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Abstract. We study germs of differential forms over singular varieties. The geometric restriction
of differential forms to singular varieties is introduced and algebraic restrictions of differential forms
with vanishing geometric restrictions, called residual algebraic restrictions, are investigated. Residues
of plane curves-germs, hypersurfaces, Lagrangian varieties as well as the geometric and algebraic
restriction via a mapping were calculated.
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1. Introduction. For a smooth manifold M and the space Λp(M) of all dif-
ferential p-forms on M the restriction ω|N of ω ∈ Λp(M) to a smooth submanifold
N ⊂ M is well defined by the geometry of N. If N is any subset of M then the
forms α + dβ, α ∈ Λp(M), β ∈ Λp−1(M), where α and β annihilates any p - tuple
(and p − 1 - tuple respectively) of vectors in TxM , x ∈ N, are called algebraically
vanishing on N or having zero algebraic restriction to N (see [6][7]). Now the restric-
tion (algebraic restriction) of ω ∈ Λp(M) to N is defined as an equivalence class of ω
modulo forms with zero algebraic restriction to N. The notion of algebraic restrictions
was introduced by M. Zhitomirskii [19] for contact structures and in [6][7] for general
differential forms. The idea goes back to V.I. Arnold’s study (see [1]) of singular
curves in the presence of symplectic structure. Restriction of symplectic two-form to
the regular part of N is not complete symplectic invariant. It was proved in [7] that
the complete invariant, Arnold’s ghost invariant, is the singularity of the algebraic
restriction of the symplectic form to N in the case N is quasi-homogeneous ([6][7]).
We may show a familiar example of this phenomena for Ak-type singularities of plane
curves.

N = Ak = {x ∈ R2n;xk+1
1 − x2

2 = x≥3 = 0}, k ≥ 1.

Restrictions of two-forms to the regular part of N are vanishing but the algebraic
restrictions (pure singularity effect - residual element) form a finite dimensional space.
The space of algebraic restrictions of all two-forms onR2n to Ak-singularity is spanned
by algebraic restrictions of basic, symplectic forms

[θi]Ak
= [xi

1dx1 ∧ dx2 + dx1 ∧ dx3 + . . .+ dx2n−1 ∧ dx2n]Ak
, i = 0, . . . , k − 1.

For given symplectic Darboux structure (R2n, ω) we have a local diffeomorphism Φi

such that Φ∗
i θ

i = ω. Then we get the symplectic classes of curves Ai
k = Φ−1

i (Ak), i =
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0, . . . , k distinguished by algebraic restriction. In parametric form they were classified
in [1] for A2k singularity:

A2k,0 : t 7→ (t2, t2k+1, 0, . . . , 0),

A2k,r : t 7→ (t2, t2k+1+2r , t2k+1, 0, . . . , 0), r = 1, . . . , 2k.

The residual elements of two-forms on Ak, Dk, E6, E7, E8 planar singularities where
classified in [7] and in principle in [6] and [7], the notion of algebraic restrictions of dif-
ferential forms was introduced and were established its basic properties. As we see the
spaces of algebraic restrictions of contact forms and symplectic forms are effectively
applied to contact and symplectic classifications of singularities [19][4][5][8][9].

In this paper we introduce the notion of “geometric restrictions” of differential
forms and study its general properties (see §2). In particular we study the differ-
ence (or the quotient) of geometric restrictions and algebraic restrictions. In fact we
study the space of algebraic restrictions with null geometric restrictions, which we
call “residual module”.

In [19] one can find the notion of geometric restrictions of the contact structure to
singular varieties, as the restrictions to the regular parts of the varieties. The notions
of geometric and algebraic restrictions of differential forms were studied under different
names much earlier by many authors in the context of the generalization of de Rham’s
theorem for singular varieties (see for examples [16][10][11][6]). In particular Ferrari
(Lemma 1.1, p.67 of [10]) proved that the notion of the geometric restrictions used
in [19] and used in this paper agree for holomorphic differential forms and complex
analytic spaces (cf. Lemma 4.2 in this paper).

The difference of geometric restrictions and algebraic restrictions are compered
with the following general situation: A “variety”Z in a manifold M is regarded as the
image of a mapping (parametrization) f : N → M , f(N) = Z, while Z is regarded as
a zero-set of a mapping (a system of defining equations) F : M → Rp, F−1(0) = Z. If
f and F satisfy certain conditions respectively, then the space of geometric restrictions
is described in terms of f and the space of algebraic restrictions is described in terms
of F .

Of course it is a fundamental but a difficult problem to give a general method
choosing f and F as above from an arbitrary subset Z ⊂ M . Nevertheless we give the
general framework of the theory and provide several useful observations for general
Z to be effective in concrete calculations of residual modules for important examples
which are shown also in this paper. In Section 2 we introduce the basic notions of
geometric and algebraic restrictions to any subset of a smooth manifold. The deeper
understanding of geometric restrictions goes through several constructions and mainly
construction of a kind of tangent bundle - geometric tangents and co-normals to any
subset of a manifold in Section 3, and stratified subsets in Section 4. The similar
results for algebraic tangents and co-normals were obtained in Section 5. We then
exploit these constructions in Section 6 and investigate the geometric and algebraic
restrictions to any subset of a manifold represented by a mapping. Finally, in Sections
7, 8, 9 we conclude with the exact calculations of residues for hypersurfaces, for
Lagrangian varieties and for plane curve-germs. Note that from the latter half of
Section 6, we treat local cases.

The authors thank the referee for valuable comment.

2. Space of geometric and algebraic restrictions. Let Λ•(M) =
∑

k Λ
k(M)

denote the space (total) of C∞ differential forms on a C∞ manifold M and (Λ•(M), d)
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de Rham complex on M . Here • indicates the natural graduation. We set Λk(M) = 0
if k < 0 or dim(M) < k. Given a subset Z ⊂ M , the notion of algebraic restrictions
of differential forms is introduced in [6]: Let Λ•

Z(M) denote the subspace of Λ•(M)
consisting of differential forms vanishing on Z. Note that Λ•

Z(M) is not necessarily d-
closed. Let A•(Z,M) denote the differential ideal of (Λ•(M), d) generated by Λ•

Z(M):

Ak(Z,M) = {α+ dβ ; α ∈ Λk
Z(M), β ∈ Λk−1

Z (M)}.

For an ω ∈ Λ•(M), the residue class [ω]aZ ∈ Λ•(M)/A•(Z,M) is called the algebraic
restriction of ω to Z.

In this paper we introduce the notion of geometric restrictions for any subset Z
in a C∞ manifold M as follows: Define

G•(Z,M) := {ω ∈ Λ•(M) ; f∗ω = 0 for any C∞ mapping f : N → M

from any C∞ manifold N with f(N) ⊂ Z}.

Note that G0(Z,M) = A0(Z,M) = {h ∈ Λ0(M) ; h|Z = 0}.
For an ω ∈ Λ•(M), the residue class [ω]gZ ∈ Λ•(M)/G•(Z,M) is called the geo-

metric restriction of ω to Z.
Accordingly we introduce the vector space

A•(Z) := Λ•(M)/A•(Z,M)

of algebraic restrictions to Z, and the vector space

G•(Z) := Λ•(M)/G•(Z,M)

of geometric restrictions to Z.

Lemma 2.1. For any subset Z in a C∞ manifold M , we have
(1) G•(Z,M) is d-closed.
(2) G•(Z,M) ⊃ A•(Z,M).

Proof. (1) Let ω ∈ G•(Z,M). Then for any C∞ map f : N → M from any
manifold N with f(N) ⊂ Z ⊂ M , we have f∗ω = 0. Then f∗(dω) = d(f∗ω) = 0.
Therefore dω ∈ G•(Z,M). (2) Let α ∈ Λ•

Z(M). Then for any f : N → M with
f(N) ⊂ Z, we have f∗α = 0. Therefore we have G•(Z,M) ⊃ Λ•

Z(M). By (1), we
have required result.

Now we introduce the space

R•(Z) := G•(Z,M)/A•(Z,M) (⊂ A•(Z) ),

of algebraic restrictions with null geometric restrictions to Z. Then there arises the
natural exact sequence

0 → R•(Z) → A•(Z) → G•(Z) → 0.

The space A•(Z) of algebraic restrictions of differential forms to Z has the natural
module structure over de Rham exterior algebra Λ•(M), which is defined by

β ∧ [α]aZ := [β ∧ α]aZ ,

with the differential

d : A•(Z) → A•+1(Z)
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defined by d[α]aZ := [dα]aZ and satisfying

d(β ∧ [α]aZ) = dβ ∧ [α]aZ + (−1)kβ ∧ d[α]aZ ,

whenever β ∈ Λk(M).
Also the space G•(Z) (resp. R•(Z)) has the natural module structure over the

de Rham exterior algebra Λ•(M) as well.

Remark 2.2. The non-zero algebraic restrictions of symplectic forms to a curve
in a symplectic space was called “ghost” according to [1]. The symplectic forms has
null geometric restrictions on parametric curves. Since we are regarding all algebraic
restrictions with null geometric restrictions of differential forms, we may call our
residues “pure ghosts”.

3. Geometric tangents and conormals. To understand geometric restric-
tions generally, we introduce a kind of “tangent bundle” for any subset of a manifold.

Let E be a finite dimensional vector bundle over a topological space X . A subset
L ⊂ E is called fibrewise linear, if for any x ∈ X , Lx := L∩Ex is a linear subspace of
the fibre Ex of E over x. Let K ⊂ E be any subset. Then the closed linear hull K̃ of
K in E is defined as the smallest closed and fibrewise linear subset in E containing K,
which is given by K̃ = ∩L for all closed fibrewise linear subsets L ⊂ E with K ⊂ L.

Let Z be any subset of a C∞ manifold M . Let p ∈ Z. Then first we consider the
set of “geometric” tangent vectors to Z at p, which is defined by

(T gZ)◦p := {[γ]0 ; γ : (R, 0) → (M,p) C∞curve, γ(R, 0) ⊂ Z} ⊂ TpM.

Here [γ]0 means the tangent vector represented by the curve γ at 0: [γ]0 ∈ Tγ(0)M .
Note that (T gZ)◦p ⊂ TpM is not necessarily a linear subspace.

Moreover we set (T gZ)◦ = ∪p∈Z(T
gZ)◦p. Then the geometric tangent bundle

T gZ ⊂ TM |Z is defined by the closed linear hull in TM |Z of the set (T gZ)◦.
Note that, in general, T gZ is not necessarily a subbundle of TM |Z (not necessarily

locally trivial).
We define the geometric conormal bundle T ∗

ZM as the “dual” of T gZ:

T ∗
ZM :=

{
α ∈ T ∗M |Z ; α|(T gZ)p = 0, if α ∈ T ∗

pM for some p ∈ Z
}
,

where (T gZ)p ⊂ TpM is the fibre of T gZ over p ∈ Z.

Example 3.1. Set Z := {(x1, x2) ; x
3
1 − x2

2 = 0} ⊂ R2. Set Z0 = {0} and
Z1 := Z \ Z0. Then (T gZ)◦ = TZ1 ∪ TZ0, which is fibrewise-linear. We have
T gZ = TZ1 ∪ TZ0 = {(t2, t3, v1, v2) ∈ TR2 ; 3tv1 − 2v2 = 0, t ∈ R}. In particular we
have a parametrization of T gZ by R2 → TR2, (t, s) 7→ (t2, t3, s, 3

2 ts). Moreover we
have T ∗

ZR
2 = {(t2, t3, p1, p2) ∈ T ∗R2 ; p1 = − 3

2 tp2, t ∈ R, p2 ∈ R}, that is called the
open Whitney umbrella ([11][12]).

Let ∧k(TM) be the exterior product bundle of the tangent bundle TM . Generally
we define the geometric k tangent bundle T g,kZ ⊂ ∧k(TM) for any k ≥ 1 as follows:
First we set, for p ∈ Z,

(T g,kZ)◦p := {ρ ∈ ∧k(TpM) ; ρ = (∧kf∗)(u1 ∧ · · · ∧ uk),

for some f : (Rk, 0) → (M,p), f(Rk, 0) ⊂ Z, u1, . . . , uk ∈ T0R
k}.
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Then we set (T g,kZ)◦ = ∪p∈Z(T
g,kZ)◦p. Finally we define T g,kZ by the closed linear

hull of (T g,kZ)◦ in ∧k(TM)|Z .
For k = 0, we set T g,0Z := Z ×R ⊂ M ×R.
Note that T g,1Z = T gZ. Also note that, if Z ⊂ M is a closed submanifold of M ,

then T g,kZ = ∧k(TZ).

The natural paring 〈 , 〉 : ∧k(T ∗
pM)× ∧k(TpM) → R is defined by

〈θ1 ∧ · · · ∧ θk, v1 ∧ · · · ∧ vk〉 := det(θi(vj))1≤i,j≤k,

for θ1, . . . , θk ∈ T ∗
pM and v1, . . . , vk ∈ TpM . Then any k-form ω ∈ Λk(M) is regarded

as a fibrewise linear and continuous function

ω : ∧k(TM) → R.

For any subset L ⊂ ∧k(TM), we write ω|L the restricted function ω|L : L → R. If
L = ∧k(TM)|Z for a subset Z ⊂ M , then the restriction ω|L is written also by ω|Z
as usual. If L = T g,kZ, then ω|L is written by ω‖Z to distinguish with ω|Z in this
paper. Therefore if Z ⊂ M be a submanifold of M , then ω‖Z = i∗ω, the pull-back
for the inclusion i : Z →֒ M .

Example 3.2. In Example 3.1, we have T g,2Z = Z × {0} ⊂ ∧2(TR2), the
zero-section.

In §2 we have introduced the space Gk(Z,M) with zero geometric restrictions. To
give its characterization, we first show the following.

Lemma 3.3.

Gk(Z,M) = {ω ∈ Λk(M) ; g∗ω = 0 for any g : (Rk, 0) → M with g(Rk, 0) ⊂ Z}.

Proof. The inclusion “⊂”is clear by the definition. To show the reverse inclusion,
we take ω from the right hand side and let f : N → M be any C∞ map with
f(N) ⊂ Z. Let p ∈ N and v1, . . . , vk ∈ TpN . Suppose v1 ∧ · · · ∧ vk 6= 0. Take a
C∞ immersion-germ h : (Rk, 0) → (N, p) such that v1, . . . , vk ∈ h∗(T0(R

k)). Take
w1, . . . , wk ∈ T0(R

k) such that h∗(wi) = vi(1 ≤ i ≤ k). Set g = f ◦ h. Then
0 = (g∗ω)(w1 ∧ · · · ∧ wk) = (f∗ω)(v1 ∧ · · · ∧ vk). Therefore we have f∗ω = 0 at any
p ∈ N . Thus we have f∗ω = 0. Therefore ω ∈ Gk(Z,M).

Then we have a description of the space Gk(Z,M) with zero geometric restrictions:

Proposition 3.4. We have

Gk(Z,M) = {ω ∈ Λk(M) ; ω|T g,kZ = 0}

= {ω ∈ Λk(M) ; ω|T g,kZ = 0, dω|T g,k+1Z = 0}.

Proof. The inclusion “⊂” of the first equality: Take any ω ∈ Gk(Z,M). Take any
germ f : (Rk, 0) → M with f(Rk, 0) ⊂ Z. Then f∗ω = 0. This means that ω vanishes
on (∧kf∗)(∧k(T0R

k)). Therefore ω vanishes on (T g,kZ)◦. Since ω is fibrewise linear
and continuous, we have ω|T g,kZ = 0.
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The inclusion “⊃” of the first equality: Suppose ω has a non-null geometric
restriction to Z. Then there exists a map-germ f : (Rk, 0) → M with f(Rk, 0) ⊂ Z
and f∗ω 6= 0 by Lemma 3.3. Then ω((∧kf∗)(∧k(T0R

k)) 6= 0. This means that
ω|T g,kZ 6= 0, which leads to a contradiction. Thus we have the first equality.

Since Gk(Z,M) is d-closed, we have the second equality.

We show a general property of geometric k tangent bundles.

Lemma 3.5. Let Z be any subset of a C∞ manifold M . Let T g,kZ∧T g,ℓZ denote
the closed linear hull of

{v ∧ w ; v ∈ T g,k
p Z, w ∈ T g,ℓ

p Z, (p ∈ Z)}

in ∧k+ℓ(TM)|Z . Then we have

T g,k+ℓZ ⊂ T g,kZ ∧ T g,ℓZ (⊂ ∧k+ℓ(TM)).

In particular we have

T g,2Z ⊂ T g,1Z ∧ T g,1Z (⊂ Λ2(TM)).

Proof. Take any ρ ∈ (T g,k+ℓZ)◦. Then, for some p ∈ Z, there exist
f : (Rk+ℓ, 0) → (M,p) with f(Rk+ℓ, 0) ⊂ Z and u ∈ ∧k+ℓT0R

k+ℓ such that
ρ = (∧k+ℓf∗)(u). Then there exist v1, . . . , vk ∈ T0(T

k × {0}) and vk+1, . . . , vk+ℓ ∈
T0({0} × T ℓ) such that u = v1 ∧ · · · vk ∧ vk+1 ∧ · · · ∧ vk+ℓ. Define fk : (Rk, 0) →
(M,p) by fk(x) = f(x, 0) and fℓ : (Rℓ, 0) → (M,p) by fℓ(y) = f(0, y). Let
v = (fk)∗(v1)∧· · ·∧(fk)∗(vk) and w = (fℓ)∗(vk+1)∧· · ·∧(fℓ)∗(vk+ℓ). Then ρ = v∧w.
Therefore ρ ∈ T g,kZ ∧T g,ℓZ. Thus we have (T g,k+ℓZ)◦ ⊂ T g,kZ ∧ T g,ℓZ. Taking the
closed linear hull of both sides of the inclusion, we have the required inclusion.

Let Ω be the canonical symplectic form on T ∗M . Since Ω is a 2-form on the
cotangent bundle T ∗M , it is regarded as a function Ω : ∧2(T (T ∗M)) → R.

Proposition 3.6. Let M be a C∞ manifold and Z a closed subset of M .
Consider the geometric conormal T ∗

ZM ⊂ T ∗M of Z in M . Then the Liouville 1-
form Θ ∈ Λ1(T ∗M) vanishes on T g,1(T ∗

ZM). The symplectic form Ω ∈ Λ2(T ∗M)
vanishes on T g,1(T ∗

ZM) ∧ T g,1(T ∗
ZM). In particular Θ ∈ G1(T ∗

ZM,T ∗M) and
Ω ∈ G2(T ∗

ZM,T ∗M).

Proof. Let (x0, α0) ∈ T ∗
ZM and v ∈ T g,1(T ∗

ZM)◦(x0,α0)
. Let v be represented by

a curve γ : (R, 0) → (T ∗M, (x0, α0)) with γ(R, 0) ⊂ T ∗
ZM . Set γ(t) = (x(t), α(t)).

Then x(0) = x0 and α(0) = α0. Note that x : (R, 0) → Z. Therefore x′(0) ∈ (T g,1Z)◦.
Since T g,1Z = T g,1Z ⊃ (T g,1Z)◦, we have α0(x

′(0)) = 0. Then Θ(v) = α0(x
′(0)) = 0.

Therefore we have Θ|T g,1(T∗

Z
M)◦ = 0 and thus we have Θ|T g,1(T∗

Z
M) = 0. By Proposi-

tion 3.4, we have Θ ∈ G1(T ∗
ZM,T ∗M). Since Ω = dΘ, we have Ω ∈ G2(T ∗

ZM,T ∗M).
To see the last result in another way, we take another w ∈ T g,1(T ∗

ZM)◦(x0,α0)
. Let

w be represented by a curve δ : (R, 0) → (T ∗M, (x0, α0)) with δ(R, 0) ⊂ T ∗
ZM . Set

δ(t) = (y(t), β(t)). Then y(0) = x0, β(0) = α0 and α0(y
′(0)) = 0. Then Ω(v ∧ w) =

α0(x
′(0)) − α0(y

′(0)) = 0. Therefore Ω vanishes on T g,1(T ∗
ZM) ∧ T g,1(T ∗

ZM). By
Lemma 3.5, we see Ω vanishes on T g,2(T ∗

ZM). Then, by Proposition 3.4, we have
Ω ∈ G2(T ∗

ZM,T ∗M).
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4. Geometric restrictions to a stratified set. In the previous section we
treat arbitrary subset in a manifold. Here we will give a simple description of the
space of differential forms with null geometric restrictions for a stratified set.

Let M be a manifold and Z be a subset of M . We mean by a stratification
S = {S} a locally finite collection of submanifolds ofM giving a disjoint decomposition
Z = ∪S∈SS of Z.

Lemma 4.1. (Geometric restrictions to a stratified set) We have

G•(Z,M) = {α ∈ Λ•(M) ; α‖S = 0, for any stratum S ∈ S}.

Here α‖S := α|∧k(TS), if α is a k-form. Therefore, for any α, α′ ∈ Λ•(M), [α]gZ =
[α′]gZ ∈ G•(Z) if and only if α‖S = α′‖S, for any stratum S ∈ S.

Proof. The inclusion “⊂” is clear, by taking, as f in the definition of G•(Z,M),
the inclusions of strata. To show “⊃”, take α ∈ Λ•(M) from RHS, and take any
f : N → M with f(N) ⊂ Z. Consider the decomposition N = ∪S∈Sf

−1(S). Take
any point t0 ∈ N . Since S is locally finite, there exists S ∈ S such that the closure
of the interior f−1(S)o of f−1(S) contains t0. By the condition α‖S = 0, we have
f∗α = 0 on f−1(S)o. By the continuity, we have (f∗α)(t0) = 0. This shows that
f∗α = 0. Therefore we have that α belongs to G•(Z,M). The second statement is
clear.

Lemma 4.2. Suppose that the stratification S of Z satisfies the boundary con-
dition, namely, for any S, S′ ∈ S, S ∩ S′ 6= ∅ implies S ⊃ S′, and the Whitney’s
regularity condition (a), namely, for any S, S′ ∈ S, for any x0 ∈ S′ and for any se-
quence {yn} on S converging to x0, if there exists a limit V = limn→∞ Tyn

S ⊂ Tx0
M ,

then V ⊃ Tx0
S′. If there exists a stratum Smax with S = Z. Then,

G•(Z,M) = {α ∈ Λ•(M) ; α‖Smax
= 0}.

Proof. By the boundary condition and Whitney regularity (a), α‖Smax
= 0 implies

that α‖S = 0 for any S ∈ S. Therefore, by Lemma 4.1, we have the equality.

5. Algebraic conormals and tangents. Let Z be a subset of a manifold M .
Let p ∈ Z. We consider the “algebraic conormals” to Z at p:

(T a,∗
Z M)p := {dh ∈ T ∗

pM ; h : (M,p) → R, h|Z = 0}.

Then (T a,∗
Z M)p is a linear subspace of T ∗

pM . Consider its “dual”:

(T aZ)◦p := {v ∈ TpM ; 〈dh, v〉 = 0 for any function h ∈ Λ0(M) with h|Z = 0}.

We call the linear subspace (T aZ)◦p Zariski tangent space of Z at p, which is the set
of “algebraic” tangent vectors to Z at p. Then algebraic tangent bundle T aZ ⊂ TM
is defined by the closed linear hull in TM |Z of the set (T aZ)◦ = ∪p∈Z(T

aZ)◦p of
“algebraic” tangent vectors to Z. We call T aZ also Zariski tangent bundle of Z.

Note that, in general, T aZ is not necessarily a subbundle of TM |Z, as well as
T gZ.
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Moreover, we define the algebraic k tangent bundle T a,kZ by the closed linear hull
in ∧k(TM)|Z of (T a,kZ)◦ = ∪p∈Z(T

a,kZ)◦p, where

(T a,kZ)◦p := {ρ ∈ ∧k(TpM) ; 〈dβ, ρ〉 = 0 for any β ∈ Λk−1(M) with β|Z = 0}.

If Z is a closed submanifold of M , then T g,kZ = T a,kZ = ∧k(TZ), for any k ≥ 1.

Note that T a,1Z = T aZ. For k = 0, we set T a,0Z = T g,0Z = Z ×R ⊂ M ×R.

Then we have:

Lemma 5.1. Let Z be any subset of a manifold M and k ≥ 1. Then we have

(1) For any p ∈ Z, {0} ⊂ (T g,kZ)◦p ⊂ (T a,kZ)◦p ⊂ ∧k(TpM).

(2) Z × {0} ⊂ (T g,kZ)◦ ⊂ (T a,kZ)◦ ⊂ ∧k(TM)|Z ⊂ ∧k(TM).

(3) Z × {0} ⊂ T g,kZ ⊂ T a,kZ ⊂ ∧k(TM)|Z ⊂ ∧k(TM).

Proof. (1) Let ρ ∈ (T g,kZ)◦p. Then ρ = (∧kf∗)(u1 ∧ · · · ∧ uk) = f∗u1 ∧ · · · ∧ f∗uk

for some f : (Rk, 0) → (M,p) with f(Rk, 0) ⊂ Z and ui ∈ T0R
k, 1 ≤ i ≤ k. Let

β ∈ Λk−1(M) with β|Z = 0. Then β is expressed, on a coordinate neighbourhood U
of p, as a sum of forms bγ with b ∈ Λ0(U), b|Z = 0, γ = dxi1 ∧ · · · ∧ dxik ∈ Λk−1(U).
Then dβ is the sum of forms db∧ γ. Then the paring 〈dβ, ρ〉 is the sum of 〈db∧ γ, ρ〉.
Since f∗b = 0, we have 〈db, f∗ui〉 = 〈df∗b, ui〉 = 0 for any 1 ≤ i ≤ k. Therefore we
have 〈db ∧ γ, ρ〉 = 0 and we have 〈dβ, ρ〉 = 0. Thus we have ρ ∈ (T a,kZ)◦p. Therefore

we have (T g,kZ)◦p ⊂ (T a,kZ)◦p. Other inclusions are clear. The assertions (2) and (3)
follow from (1).

Recall that Ak(Z,M) denotes the set of differential k-forms with null algebraic
restrictions. Then we have:

Proposition 5.2.

Ak(Z,M) ⊂ {ω ∈ Λk(M) ; ω|Ta,kZ = 0, dω|Ta,k+1Z = 0}.

Proof. Let ω ∈ Ak(Z,M). Then ω = α+dβ, for a k-form α vanishing on Z and a
(k− 1)-from β vanishing on Z. Take ρ ∈ (T a,kZ)◦. Let ρ ∈ (T a,kZ)◦p for some p ∈ Z.

Then 〈α, ρ〉 = 0 since α(p) = 0. Moreover 〈dβ, ρ〉 = 0 since ρ ∈ (T a,kZ)◦p. Thus we
have 〈ω, ρ〉 = 0. Therefore we have ω|(Ta,kZ)◦ = 0 and thus we have ω|Ta,kZ = 0.

Furthermore, for any ρ′ ∈ (T a,k+1Z)◦, 〈dω, ρ′〉 = 〈dα, ρ′〉 = 0 by the definition of
(T a,k+1Z)◦. Thus we have dω|Ta,k+1Z = 0.

Remark 5.3. In Proposition 5.2, the equality does not hold in general. See
Example 5.4.

Example 5.4. In Example 3.1, we have

(T a,1Z)◦ = {(x1, x2, v1, v2) ; x
3
1 − x2

2 = 0, 3x2
1v1 − 2x2v2 = 0} = TZ1 ∪ T0R

2,

which is closed in TR2. Therefore we have T a,1Z = (T a,1Z)◦. Further we have
(T a,2Z)◦ = ∧2(T0R

2) ∪ (Z1 × {0}) = T a,2Z ⊂ ∧2(TR2)|Z .
Let ω = −3x1x2dx1 + 2x2

1dx2. Then dω = 7x1dx1 ∧ dx2. Then ω|Ta,1Z = 0,
dω|Ta,2Z = 0. However ω 6∈ A1(Z,R2).
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Remark 5.5. By Proposition 5.2 and Remark 5.3, it is interesting to study the
space

Ãk(Z,M) := {ω ∈ Λk(M) ; ω|Ta,kZ = 0, dω|Ta,k+1Z = 0}.

6. Geometric and algebraic restrictions via a mapping. Let f : N → M
be a C∞ mapping from a C∞ manifold N .

Let ω ∈ Λ•(M) be a differential form on M . Then we call the pull-back f∗ω
the geometric restriction of ω by f . Then, regarding the morphism f∗ : Λ•(M) →
Λ•(N), we consider the subspace consisting of differential forms with null geometric
restrictions by f :

(Kerf∗)• := {ω ∈ Λ•(M) ; f∗ω = 0}.

Then we have

(Kerf∗)• ⊃ G•(f(N),M).

Let Z ⊂ M be any subset of M . We say that a C∞ map f : N → M dominates
Z ⊂ M geometrically, if f(N) ⊂ Z and the closed linear hull of ∧kf∗(∧k(TN)) in
∧k(TM) contains T g,kZ for any k ≥ 1. See §3.

Lemma 6.1. Suppose f : N → M dominates Z ⊂ M geometrically. Then we
have

(Kerf∗)• = G•(Z,M).

Proof. The inclusion “⊃” is clear by the definition.
To show “⊂”, take any ω ∈ Λk(M) with f∗ω = 0. Then ω restricted to

(∧kf∗)(∧
k(TN)) vanishes, so, by the assumption it is on the closed linear hull of

(∧kf∗)(∧k(TN)), so it is on T g,kZ. By Lemma 3.4, we have α ∈ Gk(f(N),M).

The space of geometric restrictions by f of differential forms, which is identified
with

G•(f) := Λ•(M)/(Kerf∗)•,

has the natural module structure over the de Rham exterior algebra Λ•(M).

In the case Z = f(N), we describe Ak(Z,M) in terms of mapping f .
First we introduce the space

Λk(f) = {β : N → ∧k(T ∗M) ; β covers f via the projection π : ∧k(T ∗M) → M},

the space of differential k-forms along f , and a morphism ωf : Λ•(M) → Λ•(f) defined
by α 7→ α ◦ f . Here ∧k(T ∗M) is the exterior product of the cotangent bundle T ∗M .
The notion ωf is used, based on the classical Mather’s notation. As for Mather’s
notation, we define also a morphism t∗f : Λ•(f) → Λ•(N), by

(t∗f(β))(x) = ∧k(f∗x)
∗(β(x))
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where ∧k(f∗x)
∗ : ∧kT ∗

f(x)M → ∧kT ∗
xN is the wedge of the dual linear map of the

differential map f∗x : TxN → Tf(x)M .
We have the commutative diagram for k ≥ 1,

Λk−1(M)
ωk−1f
−−−−→ Λk−1(f)

t∗k−1f
−−−−→ Λk−1(N)

d ↓ ↓ d

Λk(M)
ωkf
−−→ Λk(f)

t∗kf
−−−→ Λk(N).

Note that t∗0f gives the identification of Λ0(f) and Λ0(N), which is the space of
sections of the trivial line bundle.

The following is clear by the definition of A(f(N),M):

Lemma 6.2. Let f : N → M be a C∞ mapping. Then we have, for any k ≥ 0,

Ker ωkf + d(Ker ωk−1f) = Ak(f(N),M).

We study the quotient space

Rk(f) := (Ker f∗)k/Ak(f(N),M) = (Ker f∗)k/(Ker ωkf + d(Ker ωk−1f)),

which is the space of algebraic restrictions to the image of f with null geometric
restrictions by f .

The constructions above are localized, i.e. they are formulated in terms of sheaves
naturally. From now on we treat the local cases only.

The following is clear:

Lemma 6.3. If f : (Rn, 0) → (Rm, 0) is an immersion-germ, then

Rk(f) = Ker f∗k/(Ker ωkf + d(Ker ωk−1f)) = 0,

for k ≥ 0.

Moreover we have,

Proposition 6.4. Let f : (Rn, 0) → (Rm, 0), 2n ≤ m, be a finitely determined
map-germ, Z the germ of the image of f . Then the R-vector space R•(Z) = R•(f)
is of finite dimension.

Proof. We may suppose f is an analytic map-germ. Then f dominates Z geomet-
rically. Therefore, by Lemma 6.1, we have R•(Z) = R•(f). Consider the complexi-
fication fC : (Cn, 0) → (Cm, 0) of f . Then KerfC

∗ and Ker ωfC + d(Ker ωfC) are
coherent submodules of Λ•(Cm, 0) over Λ0(Cm, 0). ThereforeR•(fC) is also coherent.
By Lemma 6.3, the support ofR•(fC) is just the origin. Then by using Nullstellensatz
in the form of [18], we have that R•(fC) is a finite dimensional vector space. Con-
sider R•,ω(f) which is defined similarly as R•(f) but by real analytic forms. Then
we have that R•,ω(f) is also of finite dimension. Moreover we can show that R•(f)
is formally generated by R•,ω(f), so it is generated by R•,ω(f) over Λ0(Rm, 0) (see
[3]). Therefore we have that R•(f) is also of finite dimensional.

Remark 6.5. W. Domitrz [4] shows that the subspace of algebraic restrictions
of closed 2-forms in R2(C) on any analytic curve C is a finite dimensional vector
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space. Proposition 6.4 generalizes Domitrz’s theorem under the assumption of finite
determinacy.

Let Z ⊂ (Rm, 0) be a subset-germ in Rm at 0. The embedding dimension of Z
is defined as the minimum of the dimensions of submanifold-germs S ⊂ (Rm, 0) with
Z ⊂ S.

Lemma 6.6. Suppose the embedding dimension of Z ⊂ (Rm, 0) is equal to r. Let
S ⊂ (Rm, 0) be a submanifold-germ of dimension r with Z ⊂ S. Let h : (Rm, 0) → R

be a function-germ vanishing on Z. Then we have dh|T0S = 0. Therefore the tangent
space T0S to a submanifold-germ S of (Rm, 0) of dimension r containing Z is uniquely
determined. In fact T0S coincides with the Zariski tangent space (T aZ)◦0 of Z at 0 in
Rm (see §5).

Proof. Assume dh|T0S 6= 0. Then h−1(0) ⊂ (Rm, 0) is a C∞ hypersurface which
is transverse to S. Then h−1(0)∩ S is a submanifold of r− 1 which contains Z. This
leads to a contradiction with the assumption that the embedding dimension of Z is
r. Thus we have

T0S ⊂ {v ∈ T0R
m ; 〈dh, v〉 = 0 for any function-germ h : (Rm, 0) → R with h|Z = 0}

= (T aZ)◦0.

For any vector v 6∈ T0S, there exists a function-germ h : (Rm, 0) → R with h|S = 0
and 〈dh, v〉 6= 0. Therefore we have the equality T0S = (T aZ)◦0.

Lemma 6.7. For any k = 1, 2, . . . , r, any k-form α in Ak(Z,M), α vanishes on
∧k(T aZ)◦0.

Proof. We remark that ∧k(T aZ)◦0 ⊂ T a,kZ0. Then by Proposition 5.2 we have
the result.

Let f : (Rn, 0) → (Rm, 0) be a germ of a proper mapping. Then the germ of
the image of f is well-defined as a subset-germ in (Rm, 0). Therefore the embedding
dimension of f is defined via the image of f .

Proposition 6.8. Let f : (Rn, 0) → (Rm, 0) be a proper map-germ. Suppose
the embedding dimension of f is equal to r > n. Let S ⊂ (Rm, 0) be a minimal
dimensional submanifold-germ containing the image of f with dimS = r. Then, for
any k = 1, 2, . . . , r, any k-form in Ker ωkf + d(Ker ωk−1f) vanishes at T0S. In
particular we have

Rr(f) 6= 0.

Proof. The first half follows from Proposition 6.7. To show the second half, we
take an r-form ω on (Rm, 0) such that (ω||S)(0) 6= 0. Then the geometric restriction
of ω to the image of f is not equal to zero. Thus we see that the class of ω in Rr(f)
is not equal to zero.

Example 6.9. Let f : (R, 0) → (R3, 0), f(t) = ( 1
3! t

3, 1
4! t

4, 1
5! t

5). Then the
embedded dimension of f is equal to 3. Then, in fact, the geometric restriction
[dx1 ∧ dx2 ∧ dx3]

g = 0 and the algebraic restriction [dx1 ∧ dx2 ∧ dx3]
a 6= 0. Therefore

the residue of volume form [dx1 ∧ dx2 ∧ dx3]
r 6= 0 in R3(f).
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7. Residues for hypersurfaces. Let F : (Rm, 0) → (R, 0) be a non-zero an-
alytic function-germ and consider the set-germ Z ⊂ (Rm, 0). Suppose the ideal
IZ := ΛZ(R

m, 0) ⊂ Om := Λ0(Rm, 0) of function-germs vanishing on Z is generated
by F . Then we have on the residues of top degree:

Proposition 7.1. Rm(Z) ∼= Om/〈F, ∂F
∂x1

, . . . , ∂F
∂xm

〉Om
. In particular

dimR Rm(Z) is given by the Turina number of F at 0.

Proof. Let α be anym-form on M = (Rm, 0). Then α ∈ Gm(Z,M). We have that
α ∈ Am(Z,M) if and only if there exist an m-form β and an (m−1)-form γ such that
α = Fβ + d(Fγ). Take the volume form ω = dx1 ∧ · · · ∧ dxm. There exists a unique
h ∈ Om with α = hω. Then α ∈ Am(Z,M) if and only if h ∈ 〈F, ∂F

∂x1
, . . . , ∂F

∂xm
〉Om

.
Thus we have the result.

For the residue of degree 1 of hypersurface, we have:

Proposition 7.2. Let F : M = (Rm, 0) → (R, 0) be a C∞ function-germ. Let Z
denote the germ of zero-locus of F in (Rm, 0). Suppose the ideal I(T gZ) of function-
germs on (TRm, (0, 0)) vanishing on the geometric tangent bundle T gZ ⊂ TRm is
generated by

m∑

i=1

vi
∂F

∂xi
(x) and F (x).

Here (x, v) denote the system of coordinate functions on TRm. Then we have
R1(Z) = 0.

Proof. Let α ∈ G1(Z,M). Write α =
∑m

i=1 aidxi. By Proposition 3.4, α vanishes
on the geometric tangents T gZ. Then by the assumption, there exist C∞ functions
B(x, v), C(x, v) such that

m∑

i=1

ai(x)vi = B(x, v)

(
m∑

i=1

vi
∂F

∂xi
(x)

)
+ C(x, v)F (x),

on (TRm, (0, 0)). By differentiating by vi, we have

ai =
∂B

∂vi

(
m∑

i=1

vi
∂F

∂xi

)
+B

∂F

∂xi
+

∂C

∂vi
F.

Setting v = 0, we have

ai(x) = B(x, 0)
∂F

∂xi
(x) +

∂C

∂vi
(x, 0)F (x).

Then

α =
m∑

i=1

aidxi = B(x, 0)dF (x) + F (x)

(
∂C

∂vi
(x, 0)dxi

)
∈ A1(Z,M).

By the similar proof of Proposition 7.2, we have:

Proposition 7.3. Let F1, . . . , Fr : M = (Rm, 0) → (R, 0) be C∞ function-
germs. Let Z denote the germ of zero-locus of F = (F1, . . . , Fr) : M → (Rr, 0) in
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M . Suppose the ideal I(T gZ) of function-germs on (TRm, (0, 0)) vanishing on the
geometric tangent bundle T gZ ⊂ TRm is generated by

m∑

i=1

vi
∂Fj

∂xi
(x), 1 ≤ j ≤ r, and Fj(x), 1 ≤ j ≤ r.

Then we have R1(Z) = 0.

8. Residues for Lagrangian varieties. Now we suppose M is a symplectic
manifold of dimension 2n with a symplectic form Ω. A subset Z ⊂ M is called a
Lagrangian variety if the geometric restriction [Ω]gZ = 0 and the maximal rank of the
geometric tangent bundle T gZ ⊂ TM is equal to n (see §3).

We describe R1(Z) in terms of vector fields via the symplectic duality. The space
of vector fields V (M) over M corresponds to the space of 1-forms Λ1(M) by

X 7→ X♯ := iXΩ ∈ Λ1(M), (X ∈ V (M)).

The inverse of the correspondence is written, for any α ∈ Λ1(M), by α 7→ α♭ ∈ V (M).
If α = dH for some H ∈ Λ0(M), then XH := (dH)♭ is the Hamiltonian vector field
with the Hamiltonian H .

If M = R2n with the symplectic coordinates (x, p), then a vector filed X =∑n
i=1 ai

∂
∂xi

+
∑n

j=1 bj
∂

∂pj
corresponds to the 1-form ω = −

∑n
j=1 bjdxj +

∑n
i=1 aidpi.

The tangent bundle TM is identified with the cotangent bundle T ∗M . Therefore
to any subset S ⊂ TM , there corresponds a subset S♭ ⊂ T ∗M .

Similarly the space of 2-vector fields V 2(M) corresponds to the space of functions
Λ0(M) by

X ∧ Y 7→ iY iXΩ ∈ Λ0(M), (X ∧ Y ∈ V 2(M)).

The space of 0-vector fields (i.e. functions) V 0(M) corresponds to Λ2(M) simply by

h 7→ hΩ ∈ Λ2(M), (h ∈ V 0(M)).

Let Z ⊂ M be a Lagrangian variety. Let ω ∈ Λ1(M). Then ω ∈ G1(Z,M) if
and only if the corresponding vector field X = ω♭ (satisfying iXΩ = ω) is tangent to
Zreg. In fact 0 = ω(TpZ) = iXΩ(TpZ) = Ω(X,TpZ), so X(p) ∈ TpZ, for any regular
point p ∈ Zreg. A vector field X over M is called logarithmic if it is tangent to Zreg.
The 1-form ω belongs to A1(Z,M) if and only if ω♭ = X +XH for a vector field X
vanishing on Z and the Hamiltonian vector field XH of a Hamiltonian function H
vanishing on Z. In fact ω ∈ A1(Z,M) if and only if there exist a 1-form α vanishing
on Z and a function H vanishing on Z such that ω = α+ dH . Then ω♭ = α♭ +(dH)♭

and α♭ vanishes on Z if and only if α vanishes on Z. Moreover we have (dH)♭ = XH .
Thus we have:

Proposition 8.1. The first order residue R1(Z) is isomorphic as Λ0(M)-module
to the space of logarithmic vector fields modulo Hamiltonian vector fields restricted to
TM |Z.
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9. Residues for plane curve-germs. In this section we study the residues
R1(Z) for a germ of plane curve Z in R2, as a special case of our arguments discussed
in the previous section. We also treat R1(f) on the parametric case f : (R, 0) →
(R2, 0).

Now our idea to treat plane curves is to fix a symplectic form (an area form) Ω
on R2, say,

Ω = dx1 ∧ dx2,

and apply the classification established in [13][14]. We conclude the paper by showing
several examples from our previous classification result. Though the classification
was performed in complex analytic case in [14], we can give the real classification by
adding necessary ± to the lists.

Proposition 9.1. (cf. [13][14]) Let f : (R, 0) → (R2, 0) be a simple or a uni-
modal map-germ under diffeomorphism equivalence to the symplectic plane with the
symplectic form Ω = dx1 ∧ dx2. Then f is symplectomorphic to one of the following
normal forms of map-germs (x1(t), x2(t)) : (R, 0) → (R2, 0):

A2ℓ : (t2, t2ℓ+1),

E6ℓ : (t3, (±)ℓ+1t3ℓ+1 +Σℓ−1
j=1λjt

3(ℓ+j)−1),

E6ℓ+2 : (t3, (±)ℓt3ℓ+2 +Σℓ−1
j=1λjt

3(ℓ+j)+1),

W12 : (t4, t5 + λ1t
7),

W18 : (t4, t7 + λ1t
9 + λ2t

13),

W#
1,2ℓ−1 : (t4,±t6 + λ1t

2ℓ+5 + λ2t
2ℓ+9), λ1 6= 0, (ℓ = 1, 2, . . . )

N20 : (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14),

N24 : (t5,±t7 + λ1t
8 + λ2t

11 + λ3t
13 + λ4t

18),
N28 : (t5, t8 + λ1t

9 + λ2t
12 + λ3t

14 + λ4t
17 + λ5t

22),
W24 : (t4, t9 + λ1t

10 + λ2t
11 + λ3t

15 + λ4t
19),

W30 : (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25),

W#
2,2ℓ−1 : (t4,±t10 + λ1t

2ℓ+9 + λ2t
2ℓ+11 + λ3t

2ℓ+13

+λ4t
2ℓ+17 + λ5t

2ℓ+21), λ1 6= 0, (ℓ = 1, 2, . . . )

Remark 9.2. In any case, T g(Z) is the union of the tangent line ℓ at the origin
and T (Zreg). Suppose f is not an immersion. Then T a(Z) is the union of T0R

2 and
T (Zreg). Therefore T

g(Z) 6= T a(Z). Moreover both T g(Z)♯ and T a(Z)♯ are Lagrange
varieties in T ∗R2.

Let us consider the complexification fC : (C, 0) → (C2, 0) of f and ZC the image
of fC. A holomorphic vector field which is tangent to the regular part of ZC is called
a logarithmic vector field of ZC (see [17][15]). Then it is known that the module
Der(−ZC) of logarithmic vector fields is free of rank 2. If ZC is quasi-homogeneous,
then it is generated by the Euler form and the Hamiltonian vector field XF of the
defining equation F of ZC. Here the Euler form is defined by

E♯ = −sx2dx1 + rx1dx2,

from the Euler vector field E = rx1
∂

∂x1
+sx2

∂
∂x2

, if f = (f1, f2) is quasi-homogeneous
by the weights w(x1) = r, w(x2) = s.
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Proposition 9.3. (A2) In the case A2, dimR R1(Z) = 2. In fact R1(Z) = R1(f)
and it is generated over R by the classes of E♯ and of x1E

♯.

Proof. Let f : (R, 0) → (R2, 0) be a map-germ defined by f(t) = (t2, t3). Let
α = a1(x1, x2)dx1 + a2(x1, x2)dx2 ∈ Λ1(R2, 0). The condition that f∗α = 0 is
equivalent to that 2a1(t

2, t3) + 3a2(t
2, t3)t = 0. Take a1 = −3x2, a2 = 2x1. Then we

have the Euler form E♭ = −3x2dx1+2x1dx2 ∈ Kerf∗. The denominator A1(Z,R2) =
Ker ωf + d(Ker ωf) is generated by

(x3
1 − x2

2)dx1, (x3
1 − x2

2)dx2, x2
1dx1 − 3x2dx2.

Then [E♯] 6= 0 in R1(Z) = R1(f) = Ker f∗/Ker ωf + d(Ker ωf). Therefore R1(Z) 6=
0. Moreover we see that R1(Z) is generated over R by the classes of E♯ and of x1E

♯.
In fact, x2E

♯ and x2
1E

♯ belong to A1(Z,R2).

Remark 9.4. Note that, in Proposition 9.3, the Lagrange variety T gZ♯ is the
open Whitney umbrella, the conormal bundle of (2, 3) cusp and T aZ♯ is the “open
Whitney full-umbrella”, the union of open Whitney umbrella and the fibre through
the origin (see [11][12]).

Proposition 9.5. (A4) Let f : (R, 0) → (R2, 0) be a map-germ defined by
f(t) = (t2, t5). Then we have the Euler form E♯ = −5x2dx1 + 2x1dx2 ∈ Kerf∗ and
[E♯] 6= 0 in R1(Z) = R1(f).

Proof. Let α = a1(x1, x2)dx1 + a2(x1, x2)dx2 ∈ Λ1(R2, 0). The condition that
f∗α = 0 is equivalent to that 2a1(t

2, t5)+5a2(t
2, t5)t3 = 0. Take a1 = −5x2, a2 = 2x1.

The fact [E♯] 6= 0 is checked by a direct calculation.

Proposition 9.6. (E6) Let f : (R, 0) → (R2, 0) be a map-germ defined by f(t) =
(t3, t4). Then we have the Euler form E♭ = −4x2dx1 + 3x1dx2 ∈ Kerf∗ and [E♭] 6= 0
in R1(Z) = R1(f) = Ker f∗/Ker ωf + d(Ker ωf). Therefore R1(Z) 6= 0. Moreover
we see that R1(Z) is generated over R by the classes of E♯, x1E

♯, x2E
♯, x2

1E
♯.

Proof. Let α = a1(x1, x2)dx1 + a2(x1, x2)dx2 ∈ Λ1(R2, 0). The condition that
f∗α = 0 is equivalent to that 3a1(t

3, t4)+ 4a2(t
3, t4)t = 0. Take a1 = −4x2, a2 = 3x1.

Then we have the Euler form. The fact [E♯] 6= 0 is checked by a direct calculation.
The remaining follows from that x3

1E
♯, x1x2E

♯ and x2
2E

♯ belong to A1(Z,R2).

Example 9.7. (E12) Let f : (R, 0) → (R2, 0) be a map-germ defined by f(t) =
(x, y) = (t3,±t7 + λt8), (λ ∈ R). This is not of quasi-homogeneous, if λ 6= 0. The
defining equation of the image Z of f is given by

F (x, y) = x7 ± 3λx5y ± λ3x8 ∓ y3.

By direct calculations, we see that, at least formally, G1(Z,R2) is generated by the
1-forms

ω1 = −(±49xy − 15λ2x4 − 57λ3x2y + 8λ4y2 ∓ λ5x5)dx+ 3(7x2 − λy)(1 ∓ λ3x)dy,

and

ω2 = −(±7x2y ± λy2 − 2λ2x5 − 8λ3x3y)dx+ 3x2(1∓ λ3x)dy,

if λ 6= 0.
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Then residue R1(Z) of degree 1 is generated by [ω1]
a and [ω2]

a over Λ0(R2). If
λ = 0, R1(Z) is generated by only [ω1]

a.

Proof. The calculations, for the case f(t) = (x, y) = (t3, t7 + λt8), go like this:
Let ω = a(x, y)dx+ b(x, y)dy. Then f∗ω = 0 if and only if a ◦ f = (b ◦ f)(7t4 +8λt5).
We set the ideal

I = {b ∈ OR2,0 ; (b ◦ f)(7t
4 + 8λt5) ∈ f∗OR2,0},

and find the generator of I. Regarding that OR,0/f
∗OR2,0 is generated by

1, t2, t4, t5, t8, t11 over R, we find that 7x2 − λy ∈ I and x3 ∈ I. In fact, since
y(7t4 + 8λt5) = 7t11 + 15λx4 + 8λ2t13 and x2(7t4 + 8λt5) = 7xy + λt11, we have

(7x2 − λy)(7t4 + 8λt5) = 49xy − 15λ2x4 − 8λ3t13 = 49xy − 15λ2x4 − 8λ3x2y + 8λ4t14

= 49xy − 15λ2x4 − 8λ3x2y + 8λ4y2 − 16λ5x5 − 8λ6t16

= 49xy − 15λ2x4 − 8λ3x2y + 8λ4y2 − 16λ5x5 − 8λ6x3y + 8λ7t17

= 49xy − 15λ2x4 − 8λ3x2y + 8λ4y2 − 16λ5x5 − 8λ6x3y + 8λ7xy2 − 16λ8x6 − 8λ9t19

· · ·

= 49xy + λ2x4 +
−16λ2 − 8λ3x2y + 8λ4y2

1− λ3x
=

49xy − 15λ2x4 − 57λ3x3y + 8λ4y2 − λ5x5

1− λ3x
.

Similarly we have

x3(7t4 + 8λt5) = 7t13 + 8λt14 = 7x2y + t14 = · · ·

= 7x2y +
λy2 − 2λ2x5 − λ3x3y

1− λ3x
=

7x2y + λy2 − 2λ2x5 − 8λ3x3y

1− λ3x
.

For f(t) = (t3,−t7 + λt8), we may replace y by −y and λ by −λ in the above
calculations.

The determinant of coefficients of ω1, ω2 (and those of the corresponding loga-
rithmic vector fields) is given by
∣

∣

∣

∣

−(±49xy − 15λ2x4 − 57λ3x2y + 8λ4y2 ∓ λ5x5) 3(7x2 − λy)(1∓ λ3x)
−(±7x2y ± λy2 − 2λ2x5 − 8λ3x3y) 3x2(1∓ λ3x)

∣

∣

∣

∣

= 3(1∓λ
3
x)λ2

F.

Thus we see that R1(Z) is generated by [ω1]
a and [ω2]

a over Λ0(R2).
If λ = 0, then G1(Z,R2) is generated by the Euler form ω1 = −7ydx+ 3xdy and

the exterior differential ω2 = dF of F . Then R1(Z) is generated by only [ω1]
a, since

[dF ]a = 0.
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