
T. Fukuda, S. Janeczko Res Math Sci          (2024) 11:50 
https://doi.org/10.1007/s40687-024-00461-y

RESEARCH

Generalized Hamiltonian systems on
subvarieties: constant rank case
Takuo Fukuda1 and Stanislaw Janeczko2,3*

*Correspondence:
janeczko@impan.pl
3Instytut Matematyczny PAN, ul.
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Abstract

For the constraint variety in symplectic manifold, the solvable Hamiltonian vector fields
on the constraint are investigated. According to P.A.M. Dirac [3], the space of solvable
Hamiltonian systems is determined by the geometric restriction of the symplectic form
to the constraint. Solvability condition of the generalized Hamiltonian systems is
extended to singular varieties and applied under some assumption on singularities. The
constraint being a smooth submanifold in a symplectic space was considered in [6]. In
this paper, we investigate the solvability of generalized Hamiltonian systems and the
constraint invariants on singular constraints in the constant rank case.
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1 Introduction
Let K be a submanifold of (R2n,ω) with the symplectic structure in Darboux form ω =
∑n

i=1 dyi ∧ dxi. The generalized Hamiltonian system on K (generalized Hamiltonian
dynamics [3,11,12]) is defined as a sub-bundle L of TR

2n, τ : TR
2n → R

2n, over K ,
which is a Lagrangian submanifold of (TR

2n, ω̇), ω̇ |L= 0 with the associated symplectic
form ω̇ = ∑n

i=1 dẏi ∧ dxi − dẋi ∧ dyi. Then, locally L is expressed as

L = {v ∈ TR
2n : τ (v) ∈ K, and, for any u ∈ Tτ (v)K,ω(u, v) = −dh(u)}, (1.1)

by function h which is locally defined on K. In the coordinates we use, the generalized
Hamiltonian system (1.1) is generated by the Morse family F : R2n × R

k → R, which
works only locally on K (cf. [1,7,13]),

F (x, y, λ) =
k∑

i=1
ai(x, y)λi + b(x, y), (1.2)

where K is defined by smooth functions ai : R2n → R, 1 ≤ i ≤ k, with the maximal rank
condition rank( ∂ai

∂xl (x, y),
∂ai
∂yl (x, y)) = k, K = {(x, y) ∈ R

2n : ai(x, y) = 0, i = 1, . . . , k} and
b : R2n → R is an arbitrary smooth extension of h : K → R. In what follows we consider
mainly germs of functions and mappings at zero or representants of this germs.
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Fundamental property of such systems is their local smooth solvability, i.e. existence,
for each v ∈ L, of a smooth family α : U × (−ε, ε) � (v̄, t) �→ R

2n of smooth solutions of
L in the neighbourhood U of v in L such that α̇v̄(0) = v̄. Condition for smooth solvability
of generalized Hamiltonian systems (cf. [4,5,9])

{ ∂F
∂λi

, F}(x, y, λ) = 0, i = 1, . . . , k for (x, y, λ) ∈ K × R
k

reads as a linear equation for λj , j = 1, . . . , k (cf. [6,10]) with canonical matrix A(x, y) =
({ai, aj});

k∑

j=1
{ai, aj}(x, y)λj = {b, ai}(x, y), i = 1, . . . , k, (1.3)

where {•, •} is a Poisson bracket induced by ω.
If k is even and detA(x, y) �= 0 on K, then the only smoothly solvable sections of L define

the solvable Hamiltonian systems Xb ∈ �(TK ),

Xb = ∂ F̂
∂y

(x, y)
∂

∂x
− ∂ F̂

∂x
(x, y)

∂

∂y
|K , where F̂ (x, y) = b(x, y) +

k∑

i=1
λi(x, y)ai(x, y)

and λ(x, y) is a unique smooth solution of (1.3). If K is coisotropic then {ai, aj} = 0 and
{b, aj} = 0, 1 ≤ j ≤ k . In this case, the generalized Hamiltonian system L is smoothly
solvable for b fulfilling the above equations, and after reduction defines smoothly solvable
Hamiltonian systems on the reduced space. The constant rank condition of A(x, y) at all
points ofK is related to the special cases of submanifolds of (R2n,ω) like in the coisotropic
case. We denote Vq = TqK ∩ (TqK )ω , q = (x, y), as a kernel of A(q) at each q ∈ K,
dimVq = l. The two form induced on the quotient space (TqK )ω/Vq is nondegenerated
for k = 1, . . . , 2n − 1 and dim(TqK )ω/Vq = k − l is an even number l ≤ max{k, 2n − k}.
The constant rank condition of A(q) along K implies that V = ⋃

q∈K Vq is an integrable,
characteristic distribution of ω |K and it is a smoothly solvable submanifold of L with
b ≡ 0. It can be written in the form

Vq = {
k∑

i=1
λi(

∂ai
∂y

(x, y)
∂

∂x
− ∂ai

∂x
(x, y)

∂

∂y
}λ∈Rk ,

with its sections given by smooth solutions of the equation λ(x, y) ∈ KerA(x, y), (x, y) ∈ K.
All smoothly solvable Hamiltonian systems on K are given as solutions of Eq. (1.3) with b
fulfilling conditions of pointwise solvability of (1.3).
In this paper, we first show the properties of generalized Hamiltonian systems as a

constrained Lagrangian varieties in symplectic tangent bundle to symplectic manifold
(R2n,ω) equipped with the canonical symplectic structure induced by ω. The basic sym-
plectic invariant, which is the kernel of ω restricted to the constraint K , is directly related
to the question of solvability of Hamiltonian vector fields overK. In fact these vector fields
are constructed by smooth solutions of so-called tangential solvability condition (1.3).
The properties of solutions of this condition in the singular case of K are investigated
in Sect. 3. In Sect. 4, we present a simple proof of the Main Theorem based on series of
partial results concerning solvability domains in generalized Hamiltonian systems.
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2 Basic notations andmain results
Let K (or the representative of its germ at (0, 0)) be a subvariety of (R2n,ω) defined by
smooth functions (ai(x, y))i=1,...,k .A singular point ofK is a point whereK is not a smooth
submanifold of R2n locally around that point. By 	K , we denote the singular point set of
K. Suppose that

rank
(

∂ai
∂xj

(0, 0),
∂ai
∂yj

(0, 0)
)

1≤i≤k,1≤j≤n
= r.

Changing the order of a1(x, y), · · · , ak (x, y), wemay assume that da1(0, 0), · · · , dar (0, 0) are
linearly independent. We set

Kr = {(x, y) ∈ R
2n | a1(x, y) = · · · = ar(x, y) = 0}. (2.1)

Note that if K is smooth, then r = k and Kr = K . Let us introduce the Hamiltonian
immersion mapping φ : R2n × R

k → TR
2n,

φ(x, y, λ) = (x, y,
∂F
∂y

(x, y, λ),−∂F
∂x

(x, y, λ)). (2.2)

Then, the generalized Hamiltonian system on K is given in the form

LF = φ(K × R
k ) = {(x, y, ∂F

∂y
(x, y, λ),−∂F

∂x
(x, y, λ)) | (x, y, λ) ∈ K × R

k )} (2.3)

with the tangential solvability condition

A(x, y)

⎛

⎜
⎜
⎝

λ1
...

λk

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

{b, a1}(x, y)
...

{b, ak}(x, y)

⎞

⎟
⎟
⎠ , (x, y) ∈ K ⊂ R

2n. (2.4)

By S̃F , we denote the tangential stationary set,

S̃F = {(x, y, λ) ∈ K × R
k :

k∑

j=1
{ai, aj}(x, y)λj = {b, ai}(x, y), 1 ≤ i ≤ k} (2.5)

and its image SF in the tangent bundle TR
2n, τ : TR

2n → R
2n; SF = φ(S̃F ) (⊂ LF ). For a

smooth solution λ(x, y) of Eq. (2.4), we set

Qλ(x,y) = {φ(x, y, λ(x, y)) : (x, y) ∈ K } (2.6)

Lemma 1 (1) LF ∩ τ−1(K − 	K ) is a Lagrangian submanifold of (TR
2n, ω̇).

(2) The restriction of φ to the regular point set of K

φ |(K−	K )×Rk : (K − 	K ) × R
k → LF ∩ τ−1(K − 	K )

is a diffeomorphism, and for a point (x, y) ∈ K − 	K , the restricted map

φ |{(x,y)}×Rk : {(x, y)} × R
k → LF ∩ τ−1((x, y))

is an affine isomorphism with φ(x, y, 0) = (x, y, ∂b
∂x (x, y),− ∂b

∂y (x, y)).
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(3) Let (x, y) ∈ 	K and let rank
(

∂ai
∂xj (x, y),

∂ai
∂yj (x, y)

)
= r < k. Then,

φ |{(x,y)}×Rk : {(x, y)} × R
k → LF ∩ τ−1((x, y)) ⊂ T(x,y)R

2n

is an affine map of rank r with φ(x, y, 0) = (x, y, ∂b
∂x (x, y),− ∂b

∂y (x, y)).

Definition 1 We say that a set of smooth functions (λ1(x, y), · · · , λk (x, y)) in the neigh-
bourhood of (0, 0) is a smooth solution of (2.4) defined on K if it satisfies Eq. (2.4) at every
point (x, y) of K .

Definition 2 Let Q be a subset of LF . A solution of Q is a C1-curve γ : (−ε, ε) → R
2n

such that (γ (t), dγ
dt (t)) ∈ Q, −ε < t < ε.

In what follows we often abbreviate (x, y, ẋ, ẏ) ∈ TR
2n to (q, q̇).

Definition 3 Let Q be a subset of LF . A point (q, q̇) ∈ Q is a solvable point of Q if there
exists a solution γ of Q such that

γ (0) = q,
dγ

dt
(0) = q̇.

Q is solvable if Q consists only of solvable points.

Nextwe define the notion of smooth solvability of subsets of LF . First we give a definition
for the case where K is a smooth submanifold of R2n and Q is a smooth submanifold of
LF . Note that in this case, by Lemma 1, LF is a submanifold of TR

2n and φ : K ×R
k → LF

is a diffeomorphism.

Definition 4 Suppose thatK is a smooth submanifold ofR2n andQ is a smooth subman-
ifold of LF . Let

Q̃ = φ−1(Q) ⊂ K × R
k .

Note that in this case φ is a diffeomorphism and Q̃ is a smooth manifold. We say that a
point (q0, q̇0) ∈ Q with (q0, q̇0) = φ(q0, λ0), (q0, λ0) ∈ Q̃ is a smoothly solvable point of
Q if there exists
a small neighbourhood W̃ of (q0, λ0) in Q̃, a positive number ε > 0 and a smooth map

γ̃ : W̃ × (−ε, ε) → R
2n

such that for every (q, q̇) ∈ φ(W̃ ) (⊂ Q) with (q, q̇) = φ(q, λ), (q, λ) ∈ W̃ , the curve
γ(q,λ) : (−ε, ε) → R

2n defined by

γ(q,λ)(t) := γ̃ (q, λ, t)

is a smooth solution of Q with initial condition

(γ(q,λ)(0),
dγ(q,λ)
dt

(0)) = (q, q̇) = φ(q, λ).

We say that Q is smoothly solvable if Q consists only of its smoothly solvable points.

IfK is singular, for a definition of smooth solvability of subsets ofLF ,we consider subsets
Q of LF such that

Q ∩ τ−1(K − 	K )is dense in Q. (2.7)
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For such a subset Q, let Q̃ be a subset of φ−1(Q) (⊂ K × R
k ) such that

φ(Q̃) = Q and Q̃ = Q̃ ∩ ((K − 	K ) × Rk ) (2.8)

where for a subset B ofR2n×R
k , B denotes the topological closure of B inR2n×R

k . Since
K − 	K is dense in K , such Q̃ is uniquely determined.

Definition 5 (General case) Let Q be a subset of LF satisfying (2.7) and let Q̃ be a
subset of φ−1(Q) satisfying (2.8). We say that a point (q0, q̇0) ∈ Q with (q0, q̇0) =
φ(q0, λ0), (q0, λ0) ∈ Q̃ is a smoothly solvable point of Q if there exist a submanifold
Ñ of R2n ×R

k and a small neighbourhood W̃ of (q0, λ0) in R
2n ×R

k with Q̃ ∩ W̃ ⊂ Ñ , a
positive number ε > 0 and a smooth map

γ̃ : (Ñ ∩ W̃ ) × (−ε, ε) → R
2n,

such that for every (q, q̇) ∈ Q ∩ φ(W̃ ) with (q, q̇) = φ(q, λ), (q, λ) ∈ Q̃ ∩ W̃ , the curve
γ(q,λ) : (−ε, ε) → R

2n defined by γ(q,λ)(t) = γ̃ (q, λ, t) is a solution ofQ satisfying the initial
condition

(γ(q,λ)(0),
dγ(q,λ)
dt

(0)) = (q, q̇) = φ(q, λ).

We say that Q is smoothly solvable if Q consists only of its smoothly solvable points.

Let LF (⊂ TR
2n) be a generalized Hamiltonian system onK generated by aMorse family

F (x, y, λ) =
k∑

i=1
ai(x, y)λi + b(x, y), F : R2n × R

k → R (2.9)

with {ai(x, y), 1 ≤ i ≤ k} functions defining K no longer submanifold of R2n (as it was in
(1.2) and a smooth function b : R2n → R.
Main Theorem.
Suppose that

(1) the rank of the matrix ({ai(x, y), aj(x, y)}) is constant on Kr ,
(2) the set of regular points K − 	K is dense in K and
(3) for every point (x, y) ∈ Kr

⎛

⎜
⎜
⎝

{b, a1}(x, y)
...

{b, ak}(x, y)

⎞

⎟
⎟
⎠ ∈ ({ai, aj}(x, y))

(
R
k
)
. (2.10)

Then, SF is smoothly solvable. Moreover, any smoothly solvable subset of LF is a
subset of SF .

Let us notice that the second assertion ofMain Theorem is a consequence of the following
fact,

Proposition 2 Any solvable subset of LF is a subset of SF without any assumptions made
on K and the matrix ({ai(x, y), aj(x, y)}).
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Proof LetQ be solvable subset of LF . Suppose that (x, y, ẋ, ẏ) = φ(x, y, λ) is a solvable point
of Q. Then, there exists a solution γ : (−ε, ε) → K (⊂ R

2n) of Q such that (x, y, ẋ,ẏ) =
(γ (0), dγ /dt(0)). Since γ (t) ∈ K for all t ∈ (−ε, ε), we have a�(γ (t)) = 0, � = 1, · · · , k.
Therefore

d(a�(γ (t))/dt =
n∑

i=1

∂a�

∂xi
(γ (t))

dγi
dt

(t) + ∂a�

∂yi
(γ (t))

dγn+i
dt

(t) = 0.

Thus,
n∑

i=1

∂a�

∂xi
(x, y)ẋi + ∂a�

∂yi
(x, y)ẏi = 0.

On the other hand, since (x, y, ẋ, ẏ) = φ(x, y, λ), we can write

ẋi = ∂F
∂yi

(x, y, λ) =
k∑

m=1

∂am
∂yi

(x, y)λm + ∂b
∂yi

(x, y)

ẏi = − ∂F
∂xi

(x, y, λ) = −
k∑

m=1

∂am
∂xi

(x, y)λm − ∂b
∂xi

(x, y).

Then using these equations, we have

0 =
n∑

i=1

∂a�

∂xi
(x, y)ẋi + ∂a�

∂yi
(x, y)ẏi

=
n∑

i=1

∂a�

∂xi
(x, y)

⎛

⎝
k∑

m=1

∂am
∂yi

(x,y)λm + ∂b
∂yi

(x, y)

⎞

⎠

−
n∑

i=1

∂a�

∂yi
(x, y)

⎛

⎝
k∑

m=1

∂am
∂xi

(x, y)λm + ∂b
∂xi

(x, y)

⎞

⎠

= −
k∑

m=1
{a�, am}(x, y)λm − {a�, b}(x, y)

Thus, (λ1, · · · , λk ) is a solution of (2.4) and (x, y, ẋ, ẏ) = φ(x, y, λ) ∈ SF . �


Example 1 Let us consider the cuspidal surface,

K = {(x, y) ∈ R
4 | a1(x, y) = y2, a2(x, y) = y31 − x22}

K1 = {(x, y) ∈ R
4 | a1(x, y) = y2}.

We have

{a1, a2} = −2x2,

{b, a1} = − ∂b
∂x2

,

{b, a2} = −2x2
∂b
∂y2

− 3y21
∂b
∂x1

with the structure Eq. (2.4),

−2x2λ2 = − ∂b
∂x2

, (2.11)
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Fig. 1 K ⊂ K1

2x2λ1 = −2x2
∂b
∂y2

− 3y21
∂b
∂x1

. (2.12)

Let LF ⊂ TR
4 be generated by a family

F (x, y, λ) = y2λ1 + (y31 − x22)λ2 + x22x1 + y1,

LF = {(3y21λ2 + 1)
∂

∂x1
+ λ1

∂

∂x2
− x22

∂

∂y1
+ (2x2λ2 − 2x2x1)

∂

∂y2
| (λ1, λ2) ∈ R

2}.

We get

λ1 = −3
2
y21x2, λ2 = x1

as a unique smooth solution of Eq. (2.4). Thus, the Hamiltonian vector field

SF = (1 + 3y21x1)
∂

∂x1
− 3

2
y21x2

∂

∂x2
− x22

∂

∂y1
is tangent to K (see figure 1.).

As the special cases of Main Theorem, we have the following two theorems

Theorem 1 Let k ≤ n. Suppose that the set of regular points is dense in K . Then, LF is
smoothly solvable if and only if

{ai, aj} = 0 and {b, ai} = 0 on K, 1 ≤ i, j ≤ k. (2.13)

Proof If (2.13) holds, then all λ ∈ R
k are solutions of (2.4) and we have LF = SF . Then

fromMain Theorem, LF is smoothly solvable. Conversely if LF is smoothly solvable, then
by Proposition 2, LF = SF . Hence, all λ ∈ R

k are solutions of (2.4), which happens only if
{ai, aj} = 0 on K, what defines the coisotropic leafs (Lagrangian in the case if k = n) and
the condition {b, ai} = 0 on K 1 ≤ i, j ≤ k gives the constancy of b on leafs. �
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Theorem 2 Suppose that det({a�, am}(x, y)) �= 0 on K. Then,

(1) k is even and K is a smooth submanifold of R2n of codimension k,
(2) there exists a unique smooth solution λ(x, y) of (2.4) defined on K and SF = Qλ(x,y).

Moreover, SF = Qλ(x,y) is a unique smoothly solvable subset of L such that τ (Q) = K.

Proof Since ({a�, am}(x, y)) is a skew-symmetricmatrix, if det({a�, am}(x, y)) �= 0, then the
rank of ({a�, am}(x, y)) is the size k of ({a�, am}(x, y)) and it is even. Moreover, since

({a�, am}(x, y)) =
(

∂ai
∂xj

∂ai
∂yj

)(
O In

−In O

)t (
∂ai
∂xj

∂ai
∂yj

)

and since the rank of ({a�, am}(x, y)) is k , rank
(

∂ai
∂xj

∂ai
∂yj

)
= k . Therefore, K is a smooth

submanifold of R2n of codimension k . Next, since ({a�, am}(x, y) has the maximal rank k ,
there exists a unique smooth solution λ(x, y) of (2.4) defined on K and SF = Qλ(x,y). Since
τ |Qλ(x,y) : Qλ(x,y) → K is a diffeomorphism, by Proposition 1, SF = Qλ(x,y) is a unique
smoothly solvable subset of LF such that τ (Q) = K . �


3 Solutions of solvability equations
In this section, we check the existence of smooth solutions of Eq. (2.4) and get results
which we use in the proof of the Main Theorem.
From now on throughout this section, we suppose that (0, 0) ∈ K and the rank of the

matrix (∂ai/∂xj(0, 0) ∂ai/∂yj(0, 0)) is r. First we investigate the bundle structure of the
kernels and images of A(x, y) = ({ai, aj}(x, y)).
For a small neighbourhood U of (0, 0), Kr ∩ U is a codimension r smooth submanifold

of R2n and K ∩ U ⊂ Kr ∩ U. Considering A(x, y) as a linear mapping, we set

AKr∩U =
⋃

(x,y)∈Kr∩U
{(x, y)} × A(x, y)(Rk )

N(x,y) = the kernel of A(x, y) = {λ ∈ R
k | A(x, y)λ = 0}

NKr∩U =
⋃

(x,y)∈Kr∩U
{(x, y)} × N(x,y)

NK∩U =
⋃

(x,y)∈K∩U
{(x, y)} × N(x,y)

Proposition 3 Suppose that

rank of ({ai, aj}(x, y)) is constant and equal s on Kr ∩ U.

Then,

(1) AKr∩U is a smooth vector bundle over Kr ∩ U of rank s.
(2) AK∩U is a topological vector bundle over K ∩ U of rank s.
(3) NKr∩U is a smooth vector bundle over Kr ∩ U of rank k − s.
(4) NK∩U is a topological vector bundle over K ∩ U of rank k − s.

Proof (1) Since the rank of ({ai, aj}(x, y)) is constant and equal s on Kr ∩ U , AKr∩U
is a vector bundle over Kr ∩ U of rank s. It may be smooth or not. Choosing U
small enough, we may assume that there exist vectors e1, · · · , es ∈ R

k such that
{A(x, y)e1, · · · , A(x, y)es} is a basis ofA(x, y)(Rk ) and they depend smoothly on (x, y) ∈
Kr ∩ U . Thus, AKr∩U is a smooth vector bundle over Kr ∩ U of rank r.



T. Fukuda, S. Janeczko Res Math Sci           (2024) 11:50 Page 9 of 15    50 

(2) This case is a direct corollary of 1). The smoothness is spoiled on 	K .
(3) Let e1, · · · , es ∈ R

k be the same vectors as in the proof of 1). Let es+1, · · · , ek ∈ R
k be

vectors such that {e1, · · · , es, es+1, · · · , ek} is a basis ofRk . Since {A(x, y)e1, · · · , A(x, y)es}
is a basis ofA(x, y)(Rk ), thenAes+j(x, y) is a linear combinationof {A(x, y)e1, · · · , A(x, y)es}:

A(x, y)es+i(x, y) =
s∑

j=1
αs+i,j(x, y)A(x, y)ej.

Then, {es+1−∑s
j=1 αs+1,j(x, y)ej, · · · , ek −∑s

j=1 αk,j(x, y)ej} is a basis ofN(x,y) and they
depend smoothly on (x, y) ∈ Kr ∩ U . Thus, NKr∩U is a smooth vector bundle over
Kr ∩ U of rank k − s.

(4) This case is a direct corollary of 3). The smoothness is spoiled on 	K .
�


Let us recall the definitions of S̃F and SF (see (2.5)) and set

S̃F |K∩U = {(x, y, λ) ∈ (K ∩ U ) × R
k : (x, y, λ) ∈ S̃F }

SF |K∩U = φ(S̃F |K∩U ) (⊂ L)

S̃F |Kr∩U = {(x, y, λ) ∈ (Kr ∩ U ) × R
k : (x, y, λ) ∈ S̃F }

SF |Kr∩U = φ(S̃F |Kr∩U ) (⊂ L)

As a corollary of Proposition 3 we have,

Proposition 4 (Relation of S̃F and NK∩U)
Suppose that

rank ({ai, aj}(x, y)) is constant and equal to s on Kr ∩ U.

Let λ(x, y) be a smooth solution of (2.4) defined on Kr ∩ U. Then

S̃F |K∩U = λ + NK∩U :=
⋃

(x,y)∈K∩U
{(x, y)} × (λ(x, y) + N (x, y)),

S̃F |Kr∩U = λ + NKr∩U :=
⋃

(x,y)∈Kr∩U
{(x, y)} × (λ(x, y) + N (x, y)).

Proof Let (x, y,μ) ∈ S̃F |K∩U , then by definition

({ai(x, y), aj(x, y)})μ = {b, a}(x, y) :=t ({b, a1}(x, y), . . . , {b, ak}(x, y)).
Since λ(x, y) is a solution of (2.4) defined on Kr ∩ U , then

({ai(x, y), aj(x, y)})λ(x, y) = {b, a}(x, y).
Therefore, ({ai(x, y), aj(x, y)})(λ(x, y) − μ) = {b, a}(x, y) = 0 and (x, y, λ(x, y) − μ) ∈ λ +
NK∩U . This proves S̃F |K∩U⊂ λ +NK∩U . The opposite inclusion can be proved similarly.
The proof of S̃F |Kr∩U= λ + NKr∩U is the same. �


Lemma 5 Let a1(x), · · · , ak (x) be smooth functions onR
m such that the variety K = {(x ∈

R
m | a�(x) = 0, � = 1, . . . , k} is smooth or the set of regular points of K is dense in K . Let

X be a smooth vector field on R
m. If

Xai(x) = 0, i = 1, . . . , k, on K,

Then, the integral curves of X preserve K .
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Proof In the case if K is a smooth submanifold of Rm the condition Xai(x) = 0, i =
1, . . . , k, on K implies that X is tangent to K and we may regard X as a smooth tangent
vector field on K . Therefore, integral curves of X preserve K .
To prove the Lemma in singular case, it suffices to prove that for any point x ∈ K there

exists a small number ε > 0 such that for an integral curve γ : (−ε, ε) → R
m of X with

γ (0) = x, we have γ (−ε, ε) ⊂ K .
Let 	K denote the singular point set of K . For a point x ∈ R

m, let γx(t) denote an
integral curve of X with γx(0) = x. Now we have two cases

(1) x0 ∈ K − 	K . In this case, from the argument workout in smooth case, there exists
a small number ε > 0 such that for an integral curve γx0 : (−ε, ε) → R

m of X with
γx0 (0), we have γ (−ε, ε) ⊂ K .

(2) x0 ∈ 	K . In this case let γx0 : (−ε0,−ε0) → R
m be an integral curve of X such that

γx0 (0) = x0. Suppose that there no exist small numbers ε > 0 with 0 < ε < ε0 such
that γ (−ε, ε) ⊂ K . Then, there exists a series of real numbers {t� | � ∈ N} such that

lim
�→∞ t� = 0 and γx0 (t�) /∈ K.

We take �0 ∈ N large enough. Then, γx0 (t�0 ) /∈ K. Let B(x, δ) denote a δ-
neighbourhood of x in R

m:

B(x, δ) := {y ∈ R
m | ‖y − x‖ < δ}.

Since Rm − K is open in R
m, there exists δ1 > 0 such that

B(γx0 (t�0 ), δ1) ⊂ R
m − K.

Then, by the fundamental theorem of ordinary differential equations, there exists
δ2 > 0 such that

if x ∈ B(x0, δ2) then γx(t�0 ) ∈ B(γx0 (t�0 ), δ1).

Since K − 	K is dense in K , there exists a point x ∈ B(x0, δ2)∩ (K − 	K ) �= ∅. Then
γx(t�0 ) ∈ B(γx0 (t�0 ), δ1) ⊂ R

m − K.

Since x ∈ K − 	K , this contradicts the assertion of the first case, for which we can
take t�0 arbitrarily small. Thus, there exists a small number ε with 0 < ε < ε0 such
that γx0 (−ε,−ε) ⊂ K .

�


Proposition 6 Suppose that the set of regular points of K is dense in K . Let (x0, y0) ∈ K
and U be a neighbourhood of (x0, y0) in R

2n. If the linear Eq. (2.4) has a smooth solution
λ(x, y) = (λ1(x, y), . . . , λk (x, y)) defined on Kr ∩ U, then the set

Qλ(x,y) = {(x, y, ∂F
∂y

(x, y, λ(x, y)),−∂F
∂x

(x, y, λ(x, y)) | (x, y) ∈ K ∩ U} (⊂ LF )

is smoothly solvable.
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Proof Let λ(x, y) = (λ1(x, y), . . . , λk (x, y)) be a smooth solution of (2.4) defined on Kr ∩U .
Consider the following vector field

Xλ(x,y) =
n∑

i=1

∂F
∂yi

(x, y, λ(x, y))
∂

∂xi
− ∂F

∂xi
(x, y, λ(x, y))

∂

∂yi

=
n∑

i=1
(

k∑

�=1

∂a�

∂yi
(x, y)λ�(x, y) + ∂b

∂yi
(x, y))

∂

∂xi

−
n∑

i=1
(

k∑

�=1

∂a�

∂xi
(x, y)λ�(x, y) + ∂b

∂xi
(x, y))

∂

∂yi

on Kr ∩ U . Since λ(x, y) = (λ1(x, y), . . . , λk (x, y)) is a solution of (2.4) defined on Kr ∩ U ,
we see that Xλ(x,y)(a�) = 0 on Kr ∩ U for � = 1, · · · , k . Therefore, Xλ(x,y) is a smooth
tangent vector field on Kr ∩ U . Now choosing U small, we may assume that Kr ∩ U is
diffeomorphic to a Euclidean space. Therefore, we can apply Lemma 5 to this situation
and we see that the integral curves of Xλ(x,y) preserve K . Let us define

Ñ = {(x, y, λ(x, y)) | (x, y) ∈ Kr ∩ U}.
Then, Ñ is a 2n − r dimensional submanifold of R2n × R

k . Taking U small enough, if
necessary, there exists a positive number ε > 0 such that for every (x, y) ∈ Kr ∩ U , there
exists an integral curve

γ(x,y) : (−ε, ε) → R
2nof Xλ(x,y)such that γ(x,y)(0) = (x, y).

Consider the map

γ̃ : Ñ × (−ε, ε) → R
2n defined by γ̃ ((x, y, λ(x, y), t) = γ(x,y)(t).

Since Xλ(x,y) is a smooth vector field on Kr ∩ U , γ̃ : Ñ × (−ε, ε) → R
2n is a smooth map.

Thus, for a point (q, q̇) = φ(q, λ(q)) ∈ Qλ(x,y), the curve

γ(q,λ(q)) : (−ε, ε) → R
2n defined by γ(q,λ(q))(t) = γ̃ (q, λ, t) = γq(t)

is a solution of LF with initial condition

(γ(q,λ(q))(0),
dγ(q,λ(q))

dt
(0)) = (q, q̇) = φ(q, λ(q)).

From the definition of Qλ(x,y) and the fact that γ(x,y)(t) is an integral curve of Xλ(x,y), we
see that (γ(x,y)(t), dγ(x,y)/dt(t)) ∈ Qλ(x,y). Hence, γ(q,λ(q)) is a solution of Qλ(x,y). Now by
Definition 5, (q, q̇) = φ(q, λ(q)) (∈ Qλ(x,y)) is a smoothly solvable point of Qλ(x,y). Thus,
Qλ(x,y) is smoothly solvable. �


Proposition 7 Let U be a small neighbourhood of (0, 0) in R
2n. Suppose that

(1) ({b, a1}(x, y), · · · , {b, ak}(x, y)) ∈ A(x, y)(Rk ) for every (x, y) ∈ Kr ∩ U and
(2) the rank of ({ai, aj}(x, y)) is constant and equal s on Kr ∩ U.

Then, Eq. (2.4) has a smooth solution defined on Kr ∩ U.

Proof Suppose that the rank of ({ai, aj}(x, y)) is constant and equal s on Kr ∩ U . Then by
Proposition 3, AKr∩U is a smooth vector bundle of rank s on Kr ∩ U . Choosing U small
enough and changing the order of the standard normal vectors e1 = (1, 0, · · · , 0), · · · , ek =
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(0, · · · , 0, 1), we may assume that the image of the first s vectors {A(x, y)e1, · · · , A(x, y)es} is
a basis of A(x, y)(Rk ).
Since ({b, a1}(x, y), · · · , {b, ak}(x, y)) ∈ A(x, y)(Rk ) for every (x, y) ∈ Kr ∩ U , it is a linear

combination of A(x, y)e1, · · · , A(x, y)es;

({b, a1}(x, y), · · · , {b, ak}(x, y}) =
s∑

i=1
λi(x, y)A(x, y)(ei).

Since {b, a1}(x, y), · · · , {b, ak}(x, y) are all smooth on Kr ∩ U and A(x, y)e1, · · · , A(x, y)es
are linearly independent, the coefficients λ1(x, y), · · · , λs(x, y) are smooth functions. Then,
λ(x, y) = (λ1(x, y), · · · , λs(x, y), 0, · · · , 0) is a smooth solution of (2.4) defined on Kr ∩ U . �

For a smooth solution λ(x, y) of (2.4) defined on U ∩ Kr , let Xλ(x,y) denote a vector field

defined by

Xλ(x,y) =
n∑

j=1

⎛

⎝ ∂b
∂yj

(x, y) +
k∑

�=1

∂a�

∂yj
(x, y)λ�(x, y)

⎞

⎠ ∂

∂xj

−
n∑

j=1

⎛

⎝ ∂b
∂xj

(x, y) +
k∑

�=1

∂a�

∂xj
(x, y)λ�(x, y)

⎞

⎠ ∂

∂yj
.

Proposition 8 Let λ(x, y) be a smooth solution of (2.4) defined on U ∩ Kr. Then, the
following properties hold:

(1) The vector field Xλ(x,y) is a smooth tangent vector field onU∩Kr and its integral curves
γ (t) are solutions of SF |Kr∩U . Moreover, integral curves of Xλ(x,y) with γ (0) ∈ K are
solutions of SF |K∩U .

(2) For a point (x0, y0) ∈ K ∩U, let (x0, y0, ẋ0, ẏ0) = φ(x0, y0, λ(x0, y0)). Then, an integral
curve γ (t) of Xλ(x,y) such that γ (0) = (x0, y0) is a solution of SF |K∩U satisfying

(γ (0), dγ /dt(0)) = (x0, y0, ẋ0, ẏ0).

(3) Let (x0, y0, ẋ0, ẏ0) = φ(x0, y0, λ0) ∈ SF |K∩U and let μ(x, y) be a smooth section of the
smooth bundle NU∩Kr such that λ(x0, y0) + μ(x0, y0) = λ0. Then,

(3-1) (λ + μ)(x, y) is a smooth solution of (2.4) defined on Kr ∩ U and
(3-2) there is an integral curve γ (t) of the vector fieldX(λ+μ)(x,y), which is also a solution

of SF |K∩U , such that (γ (0), dγ /dt(0)) = (x0, y0, ẋ0, ẏ0).

Proof The first assertion 1) follows already from Proposition 6. Since X(ai) = 0 for
i = 1, · · · , k on K, from Lemma 5, integral curves of Xλ(x,y) with γ (0) ∈ K preserve K .
Hence, they are solutions of SF |K∩U . The fact that the integral curve γ (t) of Xλ(x,y) such
that γ (0) = (x0, y0) is a solution of SF |K∩U is already proved in the proof of Proposition
6. Now (x0, y0, ẋ0, ẏ0) = φ(x0, y0, λ(x0, y0)) and γ (t) is an integral curve of Xλ(x,y) with
γ (0) = (x0, y0). Therefore, we have

(γ (0), dγ /dt(0)) = (x0, y0, Xλ(x,y)(x0, y0)) = φ(x0, y0, λ(x0, y0)) = (x0, y0, ẋ0, ẏ0),

which proves assertion 2) of the proposition.
For assertion 3), let λ(x, y) be a smooth solution of (2.4) defined onKr ∩U and letμ(x, y)

be a smooth cross section of the kernel bundleNU∩Kr such that λ(x0, y0)+μ(x0, y0) = λ0.
Then, (3-1) is obvious. Now let γ (t) be an integral curve of Xλ(x,y)+μ(x,y) with γ (0) =
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(x0, y0) ∈ K . Since λ(x0, y0) + μ(x0, y0) = λ0, Applying 2) to this integral curve γ (t) of
Xλ(x,y)+μ(x,y), we see that γ (t) is a solution of SF |K∩U such that

(γ (0), dγ /dt(0)) = φ(x0, y0, λ(x0, y0) + μ(x0, y0)) = φ(x0, y0, λ0) = (x0, y0, ẋ0, ẏ0).

This completes the proof of 3). �


4 Proof of themain theorem
The last statement of the theorem saying that any smoothly solvable subset of LF is a
subset of SF follows from Proposition 2.
Now let us prove the first conclusion that SF is smoothly solvable, verifying thatQ = SF

satisfies the conditions in Definition 5. Let

(q0, q̇0) = (x0, y0, ẋ0, ẏ0) = φ(q0, λ0) ∈ SF , (q0, λ0) ∈ S̃F

and letU be a small neighbourhood of (x0, y0) in R
2n. We take S̃F |K as Ñ in Definition 5,

and U × R
k as W̃ ;

Ñ = S̃F |Kr , W̃ = U × R
k , Ñ ∩ W̃ = S̃F |Kr∩U .

By the assumptions of Main Theorem, the generating function F (x, y, λ) satisfies the con-
dition in Proposition 6. Then by Proposition 7, there is a smooth solution λ(x, y) of (2.4)
defined on Kr ∩ U . Therefore from Propositions 2 and 3, S̃F |Kr∩U is a smooth vector
bundle on Kr ∩ U . Hence, Ñ ∩ W̃ = S̃F |Kr∩U is a smooth submanifold of R2n × R

k .

Lemma 9 There exist a positive number ε > 0 and a smooth map

γ̃ : (Ñ ∩ W̃ ) × (−ε, ε) = S̃F |Kr∩U ×(−ε, ε) → R
2n

such that for every (q, q̇) ∈ SF ∩ φ(W̃ ) = SF |K∩U , with (q, q̇) = φ(q, λ) and

(q, λ) ∈ Q̃ ∩ W̃ = S̃F |K∩U ,

the curve γ(q,λ) : (−ε, ε) → R
2n defined by γ(q,λ)(t) = γ̃ (q, λ, t)

is a solution of Q = SF |K∩U with initial condition

(γ(q,λ)(0),
dγ(q,λ)
dt

(0)) = (q, q̇) = φ(q, λ).

Proof Letλ(x, y) be the smooth solution of (2.4) definedonKr∩U . Then, fromProposition
4,

S̃F |Kr∩U= λ + NKr∩U :=
⋃

(x,y)∈Kr∩U
{(x, y)} × (λ(x, y) + N (x, y)).

Since, by Proposition 3, NKr∩U is a smooth vector bundle on Kr ∩U , it has locally (k − r)
independent smooth cross sections

e1(x, y), · · · , ek−r (x, y),

which span N(x,y) at each point (x, y) ∈ Kr ∩ U . So, elements of N(x,y) can be written as a
linear combination of e1(x, y), · · · , ek−r (x, y),

k−r∑

i=1
μiei(x, y), μi ∈ R.
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Then for each μ = (μ1, · · · ,μk−r ) ∈ R
k−r , λ(x, y) + ∑k−r

i=1 μiei(x, y) is a smooth solution
of (2.4). At each point (x, y) ∈ Kr ∩U , considering

∑k−r
i=1 μiei(x, y) as an element ofRk , let

(ν1(x, y), · · · , νk (x, y)) be its coordinates in R
k ;

k−r∑

i=1
μiei(x, y) = (ν1(x, y), · · · , νk (x, y)) = ν(x, y) ∈ R

k . (4.1)

Now forμ = (μ1, · · · ,μk−r ) ∈ R
k−r , letting ν(x, y) be defined by (4.1), consider a vector

field Xλ(x,y)+μ defined by

Xλ(x,y)+μ := Xλ(x,y)+ν(x,y)

=
n∑

j=1

⎛

⎝ ∂b
∂yj

(x, y) +
k∑

�=1

∂a�

∂yj
(x, y)(λ�(x, y) + ν�(x, y))

⎞

⎠ ∂

∂xj

−
n∑

j=1

⎛

⎝ ∂b
∂xj

(x, y) +
k∑

�=1

∂a�

∂xj
(x, y)(λ�(x, y) + ν�(x, y))

⎞

⎠ ∂

∂yj
.

Since λ(x, y)+ ∑k−r
i=1 μiei(x, y) is a smooth solution of (2.4), by Proposition 8, the vector

field Xλ(x,y)+μ = Xλ(x,y)+ν(x,y) is a smooth tangent vector field to Kr ∩ U and its integral
curves are solutions of SF |Kr∩U . By γλ(x,y)+μ(t), we denote the integral curve of Xλ(x,y)+μ

passing through (x, y) at t = 0; γλ(x,y)+μ(0) = (x, y).
Now consider the map γ̃ : S̃F |Kr∩U ×(−ε, ε) → R

2n defined by

γ̃ (x, y, λ(x, y) +
k−r∑

i=1
μiei(x, y), t) = γλ(x,y)+μ(t).

Recall that every element of S̃F |Kr∩U can be written in the form λ(x, y)+ ∑k−r
i=1 μiei(x, y).

Now themap γ̃ : S̃F |Kr∩U ×(−ε, ε) → R
2n satisfies the conditions in Lemma 9 as follows.

First, by Proposition 8-1), integral curves of γλ(x,y)+μ(t) of Xλ(x,y)+μ satisfying initial
condition γλ(x,y)+μ(0) = (x, y) ∈ K of Xλ(x,y)+μ are solutions of SF |K∩U . Let (q, q̇) =
(x, y, ẋ, ẏ) ∈ SF |Kr∩U . Then, (x, y, ẋ, ẏ) = φ(x, y, λ(x, y)+∑k−r

i=1 μiei(x, y) for someμ ∈ R
k−r .

The integral curve γλ(x,y)+μ(t) ofXλ(x,y)+μ satisfies the condition γλ(x,y)+μ(0) = (x, y). Then
by Proposition 8-3),

(ẋ, ẏ) = dγλ(x,y)+μ/dt(0).

This completes the proof of Lemma 9. �

Now by Lemma 9 and Definition 5, (q0, q̇0) is a smoothly solvable point of SF . Thus,

every point of SF is a smoothly solvable point of SF ∩ τ−1(U ) and SF ∩ τ−1(U ) is smoothly
solvable. This completes the proof of Main Theorem. �
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