1} = −2x2(1+2x2
1), {b, a2} = −8x1y1x

2
2−4x2y2(1+2x2

1).

Thus we have got that XFb
is tangent to S2 as well as to Σ(ω |TS2).

XFb
|Σ(ω|TS2 ) has no stationary points and its integral curves move anti-

clockwise in the (x1, y1)-plane. Therefore, in order to understand the
phase portrait of XFb

|S2 , it suffices to understand the phase portrait of
XFb

|S2−Σ(ω|TS2 ). Let

(22) U+ = {(x, y) ∈ R4 : x2 > 0}, U− = {(x, y) ∈ R4 : x2 < 0}.

Then
S2 ∩ (U+ ∪ U−) = S2 − Σ(ω |TS2).

Thus in order to understand the phase portrait of XFb
|S2 , it suffices

to understand the phase portrait of XFb
|S2∩U± . Since ω |T (S2∩U±) is

nonsingular, by Proposition 14 , we see that

(23) XFb|S2∩U±
= Xω|T (S2∩U±),Fb|S2∩U±

.

Now we apply Proposition 15. In our case M is S2 ∩ U± and the
function is Fb |S2∩U± . Note that Fb |S2∩U± is a proper function. We
adapt

(x1, y1), (with x2
1 + y21 < 1),

as a coordinate system on S2 ∩ U±. Then, we see that

(24) ω |T (S2∩U±)= dy1 ∧ dx1.

Since

Fb(x, y) = a1(x, y)λ1(x, y) + a2(x, y)λ2(x, y) + b(x, y)



26 Hamiltonian systems

we have
Fb |S2∩U±= b |S2∩U±= x2

2(1 + 2x2
1) |S2∩U± .

Therefore

(25) Fb |S2∩U±= b |S2∩U±= (1− x2
1 − y21)(1 + 2x2

1),

where x2
2 = 1− x2

1 − y21 on S2. From (23), (24) and (25) we see that the
solutions of the Hamiltonian systems XFb|S2∩U+

and XFb|S2∩U−
are the

same in x1, y1 coordinates. Hence, from now on we investigate only the
case XFb|S2∩U+

.

Proposition 16. 1) The function Fb |S2∩U+
= b |S2∩U+

is a Morse

function with three critical points (x1, y1) = (0, 0) and (x1, y1) = (±1
2 , 0).

2) The point (0, 0) is a saddle point (index 1) and b(0, 0) = 1. The
points (±1

2 , 0) are the maximum points of b |U+ and b(± 1
2 , 0) = 9/8.

3) Thus the phase portrait of XFb|S2∩U+
is as follows.

(bU+
)−1(c) =


∅, for c > 9

8 ,
{( 12 , 0), (−

1
2 , 0)} the two stationary points, for c = 9

8 ,
the disjoint sum of two periodic orbits, for 9

8 > c > 1,
{(0, 0)} ∪Ws(0, 0) ∪Wu(0, 0), for c = 1,
a periodic orbit, for 1 > c > 0,

where all the periodic solutions move anti-clockwise in (x1, y1)-plane,
(see Fig.1).

Proof. First we search for critical points of Fb |S2∩U±= b |S2∩U±=

(1− x2
1 − y21)(1 + 2x2

1). Since

∂b |S2∩U

∂y1
(x1, y1) = −2y1(1 + 2x2

1)

∂b |S2∩U

∂x1
(x1, y1) = −2x1((1 + 2x2

1) + 4x1(1− x2
1 − y21)

= 2x1(1− 4x2
1 − 2y21),

the critical points of Fb |S2∩U= b |S2∩U are

(26) (x1, y1) = (0, 0) and (x1, y1) = (±1

2
, 0)

and the critical values are

(27) Fb |S2∩U (0, 0) = 1 and Fb |S2∩U (±1

2
, 0) =

9

8
.
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y1

x 1

(-1/2,0) (1/2,0)

Fig. 1. Flow of dπ(XFb
|S2), π(x1, x2, y1) = (x1, y1)

The Hessian matrices at the critical points are

(28)

(
2 0
0 −2

)
at (0, 0),

(
−4 0
0 −3

)
at (±1

2
, 0).

Thus (0, 0) is a saddle point and Fb |S2∩U= b |S2∩U takes maximal ( ac-
tually maximum) values 9

8 at (± 1
2 , 0). This proves 1) and 2). Therefore

the shape of the graph of b |S2∩U looks like an island having two moun-
tains with the same hight and a mountain pass (a saddle point) between
them. Every periodic solution inherits its orientation from those of inte-
gral curves on Σ(ω |TS2) which move anti-clockwise in the (x1, y1)-plane.
This proves 3). This completes the proof of Proposition 16. 2
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