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Abstract. We study germs of differential forms over singular varieties. The geometric restriction
of differential forms to singular varieties is introduced and algebraic restrictions of differential forms
with vanishing geometric restrictions, called residual algebraic restrictions, are investigated. Residues
of plane curves-germs, hypersurfaces, Lagrangian varieties as well as the geometric and algebraic
restriction via a mapping were calculated.
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1. Introduction. For a smooth manifold M and the space AP(M) of all dif-
ferential p-forms on M the restriction w|y of w € AP(M) to a smooth submanifold
N C M is well defined by the geometry of N. If N is any subset of M then the
forms o + dB, o € AP(M), f € AP~Y(M), where a and 8 annihilates any p - tuple
(and p — 1 - tuple respectively) of vectors in T, M, € N, are called algebraically
vanishing on N or having zero algebraic restriction to N (see [6][7]). Now the restric-
tion (algebraic restriction) of w € AP(M) to N is defined as an equivalence class of w
modulo forms with zero algebraic restriction to N. The notion of algebraic restrictions
was introduced by M. Zhitomirskii [19] for contact structures and in [6][7] for general
differential forms. The idea goes back to V.I. Arnold’s study (see [1]) of singular
curves in the presence of symplectic structure. Restriction of symplectic two-form to
the regular part of N is not complete symplectic invariant. It was proved in [7] that
the complete invariant, Arnold’s ghost invariant, is the singularity of the algebraic
restriction of the symplectic form to N in the case N is quasi-homogeneous ([6][7]).
We may show a familiar example of this phenomena for Ag-type singularities of plane
curves.

N=A,={zcR¥ ! —22 =2-3=0}, k>1.

Restrictions of two-forms to the regular part of N are vanishing but the algebraic
restrictions (pure singularity effect - residual element) form a finite dimensional space.
The space of algebraic restrictions of all two-forms on R?" to Aj-singularity is spanned
by algebraic restrictions of basic, symplectic forms

[Qi]Ak = [Iid:l?l/\dIQ—Fdel/\dIg—F...—Fdannfl /\d(EQn]Ak, i=0,...,k—1.

For given symplectic Darboux structure (R?",w) we have a local diffeomorphism ®;
such that @6’ = w. Then we get the symplectic classes of curves A} = ®; *(Ay),i =
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0,...,k distinguished by algebraic restriction. In parametric form they were classified
in [1] for Ay singularity:

Agk)o Tt (t2,t2k+1,07 .. .,0),
Aoyt s (82, 02FF1F20 42641 0 0),r =1,...,2k.

The residual elements of two-forms on Ay, Dy, Fg, F7, Eg planar singularities where
classified in [7] and in principle in [6] and [7], the notion of algebraic restrictions of dif-
ferential forms was introduced and were established its basic properties. As we see the
spaces of algebraic restrictions of contact forms and symplectic forms are effectively
applied to contact and symplectic classifications of singularities [19][4][5][8][9].

In this paper we introduce the notion of “geometric restrictions” of differential
forms and study its general properties (see §2). In particular we study the differ-
ence (or the quotient) of geometric restrictions and algebraic restrictions. In fact we
study the space of algebraic restrictions with null geometric restrictions, which we
call “residual module”.

In [19] one can find the notion of geometric restrictions of the contact structure to
singular varieties, as the restrictions to the regular parts of the varieties. The notions
of geometric and algebraic restrictions of differential forms were studied under different
names much earlier by many authors in the context of the generalization of de Rham’s
theorem for singular varieties (see for examples [16][10][11][6]). In particular Ferrari
(Lemma 1.1, p.67 of [10]) proved that the notion of the geometric restrictions used
in [19] and used in this paper agree for holomorphic differential forms and complex
analytic spaces (cf. Lemma 4.2 in this paper).

The difference of geometric restrictions and algebraic restrictions are compered
with the following general situation: A “variety” Z in a manifold M is regarded as the
image of a mapping (parametrization) f : N — M, f(N) = Z, while Z is regarded as
a zero-set of a mapping (a system of defining equations) F': M — RP, F~1(0) = Z. If
f and F satisfy certain conditions respectively, then the space of geometric restrictions
is described in terms of f and the space of algebraic restrictions is described in terms
of F.

Of course it is a fundamental but a difficult problem to give a general method
choosing f and F' as above from an arbitrary subset Z C M. Nevertheless we give the
general framework of the theory and provide several useful observations for general
Z to be effective in concrete calculations of residual modules for important examples
which are shown also in this paper. In Section 2 we introduce the basic notions of
geometric and algebraic restrictions to any subset of a smooth manifold. The deeper
understanding of geometric restrictions goes through several constructions and mainly
construction of a kind of tangent bundle - geometric tangents and co-normals to any
subset of a manifold in Section 3, and stratified subsets in Section 4. The similar
results for algebraic tangents and co-normals were obtained in Section 5. We then
exploit these constructions in Section 6 and investigate the geometric and algebraic
restrictions to any subset of a manifold represented by a mapping. Finally, in Sections
7, 8, 9 we conclude with the exact calculations of residues for hypersurfaces, for
Lagrangian varieties and for plane curve-germs. Note that from the latter half of
Section 6, we treat local cases.

The authors thank the referee for valuable comment.

2. Space of geometric and algebraic restrictions. Let A*(M) =Y, A¥(M)
denote the space (total) of C* differential forms on a C* manifold M and (A*(M), d)
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de Rham complex on M. Here o indicates the natural graduation. We set A* (M) = 0
if k <0 ordim(M) < k. Given a subset Z C M, the notion of algebraic restrictions
of differential forms is introduced in [6]: Let A% (M) denote the subspace of A®(M)
consisting of differential forms vanishing on Z. Note that A% (M) is not necessarily d-
closed. Let A®*(Z, M) denote the differential ideal of (A®*(M), d) generated by A% (M):

A2, M) ={a+dB; a € A5 (M),B € Ay (M)}

For an w € A*(M), the residue class [w]} € A*(M)/A*(Z, M) is called the algebraic
restriction of w to Z.

In this paper we introduce the notion of geometric restrictions for any subset Z
in a C* manifold M as follows: Define

G*(Z,M) :={we A*(M); f*w =0 for any C* mapping f: N - M
from any C°° manifold N with f(N) C Z}.
Note that G(Z, M) = A°(Z, M) = {h € A°(M); h|z = 0}.
For an w € A®(M), the residue class [w]}, € A®(M)/G*(Z, M) is called the geo-

metric restriction of w to Z.
Accordingly we introduce the vector space

A%(Z) =N (M)/A*(Z, M)
of algebraic restrictions to Z, and the vector space

G*(Z):=A*(M)/G*(Z, M)
of geometric restrictions to Z.

LEMMA 2.1. For any subset Z in a C°° manifold M, we have
(1) G*(Z, M) is d-closed.
(2) G*(Z,M) D A*(Z,M).

Proof. (1) Let w € G*(Z,M). Then for any C* map f : N — M from any
manifold N with f(N) C Z C M, we have f*w = 0. Then f*(dw) = d(f*w) = 0.
Therefore dw € G*(Z,M). (2) Let o € A%(M). Then for any f : N — M with
f(N) C Z, we have f*a = 0. Therefore we have G*(Z,M) D A%(M). By (1), we
have required result. O

Now we introduce the space
R*(Z) :=G*(Z, M)/ A*(Z, M) (C A*(Z)),

of algebraic restrictions with null geometric restrictions to Z. Then there arises the
natural exact sequence

0—R*(Z)— A%(Z) = G*(Z) — 0.

The space A®*(Z) of algebraic restrictions of differential forms to Z has the natural
module structure over de Rham exterior algebra A®(M), which is defined by

BA[a)Z = [BAalg,
with the differential

d:A*(Z2) = A*TH(Z)
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defined by d[a]% := [da]% and satisfying
d(B A [a]g) = dB Afaly + (-1)*8 A dlaly,

whenever 3 € AF(M).
Also the space G*(Z) (resp. R*(Z)) has the natural module structure over the
de Rham exterior algebra A®(M) as well.

REMARK 2.2. The non-zero algebraic restrictions of symplectic forms to a curve
in a symplectic space was called “ghost” according to [1]. The symplectic forms has
null geometric restrictions on parametric curves. Since we are regarding all algebraic
restrictions with null geometric restrictions of differential forms, we may call our
residues “pure ghosts”.

3. Geometric tangents and conormals. To understand geometric restric-
tions generally, we introduce a kind of “tangent bundle” for any subset of a manifold.

Let E be a finite dimensional vector bundle over a topological space X. A subset
L C Eis called fibrewise linear, if for any x € X, L, := LN E, is a linear subspace of
the fibre E, of E over x. Let K C E be any subset. Then the closed linear hull K of
K in E is defined as the smallest closed and fibrewise linear subset in F containing K,
which is given by K = NL for all closed fibrewise linear subsets L C F with K C L.

Let Z be any subset of a C*° manifold M. Let p € Z. Then first we consider the
set of “geometric” tangent vectors to Z at p, which is defined by

(T9Z), :=={[7]o; v: (R,0) = (M,p) C* curve, v(R,0) C Z} C T, M.

Here [y]o means the tangent vector represented by the curve v at 0: [y]o € T )M.
Note that (19Z); C T, M is not necessarily a linear subspace.

Moreover we set (T92)° = Upez(T9Z),. Then the geometric tangent bundle
T9Z C T M| is defined by the closed linear hull in T'M|; of the set (T92)°.

Note that, in general, 797 is not necessarily a subbundle of 7'M | (not necessarily
locally trivial).

We define the geometric conormal bundle T;M as the “dual” of T9Z:

T; M = {a €T*"M|z ; al(roz), =0, if a€ T M for some p € 7},

where (T9Z), C T,M is the fibre of T9Z over p € Z.

EXAMPLE 3.1. Set Z := {(z1,72); 23 — 22 = 0} C R? Set Zy = {0} and
Zy == Z\ Zy. Then (T92)° = TZ, UTZy, which is fibrewise-linear. We have
TIZ =TZ,UTZy = {(t?,t3,v1,v2) € TR?; 3tv; — 2v3 = 0,¢ € R}. In particular we
have a parametrization of T9Z by R? — TR2, (t,s) — (t2,13, s, %ts) Moreover we
have T3R? = {(t?,t3,p1,p2) € T*R?*; p; = —%tpg,t € R, p2 € R}, that is called the
open Whitney umbrella ([11][12]).

Let A¥(T M) be the exterior product bundle of the tangent bundle TM. Generally
we define the geometric k tangent bundle T9*Z C A¥(TM) for any k > 1 as follows:
First we set, for p € Z,

(T9*Z)p = {p € NN(T,M); p= (AN*f)(wr A~ Auy),

for some f: (R*,0) = (M,p), fF(R*,0) C Z, uy,...,up € ToR*}.
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Then we set (T'9FZ)° = Upez(T9*Z)5. Finally we define T9*Z by the closed linear
hull of (T9%Z)° in AF(TM)|5.

For k =0, we set T9°Z := Z x R C M x R.

Note that 791 Z = T9Z. Also note that, if Z C M is a closed submanifold of M,
then T9*Z = AM(T Z).

The natural paring ( , ) : AF(T M) x AF(T,M) — R is defined by
<91 A ANOg,vg A+ A ’Uk> = det(@i(vj))lgi,jgk,

for 01,...,0k € TyM and vy, ...,vx € T,M. Then any k-form w € AF(M) is regarded
as a fibrewise linear and continuous function

w: AF(TM) = R.

For any subset L C AF(TM), we write w|r, the restricted function w|, : L — R. If
L = N¥(TM)|z for a subset Z C M, then the restriction w|z, is written also by w|z
as usual. If L = T9%Z, then w|;, is written by wl||z to distinguish with w|z in this
paper. Therefore if Z C M be a submanifold of M, then w|/z = i*w, the pull-back
for the inclusion ¢ : Z — M.

ExXAMPLE 3.2. In Example 3.1, we have T92Z = Z x {0} C A?(TR?), the
zero-section.

In §2 we have introduced the space G*(Z, M) with zero geometric restrictions. To
give its characterization, we first show the following.

LEMMA 3.3.

GM(Z, M) = {w e A*(M); g*w =0 for any g : (R*,0) - M with g(R*,0) c Z}.

Proof. The inclusion “C”is clear by the definition. To show the reverse inclusion,
we take w from the right hand side and let f : N — M be any C'°° map with
f(N) C Z. Let p € N and v1,...,ux € T,N. Suppose v1 A--- Avg # 0. Take a
C*> immersion-germ h : (R* 0) — (N,p) such that vy,...,vx € hye(To(RF)). Take
wi,...,wy € To(RF) such that h.(w;) = vi(1 < i < k). Set g = foh. Then
0= (¢*w)(w1 A~ ANwg) = (f*w)(vr A -+ Avg). Therefore we have f*w = 0 at any
p € N. Thus we have f*w = 0. Therefore w € G¥(Z, M). O

Then we have a description of the space G*(Z, M) with zero geometric restrictions:
ProposITION 3.4. We have

GM(Z, M) ={w e A*(M); w|rory =0}
= {w (S Ak(M) y Wng,kZ = O,dWng,k+1Z = 0}

Proof. The inclusion “C” of the first equality: Take any w € G*(Z, M). Take any
germ f : (R¥,0) — M with f(R*,0) C Z. Then f*w = 0. This means that w vanishes
on (A*£)(AF(ToRF)). Therefore w vanishes on (T9'%Z)°. Since w is fibrewise linear
and continuous, we have w|pq.xz = 0.
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The inclusion “D” of the first equality: Suppose w has a non-null geometric
restriction to Z. Then there exists a map-germ f : (R¥,0) — M with f(R*,0) C Z
and f*w # 0 by Lemma 3.3. Then w((AFf.)(A¥(ToR¥)) # 0. This means that
W|ra.kz # 0, which leads to a contradiction. Thus we have the first equality.

Since G*(Z, M) is d-closed, we have the second equality. O

We show a general property of geometric k tangent bundles.

LEMMA 3.5. Let Z be any subset of a C> manifold M. Let T9*Z NT94Z denote
the closed linear hull of

{vAhw; ve TZ-?’]“Z7 w e TZ-‘Z’KZ7 (pe Z)}
in AFT4(TM)|. Then we have

T9k 7 c TIRZ AT Z (C AFTHTM)).
In particular we have

T92Z C T9'Z NT9Z (C AX(TM)).

Proof. Take any p € (T9kZ)°. Then, for some p € Z, there exist
f o (R¥0) — (M,p) with f(R*£0) C Z and u € A*T,R*¢ such that
p = (A" f.)(u). Then there exist v1,...,vx € To(T* x {0}) and vgy1,...,Vk4e €
To({0} x T*) such that u = vy A - vk A Vgs1 A -+ A vgye. Define fi : (R* 0) —
(M.p) by fulz) = f(@,0) and fi : (R%,0) = (M.p) by fo(y) = f(0,y). Let
v = (fi)x (V1) A+ A(fi) (i) and w = (fe)s(Vrg1) A+~ A(fe)« (Vkte). Then p =vAw.
Therefore p € T9*Z ANT9*Z. Thus we have (T9*+¢2)° C T9*kZ NT9*Z. Taking the
closed linear hull of both sides of the inclusion, we have the required inclusion. O

Let © be the canonical symplectic form on T*M. Since () is a 2-form on the
cotangent bundle T*M, it is regarded as a function Q : A2(T(T*M)) — R.

PropoOSITION 3.6. Let M be a C* manifold and Z a closed subset of M.
Consider the geometric conormal Ty;M C T*M of Z in M. Then the Liouville 1-
form © € AYT*M) vanishes on T9Y(T3M). The symplectic form Q € A*(T*M)
vanishes on TIHTyM) N TI9YTEM). In particular © € GHTHM,T*M) and
Qe GTHM, T*M).

Proof. Let (zo, ) € THM and v € Tg’l(TEM)(()mo,ao)' Let v be represented by
a curve v : (R,0) = (T*M, (w0, ) with v(R,0) C THM. Set v(t) = (z(t), a(t)).
Then x(0) = 29 and a(0) = ap. Note that z : (R, 0) — Z. Therefore 2/(0) € (T912)°.
Since T91Z = T91Z > (T91Z)°, we have ag(z'(0)) = 0. Then O(v) = ag(2’'(0)) = 0.
Therefore we have ©|rq.1(1; a1y = 0 and thus we have ©|rs.1 (1) = 0. By Proposi-
tion 3.4, we have © € G (T3 M, T*M). Since Q = dO, we have Q € G*(T3M,T*M).
To see the last result in another way, we take another w € TgJ(T}M)E)mO,ao)- Let
w be represented by a curve § : (R,0) = (T*M, (zo, ap)) with 6(R,0) C T5M. Set
5(t) = (y(t),B(t)). Then y(0) = o, 3(0) = ag and ap(y’'(0)) = 0. Then Qv A w) =
ao(2'(0)) — ap(y’(0)) = 0. Therefore Q vanishes on T9YTEM) A T9(T5M). By
Lemma 3.5, we see Q vanishes on T9%(T4M). Then, by Proposition 3.4, we have
Qe G TEM, T*M). 0
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4. Geometric restrictions to a stratified set. In the previous section we
treat arbitrary subset in a manifold. Here we will give a simple description of the
space of differential forms with null geometric restrictions for a stratified set.

Let M be a manifold and Z be a subset of M. We mean by a stratification
S = {S} alocally finite collection of submanifolds of M giving a disjoint decomposition
Z =UgesS of Z.

LEMMA 4.1. (Geometric restrictions to a stratified set) We have
G*(Z,M)={ae A (M) ; alls =0, for any stratum S € S}.

Here al|s = a|arrs), if @ is a k-form. Therefore, for any o, o’ € A*(M), (o], =
(']}, € G*(Z) if and only if a||s = &||s, for any stratum S € S.

Proof. The inclusion “C” is clear, by taking, as f in the definition of G*(Z, M),
the inclusions of strata. To show “D7”, take o € A*(M) from RHS, and take any
f: N — M with f(N) C Z. Consider the decomposition N = Ugesf~1(S). Take
any point to € N. Since S is locally finite, there exists S € S such that the closure
of the interior f=1(S)° of f~1(S) contains to. By the condition a|s = 0, we have
f*a =0 on f71(9)°. By the continuity, we have (f*a)(typ) = 0. This shows that
f*a = 0. Therefore we have that a belongs to G*(Z, M). The second statement is
clear. 00

LEMMA 4.2. Suppose that the stratification S of Z satisfies the boundary con-
dition, namely, for any S,8" € S,SNS" # O implies S O S’, and the Whitney’s
reqularity condition (a), namely, for any S,S" € S, for any xg € S’ and for any se-
quence {yn} on S converging to o, if there exists a limit V = lim, oo Ty, S C Tpo M,
then V O T,,S’. If there exists a stratum Smax with S =_7. Then,

g*(Z, M) ={a e A* (M) ; als,,. =0}

Proof. By the boundary condition and Whitney regularity (a), «||s,,.., = 0 implies
that ]| = 0 for any S € S. Therefore, by Lemma 4.1, we have the equality. O

5. Algebraic conormals and tangents. Let Z be a subset of a manifold M.
Let p € Z. We consider the “algebraic conormals” to Z at p:

(TS M), i= {dh € T M; h: (M,p) — R, h|5 = 0}.
Then (T7"M), is a linear subspace of Ty M. Consider its “dual”:

(1°Z), = {v € T,M ; (dh,v) = 0 for any function h € A°(M) with h|z = 0}.
We call the linear subspace (T“Z2), Zariski tangent space of Z at p, which is the set
of “algebraic” tangent vectors to Z at p. Then algebraic tangent bundle T*Z C TM
is defined by the closed linear hull in TM|z of the set (T°2)° = U,z(T?Z); of
“algebraic” tangent vectors to Z. We call T*Z also Zariski tangent bundle of Z.

Note that, in general, T*Z is not necessarily a subbundle of T'M|, as well as
TIZ.
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Moreover, we define the algebraic k tangent bundle T**Z by the closed linear hull

in AB(TM)|5 of (T**Z)° = UPEZ(T“”“Z);, where

(T**2Z)5 == {p € N"(T,M); (dB, p) = 0 for any B € A*" (M) with |z = 0}.

If Z is a closed submanifold of M, then T9*Z = T*kZ = A¥(TZ), for any k > 1.
Note that T%'Z =T%Z. For k =0, we set T*°Z =T9°Z =Z x R C M x R.
Then we have:

LEMMA 5.1. Let Z be any subset of a manifold M and k > 1. Then we have
(1) For any p € Z, {0} C (T9*Z); C (T**Z)5 C N*(T,M).

(2) Z x {0} C (T9*Z)° C (T**Z)° C NK(TM)| C AF(TM).

(3) Z x {0} CcT9*Z Cc T**Z C N¥(TM)|; C AF(TM).

Proof. (1) Let p € (T9FZ)2. Then p = (A" fi)(ur A+ Aug) = faur A=+ A foug
for some f : (R*,0) — (M,p) with f(R*,0) C Z and u; € ToR*,1 < i < k. Let
B € A*=1(M) with 8|z = 0. Then 3 is expressed, on a coordinate neighbourhood U
of p, as a sum of forms by with b € A°(U), bz = 0,7 = dx;, A--- Adx;, € AF=HU).
Then df is the sum of forms db A ~. Then the paring (dS, p) is the sum of {(db A+, p).
Since f*b = 0, we have (db, f.u;) = (df*b,u;) = 0 for any 1 < ¢ < k. Therefore we
have (db A v, p) = 0 and we have (df, p) = 0. Thus we have p € (T“’kZ)g. Therefore

we have (T'9%Z)5 C (T'*Z)3. Other inclusions are clear. The assertions (2) and (3)
follow from (1). O

Recall that A¥(Z, M) denotes the set of differential k-forms with null algebraic
restrictions. Then we have:

PROPOSITION 5.2.

Ak(Za M) Cc{we Ak(M) ; Wpany =0, dw|pariiy =0}

Proof. Let w € A*(Z, M). Then w = a+dg, for a k-form « vanishing on Z and a
(k —1)-from 8 vanishing on Z. Take p € (T**Z)°. Let p € (T**Z)5 for some p € Z.
Then (o, p) = 0 since a(p) = 0. Moreover (df3, p) = 0 since p € (T*Z)7. Thus we
have (w, p) = 0. Therefore we have w|(ga.kz)o = 0 and thus we have w|ga.xz = 0.

Furthermore, for any p’ € (T%*+12)°, (dw, p') = (da, p’) = 0 by the definition of
(T**+17)°. Thus we have dw|pars1y = 0. O

REMARK 5.3. In Proposition 5.2, the equality does not hold in general. See
Example 5.4.

ExAMPLE 5.4. In Example 3.1, we have
(T'Z)° = {(x1,29,v1,v2) ; 3 — 25 = 0,320 — 22909 = 0} = TZ; UT,R?,

which is closed in TR?2. Therefore we have T%'Z = (T%'Z)°. Further we have
(T*22)° = N2(ToR?*) U (Z1 x {0}) = T*?Z C A>(TR?)|z.

Let w = —3x129dx1 + 2x%d:172. Then dw = Txidry A dre. Then w|panz = 0,
dw|a2z = 0. However w ¢ A'(Z,R?).
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REMARK 5.5. By Proposition 5.2 and Remark 5.3, it is interesting to study the
space

AN Z, M) = {w € A¥(M); w|gaky =0, dw|gariiy =0}

6. Geometric and algebraic restrictions via a mapping. Let f: N — M
be a C*° mapping from a C'*° manifold N.

Let w € A*(M) be a differential form on M. Then we call the pull-back f*w
the geometric restriction of w by f. Then, regarding the morphism f* : A*(M) —
A®*(N), we consider the subspace consisting of differential forms with null geometric
restrictions by f:

(Kerf*)* :={we A*(M); f*w = 0}.
Then we have
(Kerf*)* > G*(f(N), M).

Let Z C M be any subset of M. We say that a C*>° map f : N — M dominates
Z C M geometrically, if f(N) C Z and the closed linear hull of A®f,(A¥(TN)) in
AE(TM) contains T9*Z for any k > 1. See §3.

LEMMA 6.1. Suppose f : N — M dominates Z C M geometrically. Then we
have

(Kerf*)* = G*(Z, M).

Proof. The inclusion “D” is clear by the definition.

To show “C”, take any w € AF(M) with f*w = 0. Then w restricted to
(AR £)(AF(TN)) vanishes, so, by the assumption it is on the closed linear hull of
(AR £O)(AR(TN)), so it is on T9*Z. By Lemma 3.4, we have o € G¥(f(N), M). O

The space of geometric restrictions by f of differential forms, which is identified
with

G*(f) == A*(M)/(Kerf*)*,
has the natural module structure over the de Rham exterior algebra A®(M).

In the case Z = f(N), we describe A*(Z, M) in terms of mapping f.
First we introduce the space

AR(f)={B: N = A¥(T*M); B covers f via the projection 7 : A¥(T*M) — M},

the space of differential k-forms along f, and a morphism wf : A*(M) — A*(f) defined
by a+ ao f. Here A¥(T*M) is the exterior product of the cotangent bundle 7*M.
The notion wf is used, based on the classical Mather’s notation. As for Mather’s
notation, we define also a morphism ¢t*f : A*(f) — A®*(N), by

(t F(B)) (@) = N*(fua) " (B(2)
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where AF(fip)* : /\kT;(I)M — AFT*N is the wedge of the dual linear map of the
differential map fip : To N — Ty M.
We have the commutative diagram for k£ > 1,
k-1 W Ak—1 CRTU Ak—1
ATH M) — AYf) —= AFH(N)
dl 1d
k ka k t*kf k
AR (M) — AR(f) —  A%(N).

Note that t*°f gives the identification of A°(f) and A°(N), which is the space of
sections of the trivial line bundle.
The following is clear by the definition of A(f(N), M):

LEMMA 6.2. Let f: N — M be a C*> mapping. Then we have, for any k > 0,

Ker w* f + d(Ker w1 f) = A*(f(N), M).

We study the quotient space
RE(f) = (Ker f*)*/A*(fF(N), M) = (Ker f*)*/(Ker " f + d(Ker w*~1f)),

which is the space of algebraic restrictions to the image of f with null geometric
restrictions by f.

The constructions above are localized, i.e. they are formulated in terms of sheaves
naturally. From now on we treat the local cases only.
The following is clear:

LEMMA 6.3. If f: (R™,0) — (R™,0) is an immersion-germ, then
R¥(f) = Ker f**/(Ker w*f + d(Ker w*~1f)) =0,

for k>0.
Moreover we have,

PROPOSITION 6.4. Let f: (R™,0) — (R™,0), 2n < m, be a finitely determined
map-germ, Z the germ of the image of f. Then the R-vector space R*(Z) = R*(f)
is of finite dimension.

Proof. We may suppose f is an analytic map-germ. Then f dominates Z geomet-
rically. Therefore, by Lemma 6.1, we have R*(Z) = R*(f). Consider the complexi-
fication fc : (C™,0) — (C™,0) of f. Then Kerfc* and Ker wfc + d(Ker wfc) are
coherent submodules of A®*(C™,0) over A°(C™,0). Therefore R®(fc) is also coherent.
By Lemma 6.3, the support of R*(fc) is just the origin. Then by using Nullstellensatz
in the form of [18], we have that R*(fc) is a finite dimensional vector space. Con-
sider R**(f) which is defined similarly as R*(f) but by real analytic forms. Then
we have that R*“(f) is also of finite dimension. Moreover we can show that R®(f)
is formally generated by R*“(f), so it is generated by R*¥(f) over A°(R™,0) (see
[3]). Therefore we have that R*(f) is also of finite dimensional. O

REMARK 6.5. W. Domitrz [4] shows that the subspace of algebraic restrictions
of closed 2-forms in R?(C) on any analytic curve C is a finite dimensional vector
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space. Proposition 6.4 generalizes Domitrz’s theorem under the assumption of finite
determinacy.

Let Z C (R™,0) be a subset-germ in R™ at 0. The embedding dimension of Z
is defined as the minimum of the dimensions of submanifold-germs S C (R™,0) with
Z CS.

LEMMA 6.6. Suppose the embedding dimension of Z C (R™,0) is equal to r. Let
S C (R™,0) be a submanifold-germ of dimension r with Z C S. Let h: (R™,0) - R
be a function-germ vanishing on Z. Then we have dh|p,s = 0. Therefore the tangent
space TpS to a submanifold-germ S of (R™,0) of dimension r containing Z is uniquely
determined. In fact ToS coincides with the Zariski tangent space (T°Z)§ of Z at 0 in
R™ (see §5).

Proof. Assume dh|r,s # 0. Then h=1(0) C (R™,0) is a C* hypersurface which
is transverse to S. Then h~1(0) NS is a submanifold of » — 1 which contains Z. This
leads to a contradiction with the assumption that the embedding dimension of Z is
r. Thus we have

ToS C {ve ToR™; (dh,v) =0 for any function-germ h : (R™,0) — R with h|z = 0}
= (T°2).

For any vector v ¢ TpS, there exists a function-germ b : (R™,0) — R with hlg =0
and (dh,v) # 0. Therefore we have the equality 7pS = (T°Z)g. O

LEMMA 6.7. For any k= 1,2,...,r, any k-form o in A*(Z, M), o vanishes on
NE(TeZ)s.

Proof. We remark that A*(T%Z)3 C T%*Z,. Then by Proposition 5.2 we have
the result. O

Let f: (R™,0) — (R™,0) be a germ of a proper mapping. Then the germ of
the image of f is well-defined as a subset-germ in (R™,0). Therefore the embedding
dimension of f is defined via the image of f.

PROPOSITION 6.8. Let f : (R™,0) — (R™,0) be a proper map-germ. Suppose
the embedding dimension of f is equal to v > n. Let S C (R™,0) be a minimal
dimensional submanifold-germ containing the image of f with dim S = r. Then, for
any k = 1,2,...,7, any k-form in Ker w*f + d(Ker w*~1f) vanishes at ToS. In
particular we have

R™(f) # 0.

Proof. The first half follows from Proposition 6.7. To show the second half, we
take an r-form w on (R™,0) such that (w||s)(0) # 0. Then the geometric restriction
of w to the image of f is not equal to zero. Thus we see that the class of w in R"(f)
is not equal to zero. O

L15). Then the

EXAMPLE 6.9. Let f : (R,0) — (R0), f(t) = (3% 3t*, &
embedded dimension of f is equal to 3. Then, in fact, the geometric restriction
[dx1 A dxo A dxs]9 = 0 and the algebraic restriction [dzy A dza A das]® # 0. Therefore
the residue of volume form [dx; A dwa A dz3]” # 0 in R3(f).
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7. Residues for hypersurfaces. Let F' : (R™,0) — (R,0) be a non-zero an-
alytic function-germ and consider the set-germ Z C (R™,0). Suppose the ideal
Iz = Az(R™,0) C Op, := A°(R™,0) of function-germs vanishing on Z is generated
by F. Then we have on the residues of top degree:

PROPOSITION 7.1.  R™(Z) = O, /(F,25, ... 25V . In particular

dimg R™(Z) is given by the Turina number of F ?1?0 oo

Proof. Let a be any m-form on M = (R™,0). Then o € G™(Z, M). We have that
a e A™(Z, M) if and only if there exist an m-form S and an (m — 1)-form 7 such that
a = FpB + d(F7). Take the volume form w = dzq A - -+ A dx,,. There exists a unique
h € Op, with a = hw. Then a € A™(Z, M) if and only if h € (F, §=,..., 25) ¢ .
Thus we have the result. O

For the residue of degree 1 of hypersurface, we have:

PROPOSITION 7.2. Let F: M = (R™,0) — (R,0) be a C* function-germ. Let Z
denote the germ of zero-locus of F in (R™,0). Suppose the ideal I(T9Z) of function-
germs on (TR™,(0,0)) vanishing on the geometric tangent bundle T9Z C TR™ is
generated by

m

Zvl SF and F(z).

=1 v

Here (x,v) denote the system of coordinate functions on TR™. Then we have

RY(Z) =0.

Proof. Let v € G'(Z, M). Write a = " | a;dz;. By Proposition 3.4, o vanishes
on the geometric tangents 79Z. Then by the assumption, there exist C*° functions
B(z,v),C(x,v) such that

Zai(x) i = B(z,v <2018E ) + C(z,v)F(x),

’L

n (TR™, (0,0)). By differentiating by v;, we have

OB OF OF oC
Y= o <ZUZ ) oz, o,

Setting v = 0, we have

Then

a=Yadz; = B(z,0)dF(z) + F(x) <g—i(:zr, O)dxi> e ANz, M).

i=1

By the similar proof of Proposition 7.2, we have:

PROPOSITION 7.3. Let Fy,...,F. : M = (R™,0) — (R,0) be C* function-
germs. Let Z denote the germ of zero-locus of F' = (Fy,...,F.): M — (R",0) in
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M. Suppose the ideal I(T9Z) of function-germs on (TR™,(0,0)) vanishing on the
geometric tangent bundle T9Z C TR™ is generated by

m

OF,

S @), 1< < and Fyla) 1< j<n
7

=1

Then we have RY(Z) = 0.

8. Residues for Lagrangian varieties. Now we suppose M is a symplectic
manifold of dimension 2n with a symplectic form Q. A subset Z C M is called a
Lagrangian variety if the geometric restriction [Q]7, = 0 and the maximal rank of the
geometric tangent bundle 797 C T M is equal to n (see §3).

We describe R'(Z) in terms of vector fields via the symplectic duality. The space
of vector fields V(M) over M corresponds to the space of 1-forms A*(M) by

X = X*:=ixQ e AY(M), (X € V(M)).

The inverse of the correspondence is written, for any o € AY (M), by o — o € V(M).
If « = dH for some H € A°(M), then X := (dH)’ is the Hamiltonian vector field
with the Hamiltonian H.

If M = R?* with the symplectic coordinates (x,p), then a vector filed X =
S a0 bjaipj corresponds to the 1-form w = — 37", bjdw; + 31, aidp;.

The tangent bundle T'M is identified with the cotangent bundle 7% M. Therefore
to any subset S C T'M, there corresponds a subset S” C T*M.

Similarly the space of 2-vector fields V?(M) corresponds to the space of functions
A°(M) by

XAY =iyixQ e A°(M), (X AY € VZ(M)).
The space of O-vector fields (i.e. functions) V°(M) corresponds to A?(M) simply by
h— hQ € A2(M), (h € VO(M)).

Let Z C M be a Lagrangian variety. Let w € A*(M). Then w € G'(Z, M) if
and only if the corresponding vector field X = w® (satisfying ix{) = w) is tangent to
Zreg. In fact 0 = w(Tp2) = ixQUTpZ) = WX, TpZ), so X(p) € T,Z, for any regular
point p € Zyee. A vector field X over M is called logarithmic if it is tangent to Zeg.
The 1-form w belongs to A'(Z, M) if and only if w” = X + X for a vector field X
vanishing on Z and the Hamiltonian vector field Xy of a Hamiltonian function H
vanishing on Z. In fact w € A'(Z, M) if and only if there exist a 1-form « vanishing
on Z and a function H vanishing on Z such that w = o+ dH. Then w’ = o’ + (dH)°
and o vanishes on Z if and only if a vanishes on Z. Moreover we have (dH)” = Xp.
Thus we have:

PROPOSITION 8.1. The first order residue R*(Z) is isomorphic as A°(M)-module
to the space of logarithmic vector fields modulo Hamiltonian vector fields restricted to

TM|z.



58 G. ISHIKAWA AND S. JANECZKO

9. Residues for plane curve-germs. In this section we study the residues
RY(Z) for a germ of plane curve Z in R?, as a special case of our arguments discussed
in the previous section. We also treat R(f) on the parametric case f : (R,0) —

(R2,0).

Now our idea to treat plane curves is to fix a symplectic form (an area form) Q
on R?, say,

Q =dxy Ndxs,

and apply the classification established in [13][14]. We conclude the paper by showing
several examples from our previous classification result. Though the classification
was performed in complex analytic case in [14], we can give the real classification by
adding necessary =+ to the lists.

PROPOSITION 9.1. (cf. [13][14]) Let f : (R,0) — (R?,0) be a simple or a uni-
modal map-germ under diffeomorphism equivalence to the symplectic plane with the
symplectic form Q = dx1 N dxs. Then f is symplectomorphic to one of the following
normal forms of map-germs (x1(t), z2(t)) : (R,0) — (R?,0):

A2€ : ( t2€+1)

EG@ . (t ( )é-‘rlt?)f-‘rl + Ef;]i)\JtB(é-i_])_l)?

Eerro: (85, () 1312 4 ST N300+,

Wi : (t t® + )\1t7)

Wis (417 + Mt + Aat!d),

Wiyt (14,55 4+ M85 £ 01249 A 40, (£=1,2,...)

Nog : ( t6 + )\1t8 + )\th + )\3t14)

Nay : (t5, 27 + Ait® + Aottt + Agt13 + A4 t18),

Nog : (£, 18 4+ At + Aot'2 4 Agt1 + \gt17 4 \5t22),

Way - (t 19 + )\1t10 + /\Qtll =+ /\3t15 + )\4t19)

W : (t4 ,t“ A At 4 A3t 4 \gt2 4 A\5t29),
(t*,

th _|_ A t2€+9 _|_ A t2€+11 _|_ A t2f+13
FXNEPT A t22) N £0, (0=1,2,...)

# .
W2,2é—1 :

REMARK 9.2. In any case, T9(Z) is the union of the tangent line £ at the origin
and T'(Zyeg). Suppose f is not an immersion. Then 7%(Z) is the union of TyR? and
T(Zyeg). Therefore T9(Z) # T%(Z). Moreover both T9(Z)* and T%(Z)* are Lagrange
varieties in T*R2.

Let us consider the complexification fc : (C,0) — (C2,0) of f and Z¢ the image
of fc. A holomorphic vector field which is tangent to the regular part of Z¢ is called
a logarithmic vector field of Zc (see [17][15]). Then it is known that the module
Der(—Z¢) of logarithmic vector fields is free of rank 2. If Z¢ is quasi-homogeneous,
then it is generated by the Euler form and the Hamiltonian vector field Xg of the
defining equation F' of Z¢. Here the Euler form is defined by

EY = —sxodzy + rridxs,

from the Euler vector field F = rzq 2 6 -+ sT2g,- 8 , if f = (f1, f2) is quasi-homogeneous
by the weights w(z1) = r, w(z2) = s.
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PROPOSITION 9.3. (Asg) In the case Ay, dimgr RY(Z) = 2. In fact RY(Z) = R (f)
and it is generated over R by the classes of E¥ and of x1 E*.

Proof. Let f : (R,0) — (R?,0) be a map-germ defined by f(t) = (t2,3). Let
a = ai(z1,72)dr1 + az(w1,r2)dry € A*(R20). The condition that f*a = 0 is
equivalent to that 2a;(t2,t%) + 3a2(t?,t3)t = 0. Take a; = —3x2,a2 = 2x1. Then we
have the Euler form E* = —3zyda; +2x1dxy € Kerf*. The denominator A'(Z, R?) =
Ker wf + d(Ker wf) is generated by

(2% — 22)dxy, (23 — 23)das, 23dr) — 3wodrs.

Then [E*] # 0 in RY(Z) = RY(f) = Ker f*/Ker wf + d(Ker wf). Therefore R'(Z) #
0. Moreover we see that R'(Z) is generated over R by the classes of E* and of z; E*.
In fact, zoF* and 22 E¥ belong to A'(Z,R?). O

REMARK 9.4. Note that, in Proposition 9.3, the Lagrange variety T9Z% is the
open Whitney umbrella, the conormal bundle of (2,3) cusp and T%Z* is the “open
Whitney full-umbrella”, the union of open Whitney umbrella and the fibre through
the origin (see [11][12]).

PROPOSITION 9.5. (A4) Let f : (R,0) — (R2,0) be a map-germ defined by
f() = (t2,#°). Then we have the Euler form E* = —5zadx1 + 2x1dze € Kerf* and
[EF] # 0 in RY(Z) = R (f).

Proof. Let a = aj(x1,x2)dx1 + az(x1,x2)drs € AY(R?,0). The condition that
f*a = 0is equivalent to that 2a; (2, %) +5as (2, t°)t3 = 0. Take a; = —5x2, as = 211.
The fact [E*] # 0 is checked by a direct calculation. 0

PROPOSITION 9.6. (Eg) Let f : (R,0) — (R?,0) be a map-germ defined by f(t) =
(t3,t%). Then we have the Euler form E° = —4xodxy + 32z1dxs € Kerf* and [E°] # 0
in RY(Z) = RYf) = Ker f*/Ker wf + d(Ker wf). Therefore R*(Z) # 0. Moreover
we see that RY(Z) is generated over R by the classes of E¥ x1 E¥, 2o % 22 EF.

Proof. Let a = aj(x1,x2)dx1 + az(x1,x2)drs € AY(R?,0). The condition that
f*a = 01is equivalent to that 3a; (3, t%) + 4az(t3,t*)t = 0. Take a; = —4x2, az = 3x1.
Then we have the Euler form. The fact [E*] # 0 is checked by a direct calculation.
The remaining follows from that x5 E¥ x122E* and 23 E* belong to A'(Z,R?). O

EXAMPLE 9.7. (Ei2) Let f: (R,0) — (R?,0) be a map-germ defined by f(t) =
(z,y) = (£, £t" + M®), (A € R). This is not of quasi-homogeneous, if A # 0. The
defining equation of the image Z of f is given by

F(z,y) = 2" £ 3 2%y £ \32® 745

By direct calculations, we see that, at least formally, G!(Z, R?) is generated by the
1-forms

wi = —(+49zy — 150%2* — 570 32%y + 8M\y? F N52°)dx + 3(72? — \y) (1 F \3x)dy,
and
we = —(£72%y £ My — 2X22° — 8\32%y)dx + 32% (1 F \3x)dy,

if A 0.
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Then residue R'(Z) of degree 1 is generated by [w;]* and [wa]® over A°(R?). If
A =0, RY(Z) is generated by only [w1]®.

Proof. The calculations, for the case f(t) = (z,y) = (3,7 + At®), go like this:
Let w = a(x,y)dx + b(z,y)dy. Then f*w = 0 if and only if ao f = (bo f)(7t* +8At?).
We set the ideal

I={beOgzg; (bo f)(Tt' +8)\") € f*Orz o},

and find the generator of I. Regarding that Or,/f*Or2 is generated by
1,22, ¢4, 12,18, ¢t over R, we find that 722 — Ay € I and 2 € I. In fact, since
y(7t 4+ 8M5) = Tt + 15 2t + 8213 and 22(Tt* + 8At?) = Txy + Ml we have

(T2 — Ay) (7t* + 8At%) = 492y — 1502z — 8A3¢!3 = 492y — 15M%2* — 832y 4 8A4t!
= 49zy — 152%z" — 8A3z2%y + 8A\1y? — 16)\°2° — 8\6¢16

=492y — 1522z — 8\322y + 8\ y? — 16755 — 803y + 8AT¢Y7

= 49zy — 15X%z* — 8\322y + 8A*y? — 160525 — 8X\O23y + 8)\Txy? — 160320 — 8\9¢19

—1672 — 8\3z%y + 8A%y? _ 49zy — 152224 — 570323y + 8A1y? — A52°

=49 A2t
TY F AT 1— X3z 1— X3z

Similarly we have

o3(Tth 4+ 8AP) = Tt13 + A = Ty + it = ...
Ay? = 20225 — N3zdy T2y + Ay? — 20720 — 8X\3xdy
1— Xz N 1— Mz '

= Tx%y +

For f(t) = (3, —t" + M%), we may replace y by —y and A by —\ in the above
calculations.

The determinant of coefficients of wy,ws (and those of the corresponding loga-
rithmic vector fields) is given by

—(£49zy — 15322 — 570322y + 8A1y® F A°x°)  3(Ta® — A\y)(1F A%z) | 3 12
—(E£T7x%y + My? — 20%2° — 8A3a3y) 32%(1 F A\3x) = 3(IFATZ)AF
Thus we see that R1(Z) is generated by [w1]® and [wg]® over A°(R?).
If A =0, then G'(Z,R?) is generated by the Euler form w; = —7ydz + 3zdy and
the exterior differential wy = dF of F. Then R'(Z) is generated by only [w;]?, since
[dF]* = 0. O
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