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1. Introduction

Let (M, ω) be a smooth, symplectic 2n-dimensional manifold and let (TM, ω̇) be its tangent bundle endowed with a
symplectic structure ω̇. This structure is defined by the Liouville form θ using the canonical flat morphism β : TM ∋ v →

ω(v, ·) ∈ T ∗M , between tangent and cotangent bundles of the symplectic manifold (M, ω), ω̇ = β∗dθ .
Let F̄ : R2n

⊃ (U, 0) → (M, ω) be a smooth map-germ. With this mapping we associate all smooth, isotropic
map-germs F : (U, 0) → (TM, ω̇) which are vector fields along F̄ such that F̄ = π ◦ F , π : TM → M , and F∗ω̇ = 0.
This is a generalization of standard Hamiltonian systems to include the implicit case (see [1,2]). For each isotropic F we have
d(β ◦ F)∗θ = F∗ω̇ = 0. Thus (β ◦ F)∗θ is a germ of a closed 1-form, so there exists a smooth function-germ h : (U, 0) → R
which we call the generating function for F , such that (β ◦ F)∗θ = −dh.

We consider the space RF̄ of generating functions of isotropic map-germs F along a fixed singular map-germ F̄ . Among
the h ∈ RF̄ appear such ones that the vector field Xh on U defined by the formula

F̄∗ω(Xh, ξ) = −ξ(h) for each vector field ξ on U,

is smooth. In this case the generating functions are called Hamiltonians and we denote by HF̄ the space of Hamiltonians. In
this paper we investigate the spaces RF̄ and HF̄ . We show (Theorem 3.2) that the space HF̄ of Hamiltonians endowed with
the brackets {k, h}F̄∗ω := F̄∗ω(Xk, Xh) forms a Poisson algebra associated to F̄ , which is not extendable to RF̄ .
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For each isotropic F associated to F̄ we consider N := F(U) ⊂ (TM, ω̇) as an implicit differential system, possibly with
singularities of the projection π ◦ F . We investigate the smooth solvability of such systems. The point (p, ṗ) ∈ N is called
solvable if there exists a smooth curve γp : (−ϵ, ϵ) → M such that γp(0) = p, γ ′

p(0) = ṗ and κp(t) = (γp(t), γ ′
p(t)) ∈ N for

all t ∈ (−ϵ, ϵ), ϵ > 0. If κ is smooth in the neighborhood of p we call it smoothly solvable. N is called smoothly solvable if
it consists only of smoothly solvable points. We show (Theorem 5.1) that F is smoothly solvable if and only if its generating
function belongs to the Poisson algebra associated to F̄ .

For each symplectically invariant singularity of F̄ we have its Poisson algebra which is the fundamental object of
singularity theory endowed with an additional structure. In Section 2 isotropic mappings into symplectic tangent bundle to
the symplectic manifold are investigated through their generating functions. The Hamiltonian functions are distinguished
and their Poisson algebra structure is introduced in Section 3. Solvability criteria for isotropic mappings are studied in
Section 4 and the main theorem of the paper saying that the only solvable Hamiltonian systems are those generated by
Hamiltonian generating functions is proved in Section 5. An investigation of Poisson algebras associated to singularmappings
into a symplectic manifold and their representative examples are presented in Section 6.

2. Generating functions of isotropic mappings

Let (R2n, ω) be a Euclidean symplectic space endowed with ω =
n

i=1 dyi ∧ dxi in canonical Darboux coordinates
(x, y) = (x1, . . . , xn, y1, . . . , yn).

Let θ be the Liouville 1-form on the cotangent bundle T ∗R2n. Then dθ is the standard symplectic structure on T ∗R2n. Let
β : TR2n

→ T ∗R2n be the canonical bundle map defined through ω by

β : TR2n
∋ v → ω(v, ·) ∈ T ∗R2n.

Then we can define (cf. [3]) the canonical symplectic structure ω̇ on TR2n by

ω̇ = β∗dθ = d(β∗θ) =

n
i=1

(dẏi ∧ dxi − dẋi ∧ dyi),

where (x, y, ẋ, ẏ) are local coordinates on TR2n and β∗θ =
n

i=1(ẏidxi − ẋidyi).
Throughout the paper, unless otherwise stated, all objects are germs at 0 ∈ R2n of smooth functions, mappings, forms

etc. or their representatives on an open neighborhood of 0 in R2n.

Definition 2.1. Let F : (R2n, 0) → TR2n be a smooth map-germ. We say that F is isotropic if F∗ω̇ = 0.

If a map-germ F : (R2n, 0) → TR2n is isotropic, then the germ of a differential of the 1-form (β ◦ F)∗θ vanishes;
d(β ◦ F)∗θ = F∗β∗dθ = F∗ω̇ = 0. Thus (β ◦ F)∗θ is the germ of a closed 1-form and there exists a smooth function-germ
h : (R2n, 0) → R such that

(β ◦ F)∗θ = −dh. (2.1)

We call h a generating function for F . For each smooth isotropic map-germ F , its generating function is unique up to an
additive constant.

Let U be an open neighborhood of 0 in the source space R2n and let F : (U, 0) → TR2n be an isotropic map-germ. Let

F̄ = π ◦ F : (U, 0) → TR2n,

where π : TR2n
→ R2n is the tangent bundle projection. We express F̄ and F in the form

F̄ = (f , g) : (U, 0) → R2n and F = (f , g, ḟ , ġ) : (U, 0) → TR2n

respectively.
By EU (and by ER2n respectively) we denote the R-algebra of smooth function-germs at 0 on U (and on the target space

R2n respectively). LetmU (mR2n respectively) denote the maximal ideal in EU (in ER2n respectively).
In general F can be regarded as a vector field along F̄ , i.e. a section of an induced fiber bundle F̄∗TR2n. To each isotropic

map-germ F along F̄ , there exists a unique generating function-germ h ∈ mU for F .
Now we introduce a natural equivalence group acting on isotropic mappings through a natural lifting of diffeomorphic

or symplectic equivalences of F̄ and Ḡ. Before introducing it, we first recall the standard equivalence relations of smooth
map-germs and of Lagrange projections. Two map-germs F̄ : (U, 0) → R2n and Ḡ : (U, 0) → R2n are symplectomorphic if
there exists a diffeomorphism-germ ϕ : (U, 0) → (U, 0) and a symplectomorphism-germΦ : (R2n, 0) → (R2n, 0), Φ∗ω =

ω, such that Ḡ = Φ ◦ F̄ ◦ ϕ. Two isotropic mappings F : (U, 0) → TR2n and G : (U, 0) → TR2n are Lagrangian equivalent
(L-equivalent [4]) if there exist a diffeomorphism-germ ϕ : (U, 0) → (U, 0) and a symplectomorphism-germ Ψ : (TR2n,
F(0)) → (TR2n,G(0)), Ψ ∗ω̇ = ω̇, preserving the fibering π such that G = Ψ ◦ F ◦ ϕ.

Definition 2.2. Let F : (U, 0) → TR2n and G : (U, 0) → TR2n be two isotropic map-germs along smooth map-germs F̄ :

(U, 0) → R2n and Ḡ : (U, 0) → R2n respectively. We say that F and G are L-symplectic equivalent if there exist a
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diffeomorphism-germ ϕ : (U, 0) → (U, 0), a symplectomorphism-germ Ψ : (TR2n, F(0)) → (TR2n,G(0)) preserving
the fibering π and a symplectomorphism-germ Φ : (R2n, 0) → (R2n, 0), Φ∗ω = ω such that π ◦Ψ = Φ ◦π,G = Ψ ◦ F ◦ϕ
and Ḡ = Φ ◦ F̄ ◦ ϕ. In this case we also say that F and G are symplectomorphic or symplectically equivalent.

To F̄ we associate a symplectically invariant algebra RF̄ of all generating function-germs of isotropic map-germs along F̄ ,

RF̄ = {h ∈ EU : h generates an isotropic map-germ along F̄}.

The algebra RF̄ is an R-algebra and is an ER2n-module as well. RF̄ is a symplectic invariant, namely: If two map-germs
F̄ : (U, 0) → R2n and Ḡ : (U, 0) → R2n are symplectomorphic, i.e. if there exist a diffeomorphism-germϕ : (U, 0) → (U, 0)
and a symplectomorphism-germ Φ : (R2n, 0) → (R2n, 0) such that Ḡ = Φ ◦ F̄ ◦ ϕ, then

ϕ∗
: RF̄ → RḠ

is an isomorphismofR-algebras.Moreover, for h ∈ RF̄ , the isotropicmap-germ F generated by h and the isotropicmap-germ
G generated by ϕ∗h = h ◦ ϕ are symplectomorphic: there exists another symplectomorphism-germ Ψ : (TR2n, F(0)) →

(TR2n,G(0)) such that π ◦ Ψ = Φ ◦ π,G = Ψ ◦ F ◦ ϕ and Ḡ = Φ ◦ F̄ ◦ ϕ.
It is easy to see that if F̄ has maximal rank then RF̄ = EU . The aim of this section is to study the case where F̄ does not

have maximal rank at 0 and establish the structure of RF̄ . The algebra RF̄ of all generating function-germs associated to F̄
can be represented by F̄ in the following form (cf. [5]),

RF̄ = {h ∈ EU : dh ∈ EUd(F̄∗ER2n)}.

In the rest of this section we study isotropic map-germs along a corank 1 map-germ (cf. [6,7]). For a smooth map-germ F̄ =

(f , g) : (U, 0) → R2n of corank one we can choose coordinates (u, v) in U and canonical (or symplectic) local coordinates
in (R2n, ω) such that

fi(u, v) = ui, i = 1, . . . , n
gi(u, v) = vi, i = 1, . . . , n − 1 (2.2)
∂gn
∂vn

(0, 0) = 0.

By straightforward calculations we have.

Proposition 2.3. Let F̄ = (f , g) : (U, 0) → (R2n, 0) be a corank one map-germ of the form (2.2). Then RF̄ is given in the form

RF̄ =


h ∈ EU :

∂h
∂vn

∈ ⟨∆F̄ ⟩


,

where ⟨∆F̄ ⟩ is the ideal in EU generated by the determinant ∆F̄ =
∂gn
∂vn

of the Jacobi matrix JF̄ of F̄ .

Remark 2.4. Let F : (U, 0) → TR2n be a smooth isotropic map-germ such that F̄ = π ◦ F : (U, 0) → R2n has a corank one
singular point at (0, 0). Then F has corank at most one at (0, 0). The corank of F is exactly one if and only if

∂e(∂eh/∆F̄ )(0, 0) = 0,

where ∂e is the derivation in the e-direction, which belongs to T0U and spans the kernel of the Jacobi matrix J F̄ .

3. Hamiltonians of isotropic mappings

Let F̄ : R2n
⊃ U → (R2n, ω) be a smooth map-germ. Then F̄ induces a possibly degenerate 2-form F̄∗ω on U . For a

smooth function h defined on U we formally define the Hamiltonian vector field Xh (which may not be smooth) on U by the
equality

F̄∗ω(Xh, ξ) = −ξ(h) for each vector field ξ on U . (3.1)

For smooth functions k, h defined on U we can define also the formal brackets {k, h}F̄∗ω , by

{k, h}F̄∗ω := F̄∗ω(Xk, Xh). (3.2)

It may happen that Xh, Xk and {k, h}F̄∗ω diverge on the singular point set of F̄ . However they are ordinary Hamiltonian vector
fields and Poisson brackets outside the singular point set.

Definition 3.1. Let h : R2n
⊃ U → R be a smooth function. If Xh defined by (3.1) is smooth then Xh is called a Hamiltonian

vector field and h is called the Hamiltonian function. By HF̄ we denote the space of all Hamiltonians associated to F̄ :

HF̄ = {h ∈ C∞(U) : Xh is smooth}. (3.3)
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Theorem 3.2. Let F̄ : R2n
⊃ U → (R2n, ω) be a smooth map whose regular point set is dense in U. Then HF̄ is closed under the

brackets {·, ·}F̄∗ω and the space (HF̄ , {·, ·}F̄∗ω) is a Poisson algebra.

Proof. Let U be an open ball neighborhood of the origin of Rm. Let ∆(x1, . . . , xm) be a smooth function defined on U and
let Ω be the set {x ∈ U | ∆(x) ≠ 0}. Suppose that Ω is dense in U . Let a(x) be a fractional function whose numerator is a
smooth function defined on U and whose denominator is ∆(x):

a(x) =
α(x)
∆(x)

.

If the restriction a|Ω to Ω is extendable to a smooth function on U , then a(x) itself is smooth on U , i.e. α is divisible by ∆.
Let U be an open ball neighborhood of the origin (0, 0) in R2n. Let F̄ : R2n

⊃ U → (R2n, ω) be amapwhose regular point
set is dense in U . Let ∆F̄ (u, v) be the Jacobian determinant of F̄ .

LetΩ = {(u, v) ∈ U | ∆F̄ (u, v) ≠ 0} be the set of regular points of F̄ whichwe assume is dense in U . Then the restriction
F̄∗ω|Ω to Ω of the 2-form F̄∗ω is non-degenerate. Let h be a smooth function defined on U . Then the Hamiltonian vector
field Xh is defined by the equality

F̄∗ω(Xh, ξ) = −ξ(h), for each vector field ξ on U .

Let us express Xh in the form

Xh =

n
i=1


ai(u, v)

∂

∂ui
+ bi(u, v)

∂

∂vi


. (3.4)

Then, after some calculations we obtain that each coefficient ai(u, v) or bi(u, v) of the Xh is the sum of a smooth function,
a fractional function whose numerator is a smooth function and whose denominator is ∆F̄ and a fractional function whose
numerator is a smooth function and whose denominator is ∆2

F̄
. Note that numerators may vanish as well.

For any smooth function h, the restriction Xh|Ω to Ω of the vector field Xh is always smooth. Therefore the restrictions
ai|Ω , bi|Ω ’s to Ω of the coefficients ai, bi’s are also always smooth. Thus from the form of (3.4) we see that Xh is smooth if
and only if ai|Ω , bi|Ω ’s are extendable to smooth functions defined on U .

Now let h, k ∈ HF̄ . Then h, k, Xh, Xk are all smooth on U . Hence {h, k}F̄∗ω = Xh(k) is smooth on U . And we have

X{h,k}(f ,g)∗ω
|Ω = [Xh|Ω , Xk|Ω ] = Xh|ΩXk|Ω − Xk|ΩXk|Ω . (3.5)

Since Xh and Xk are smooth onU , the right-hand side of (3.5) is extendable to the bracket vector field [Xh, Xk]which is smooth
on U . Since the coefficients of X{h,k}F̄∗ω

|Ω are extendable to the coefficients of [Xh, Xk] which are smooth on U , it follows that
the coefficients of X{h,k}F̄∗ω

themselves are smooth on U . Thus X{h,k}F̄∗ω
is also smooth on U . Thus {h, k}F̄∗ω ∈ HF̄ . �

Definition 3.3. The space (HF̄ , {·, ·}F̄∗ω) endowed with

{k, h}F̄∗ω := F̄∗ω(Xk, Xh), h, k ∈ HF̄ ,

is called the Poisson algebra associated to F̄ (or F̄-Poisson algebra) endowed with the Poisson brackets {k, h}F̄∗ω .

4. Smoothly solvable isotropic mappings

A natural property of smooth dynamical systems defined by smooth vector fields is their local solvability. This notion
was generalized in [8,9] to smooth submanifolds of a tangent bundle with possible singular projection into the base space
as follows.

Let N ⊂ TR2n be a 2n dimensional submanifold of TR2n defined as the image of an embedding F : U → TR2n, where
U is an open neighborhood of the origin of R2n. We consider N as an implicit differential equation. A point (x, y, ẋ, ẏ) ∈ N
is called a solvable point of N if there exists a smooth (at least of class C1) curve γ(x,y,ẋ,ẏ) : (−ϵ, ϵ) → R2n such that
γ(x,y,ẋ,ẏ)(0) = (x, y), γ ′

(x,y,ẋ,ẏ)(0) = (ẋ, ẏ), and

κ(x,y,ẋ,ẏ)(t) := (γ(x,y,ẋ,ẏ)(t), γ ′

(x,y,ẋ,ẏ)(t)) ∈ N (4.1)

for all t ∈ (−ϵ, ϵ), ϵ > 0. The implicit differential equation N is said to be solvable if it consists of only solvable points. A
point (x0, y0, ẋ0, ẏ0) of a solvable implicit differential equationN is said to be smoothly solvable if there exist a neighborhood
W of (x0, y0, ẋ0, ẏ0) in N and a number ϵ > 0 such that a mapping κ : W × (−ϵ, ϵ) → R2n defined by

κ(x, y, ẋ, ẏ, t) = κ(x,y,ẋ,ẏ)(t)

is smooth. We say that N is smoothly solvable if it consists of only smoothly solvable points.
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Conditions for smooth solvability of implicit differential systems were investigated in [9] (cf. [10]). In the case where
regular points of F̄ = π ◦ F : U → R2n are dense in U, N is smoothly solvable if and only if there exists a smooth vector
field X on U such that

F = dF̄(X) := (F̄ , J F̄(X)),

where J F̄ is the Jacobian matrix of F̄ .
Now we adapt this property as a definition of smooth solvability of general isotropic mappings.

Definition 4.1. Let F : (U, 0) → TR2n be a smooth isotropic map-germ. We say that F is smoothly solvable if there exists a
smooth vector field X on U such that

F = dF̄(X).

In the next section we will investigate a relation between smooth solvability of an isotropic map-germ F and the Poisson
algebra HF̄ , where F̄ = π ◦ F .

A necessary condition for a smooth submanifold N ⊂ TR2n to be solvable was found in [8] (cf. [9]). If π be the tangent
bundle projection. Then the necessary solvability condition

(ẋ, ẏ) ∈ d(π |N)(x,y,ẋ,ẏ)(T(x,y,ẋ,ẏ)N) (4.2)

at (x, y, ẋ, ẏ) ∈ N is called a tangential solvability condition and extended to the general smooth mapping F = (f , g, ḟ , ġ) :

U → TR2n is written in the form

Ḟ(u, v) ∈ J F̄(u, v)(R2n), (4.3)

where Ḟ(u, v) = (ḟ , ġ)(u, v).
Conditions for smooth solvability of implicit differential systems were investigated in [9] (cf. [10,6]). Now we extend

the solvability property introduced for a smooth submanifold of a tangent bundle defined by an immersion mapping F to
general smooth isotropic mappings into the tangent bundle.

It was shown in [9, Example 5.1] that the tangential solvability condition is not sufficient for N to be smoothly solvable.
The geometric meaning of the solvability property is explained in the following sufficient condition.

Theorem 4.2. Let F̄ = (f , g) : U ⊂ R2n
→ R2n be a smooth mapping such that F̄ has a corank k singularity at the origin

(0, 0) ∈ R2n and that the jet extension j1F̄ : U → J1(R2n, R2n) is transversal to the corank k stratum Σk of J1(R2n, R2n). If an
isotropic mapping F along F̄ satisfies the tangential solvability condition, then F is smoothly solvable.

Proof. Let F = (F̄ , Ḟ) = (f , g, ḟ , ġ) be an isotropic mapping along F̄ which satisfies the tangential solvability condition
(4.2). By I2n we denote the symplectic unit,

I2n =


O In

−In O


. (4.4)

Since F is a smooth isotropic mapping it is generated by a smooth function h:

Ḟ = I2n t J F̄−1∂h, (4.5)

where ∂h =
t( ∂h

∂u ,
∂h
∂v

).
We know that F is smoothly solvable if and only if

J F̄−1I2n t J F̄−1∂h is smooth, (4.6)

but on the basis of (4.5) this is the case if and only if J F̄−1Ḟ(u, v) is smooth, which is true if and only if the linear equation

J F̄A(u, v) = Ḟ(u, v) (4.7)

has a smooth solution A(u, v) = (a(u, v), b(u, v)).
Since, from (4.2), Ḟ(u, v) ∈ ImageJ F̄(u, v) for every point (u, v) ∈ U and j1F̄ : U → J1(R2n, R2n) is transversal to the

corank k stratumΣk of J1(R2n, R2n), it follows from J. Mather’s theorem [11, Theorem 1], that Eq. (4.7) has a smooth solution
and F is smoothly solvable. �

5. Lie algebra of solvable isotropic mappings

Now we are ready to show that the Poisson algebra structure of Hamiltonians associated to F̄ is equivalent to smooth
solvability of the corresponding isotropic map-germs generated by these Hamiltonians.

Theorem 5.1. Let F : (U, 0) → TR2n be a smooth isotropic map-germ along a smooth map-germ F̄ : (U, 0) → R2n such that
the regular point set of F̄ is dense in U. Let h : (U, 0) → R be a generating function-germ of F . Then F is smoothly solvable if
and only if h ∈ HF̄ , i.e. h is a Hamiltonian function.
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Proof. Following the proof of Theorem 3.2, to prove the theorem we need to show that Eq. (3.1) defining the Hamiltonian
vector field Xh is equivalent to Eq. (2.1) expressed in the form

(β ◦ dF̄(Xh))
∗θ = −dh. (5.1)

Once this is done, then we have F = dF̄(Xh) and, by Definition 4.1, we see immediately that F is smoothly solvable if and
only if Xh is smooth.

Let Xh =
n

i=1(ai(u, v) ∂
∂ui

+ bi(u, v) ∂
∂vi

). Putting ∂
∂ui

, ∂
∂vi

into (3.1) instead of ξ we obtain

∂h
∂wi

= −F̄∗ω


Xh,

∂

∂wi


=

n
j=1

n
k=1

aj(u, v)


−

∂ fk
∂wi

∂gk
∂uj

+
∂gk
∂wi

∂ fk
∂uj



+

n
j=1

n
k=1

bj(u, v)


−

∂ fk
∂wi

∂gk
∂vj

+
∂gk
∂wi

∂ fk
∂vj


, (5.2)

where (w1, . . . , w2n) = (u1, . . . , un, v1, . . . , vn). It is easy to see that (5.2) is equivalent in matrix form to the equation

∂h = −
t J F̄ I2nJ F̄A,

where A =
t(a, b) ∈ R2n. Thus (5.1) is smoothly invertible for Xh. �

Remark 5.2. Since smooth solvability of an isotropic map F generated by a smooth function h : U → R is defined
by smoothness of Xh, an equivalent condition for smooth solvability of F can be given in terms of the Poisson bracket,
namely:

F is smoothly solvable or equivalently h is a Hamiltonian function on U if {h, α}F̄∗ω is smooth on U for all smooth functions α
defined on U .

Smooth solvability is a structural property preserved by Poisson bracket defined on the space of Hamiltonians HF̄ .
However the space of generating functions RF̄ is not preserved by the Poisson bracket {·, ·}F̄∗ω . As an example we consider
the fold map

F̄ : R2
→ R2, F̄(u, v) = (u, v2/2).

In this case RF̄ = {h :
∂h
∂v

∈ ⟨v⟩}. Taking h = u ∈ RF̄ , k = v3
∈ RF̄ we find {h, k}F̄∗ω = −3v thus

∂{h, k}F̄∗ω

∂v
∉ ⟨v⟩ and {h, k}F̄∗ω ∉ RF̄ .

Let us consider the natural subspace RT
F̄
of the space of generating functions for isotropic mappings along F̄ satisfying

the tangential solvability condition (4.2).

RT
F̄ = {h ∈ C∞(U) : h ∈ RF̄ and F generated by h satisfies (4.2)},

which will be called the space of tangential generating functions.
In the case that F̄ has a corank k singularity at 0 and the transversality assumption of Theorem 4.2 is satisfied, then

RT
F̄

= HF̄ . In general HF̄ is a proper subset of RT
F̄
and there is a natural question whether the Poisson structure {·, ·}F̄∗ω can

be extended to RT
F̄
. By the following example we show that this is impossible.

Example 5.3. Let F̄ : R2
→ (R2, ω) be defined by

F̄(u, v) =


u, u2v +

1
3
v3


.

We show that RT
F̄
is not closed under the Poisson bracket. First we calculate the Jacobian matrix of F̄ ,

J F̄(u, v) =


1 0

2uv u2
+ v2


, J F̄−1(u, v) =

 1 0
−2uv
u2 + v2

1
u2 + v2


.
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From the condition of isotropicity we have

∂h
∂v

∈ ⟨∆F̄ ⟩ = ⟨u2
+ v2

⟩

thus h has the form

h = (u2
+ v2)2α(u, v) + β(u).

Now we check the tangential solvability condition at (0, 0),


0 1

−1 0


t J F̄−1(u, v)


∂h
∂u
∂h
∂v


(u,v)=(0,0)

∈ ImageJ F̄(0, 0).

And we obtain

h(u, v) = (u2
+ v2)2α(u, v) + u4β(u) + const. (5.3)

Thus,

RT
F̄ = {h ∈ C∞(U) | h(u, v) = (u2

+ v2)2α(u, v) + u4β(u) + const.

for some smooth α(u, v) and β(u)}. (5.4)

Consider the following two elements of RT
F̄

h(u, v) = (u2
+ v2)2 + u4,

k(u, v) = (u2
+ v2)2v + u4.

The Poisson bracket of h and k is given by

{h, k}F̄∗ω = −4u(u2
+ v2)2 − 4u3(u2

+ v2) − 16u3v2
+ 16u3v.

And consequently

{h, k}F̄∗ω ∉ RT
F̄ .

Thus, RT
F̄
is not closed under the Poisson bracket.

We can easily see that the transversality condition of Theorem 4.2 is only a sufficient condition. We can find examples
of F̄ such that the jet extension j1F̄ : U → J1(R2n, R2n) is not transversal to the corank k stratum Σk of J1(R2n, R2n) but RT

F̄
is closed under the Poisson bracket. In fact we can take

F̄ : (R2, 0) → (R2, 0) F̄(u, v) =


u,

1
k + 1

vk+1


.

We see that F̄ has corank 1 at (u, 0) but j1F̄ is not transversal to the corank 1 stratum in the jet space for k ≥ 2. Then by
straightforward calculations we can show also that RT

F̄
is closed under the Poisson bracket. Moreover in this example we

have RT
F̄

= HF̄ . Then the natural question arises: Is there any smooth mapping F̄ such that RT
F̄
is closed under the Poisson

bracket but RT
F̄

≠ HF̄ . We conjecture that

RT
F̄ = HF̄ holds always if RT

F̄ is closed under the Poisson bracket.

6. Examples of Poisson algebras associated to F̄

Now we find conditions for a function h to be an element of the Poisson algebra associated to F̄ which has a corank 1
singularity at the origin (0, 0) ∈ U ⊂ R2n.

Proposition 6.1. Let F : (U, 0) → TR2n be a smooth isotropic map-germ such that F̄ = π ◦ F has a corank 1 singularity at
(0, 0) ∈ U ⊂ R2n expressed in local coordinates (u, v) defined in (2.2). Let h : (U, 0) → R be a smooth generating function-germ
for F defined on U. Then F is smoothly solvable if and only if

∂h
∂vn

∈ ⟨∆F̄ ⟩, (6.1)

and
n−1
i=1


∂gn
∂vi

∂h
∂ui

−
∂gn
∂ui

∂h
∂vi


−

∂h
∂un

∈ ⟨∆F̄ ⟩. (6.2)
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Proof. From (3.1), taking Xh =
n

i=1(ai(u, v) ∂
∂ui

+ bi(u, v) ∂
∂vi

) for the local form of F̄ given by (2.2), we calculate the
coefficients of Xh,

ai =
∂h
∂vi

−
∂gn
∂vi

∂h
∂vn


∆F̄ , i = 1, . . . , n − 1,

an =
∂h
∂vn


∆F̄ ,

bi = −
∂h
∂ui

+
∂gn
∂ui

∂h
∂vn


∆F̄ , i = 1, . . . , n − 1,

bn =
1

∆F̄


−

∂h
∂un

+

n−1
i=1

∂gn
∂vi

∂h
∂ui

−

n−1
i=1

∂gn
∂ui

∂h
∂vi


(6.3)

which are smooth if and only if (6.1) and (6.2) are satisfied. �

For the symplectic fold singularity we have immediately.

Corollary 6.2. Let F̄ : (U, 0) → R2n be an A1-type map-germ. Then F̄ is symplectically equivalent to the normal form of fold
map-germ,

F̄0 : (u1, . . . , un, v1, . . . , vn) → (u1, . . . , un, v1, . . . , vn−1, v
2
n), (6.4)

and HF̄ is isomorphic to HF̄0 as a Poisson algebra, where

HF̄0 =


h :

∂h
∂vn

,
∂h
∂un

∈ ⟨∆F̄0⟩ = ⟨vn⟩


and for h, k ∈ HF̄0

{h, k}F̄∗ω̄ =

n−1
i=1


∂h
∂vi

∂k
∂ui

−
∂k
∂vi

∂h
∂ui


+

1
2vn


∂h
∂vn

∂k
∂un

−
∂k
∂vn

∂h
∂un


. (6.5)

Remark 6.3. The space of Hamiltonian functions HF̄ and its corresponding space of smoothly solvable isotropic mappings
along F̄ are symplectically invariant Lie algebras. HF̄ is an R-subalgebra of the R-algebra RF̄ which is an ER2n-submodule
of EU ,

HF̄ ⊂ RF̄ ⊂ EU .

The natural ideals of HF̄ are those generated by powers of the Jacobian determinant. Let ∆F̄ denote the Jacobian deter-
minant det J F̄ and let J F̄ denote the cofactor matrix of J F̄ . Then we have

J F̄−1
=

1
∆F̄

J F̄ .

Therefore h belongs to HF̄ if and only if
1

∆F̄
2
J F̄ I2n tJ F̄∂h

is smooth. Thus if h belongs to the ideal ⟨∆F̄
3
⟩, then h ∈ HF̄ . Now we have the following lemma from linear algebra.

Lemma 6.4. Let A =

aij

be a square matrix of size 2n and letA denote its cofactor matrix, Let

B = (bkℓ) =AI2n tA, where tA denotes the transpose of A.

Then we have

bkℓ ∈ ⟨det A⟩R[a11,a12,...,ann]. (6.6)

In other words, det A divides every entry bkℓ of the matrixAI2n tA as polynomials in the variables a11, a12, . . . , ann.

Using this lemma we can prove a stronger result on the structure of HF̄ .

Proposition 6.5. Let F̄ = (f , g) : (U, 0) → R2n be a smooth map-germ. Then the following hold:
(1) ⟨∆F̄

2
⟩ ⊂ HF̄

(2) For ℓ ≥ 3, ⟨∆F̄
ℓ
⟩ is a Lie subalgebra of HF̄ .

(3) For ℓ ≥ 3, ⟨∆F̄
ℓ
⟩ is an ideal of ⟨∆F̄

3
⟩.
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Proof. h belongs to HF̄ if and only if 1
∆F̄

2
J F̄ I2n tJ F̄∂h is smooth. Now applying Lemma 6.4 to A = J F̄ , we see that every entry

of J F̄ I2n tJ F̄ is an element of ⟨∆F̄ ⟩. Therefore if h ∈ ⟨∆2
F̄
⟩, then h ∈ HF̄ . Thus ⟨∆2

F̄
⟩ ⊂ HF̄ . This proves (1).

Let ℓ ≥ 3 and let h, k ∈ ⟨∆F̄
ℓ
⟩. From Definition 3.3

{h, k}F̄∗ω̄ = ∂kJF̄−1I2nt J F̄−1∂h.

Since h, k ∈ ⟨∆F̄
ℓ
⟩, then

∂h
∂u

,
∂h
∂v

,
∂k
∂u

,
∂k
∂v

∈ ⟨∆F̄
ℓ−1

⟩

and on the basis of Lemma 6.4

{h, k}F̄∗ω̄ ∈ ⟨∆F̄
2ℓ−2−1

⟩.

Since ℓ ≥ 3, 2ℓ − 2 − 1 ≥ ℓ. This proves (2). (3) can be proved in a similar way. �
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