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Symplectic classification of parametric complex plane curves

by Goo Ishikawa (Sapporo) and Stanisław Janeczko (Warszawa)

Abstract. Based on the discovery that the δ-invariant is the symplectic codimension
of a parametric plane curve singularity, we classify the simple and uni-modal singularities
of parametric plane curves under symplectic equivalence. A new symplectic deformation
theory of curve singularities is established, and the corresponding cyclic symplectic moduli
spaces are reconstructed as canonical ambient spaces for the diffeomorphism moduli spaces
which are no longer Hausdorff spaces.

1. Introduction. In [15], motivated by the symplectic bifurcation prob-
lem, we gave a symplectic classification of simple singularities of parametric
plane curves in the real case (for the higher dimensional case, see [16]). Then
we necessarily have some moduli under the classification, and to understand
the moduli space well, it is natural to consider the complex analytic case.
In this paper, we classify symplectically general parametric plane curve sin-
gularities and, in particular, the simple and uni-modal singularities of para-
metric plane curves in the complex analytic case, and completely determine
the structure of symplectic moduli spaces.

An irreducible germ of a complex analytic plane curve in C2 at the origin
has a normalization f : (C, 0)→ (C2, 0), which is a holomorphic parametric
curve-germ. There are three natural equivalence relations among plane curve-
germs: We call holomorphic parametric curve-germs f, g : (C, 0) → (C2, 0)
symplectomorphic if there exist a bi-holomorphic diffeomorphism σ of (C, 0)
and a bi-holomorphic symplectomorphism τ for the holomorphic symplectic
form dx ∧ dy on C2 satisfying τ(g(t)) = f(σ(t)). If σ, τ are assumed to
be just bi-holomorphic diffeomorphisms (resp. homeomorphisms), then we
call f and g diffeomorphic (resp. homeomorphic). We use the abbreviation
f ∼symp g (resp. f ∼diff g, f ∼homeo g).

The following conditions on a germ of parametric holomorphic plane
curve f are known to be equivalent ([32], [15]):
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(i) f has an injective representative.
(ii) f is a normalization onto its image.
(iii) The diffeomorphism class of f is determined by a finite jet of f .
(iv) The symplectomorphism class of f is determined by a finite jet of f .
(v) The quotient vector space O1/f

∗O2 is finite-dimensional.

Here f∗ : O2 = C{x, y} → O1 = C{t} is defined by composition: f∗(h) =
h ◦ f .

Hereafter we assume that f satisfies one (and therefore all) of the above
conditions.

The symplectic moduli space

Msymp(f) := {g : (C, 0)→ (C2, 0) | g ∼homeo f}/∼symp

for a plane curve-germ f : (C, 0)→ (C2, 0) is the set of symplectomorphism
classes of curve-germs which are homeomorphic to f .

The differential moduli space

Mdiff(f) := {g : (C, 0)→ (C2, 0) | g ∼homeo f}/∼diffeo

is the set of diffeomorphism classes of curve-germs which are homeomorphic
to f . There is a natural surjectionMsymp(f)→Mdiff(f).

The dimension δ(f) = dimCO1/f
∗O2 represents the number of double

points appearing in a generic perturbation of f . The number δ(f) is equal to
half of the Milnor number µ(f) ([25], [33]), and it also has the meaning of
the symplectic codimension of f , that is, the number of parameters needed
to produce its versal deformation via symplectomorphic equivalence ([15]).
Let F : (C×Cδ, 0)→ (C2×Cδ, 0) be a symplectically mini-versal unfolding.
Set F (t, u) = (fu(t), u) (u ∈ Cδ). Then we show that the symplectic moduli
space of f is obtained as a quotient space of a component of the δ-constant
locus {u ∈ Cδ | δ(fu) = δ(f)} in Cδ. See §3 for details.

A curve-germ f is called r-modal, for a non-negative integer r, if a finite
number of s-parameter families (0 ≤ s ≤ r) of diffeomorphism classes form a
neighborhood of f in the space of parametric curve-germs. A 0-modal (resp.
1-modal, 2-modal) singularity is called a simple (resp. uni-modal, bi-modal)
singularity.

We classify map-germs (C, 0) → (C2, 0) under symplectomorphic equiv-
alence and diffeomorphic equivalence, and describe both moduli spaces, ac-
cording to the modality under diffeomorphic equivalence.

V. I. Arnold initiated investigations aiming at classifying function germs
with small modalities under diffeomorphic equivalence ([1]). Then, related
to Arnold’s classification, Bruce and Gaffney ([3]) classified the simple sin-
gularities of parametric plane curve-germs (C, 0) → (C2, 0) into the classes
A2`, E6`, E6`+2, W12, W18 and W#

1,2`−1 (` = 1, 2, 3, . . . ). See also §5 (Theo-
rem 5.1).
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In this paper we achieve a symplectic classification of simple singulari-
ties of parametric plane curve-germs and we find that the symplectic moduli
spaces for simple singularities have cyclic quotient singularities (Table 1).
Moreover we proceed to determine the symplectic moduli space for uni-modal
singularities (Table 2). These results are described in Theorems 3.1, 3.10 and
4.1. Furthermore, based on the symplectic classification, we complete the dif-
ferential classification of simple and uni-modal singularities (Theorem 5.1).

O. Zariski, in a series of works on equi-singularity, studied the differential
classification of parametric plane curve-germs ([34]). Two curve-germs are
called equi-singular if they are homeomorphic. It is known that the homeo-
morphism class of a plane curve-germ f : (C, 0) → (C2, 0) is determined
exactly by its Puiseux characteristic (m,β1, . . . , βq) ([33], see also §2).

The notations of singularities, for example, in Theorem 3.10 are due to
Arnold (see, for instance, [1], [3]), and are actually used for equi-singular
classes. For example we denote by N20 the class (5, 6) and by W#

2,2`−1 the
class (4, 10, 2`+ 9).

Zariski determined in particular the differential moduli spaces for the
classes (2, 2`+ 1), (3, 3`+ 1), (4, 5), (4, 6, 2`+ 5), (5, 6) and (6, 7) in [34]. He
did not mention symplectomorphic equivalence but he used, as pre-normal
forms, equi-singular mini-versal deformations, namely mini-versal deforma-
tions among equi-singular deformations. For instance, in [34, p. 68] he started
the classification with

x = t5, y = t6 + a8t
8 + a9t

9 + a14t
14

in the concrete classification of the case (5, 6), namely N20, which is exactly
the symplectic normal form given in Theorem 3.10. Nevertheless note that
equi-singular mini-versal deformation is a local notion with respect to the
parameter space: any neighborhood of 0 in Cs contains all diffeomorphism
classes. On the other hand, symplectic normal form is a global notion: the
whole affine space Cs is necessary to cover all symplectomorphism classes.
The general theory of equi-singular versal deformations is given by Wahl [31]
and Teissier [27], [28], [29]. Our method will give a new insight into those
results on the deformation theory of curve singularities.

Clarifying the role of symplectomorphic equivalence, we have succeeded
in completing Zariski’s classification via modality: In fact by classification
of simple singularities [3] and by Theorem 5.1, we obtain the differential
classification for the equi-singular classes (4, 7), (5, 7), (5, 8), (4, 9), (4, 11) and
(4, 10, 2`+9) which were not obtained by O. Zariski. The case (6, 7) classified
by him is actually bi-modal. For this case using our symplectic method we
get the exact diffeomorphic classification (Theorem 5.6) and determine the
corresponding symplectic moduli space (Remark 5.5). Note that recently the
classification of plane branches under diffeomorphism has been developed
independently in [12], [13] by another direct method.
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In §2 we characterize simple and uni-modal singularities by means of
Puiseux characteristics, explaining the basic infinitesimal method we use
throughout this paper. We give a general method to obtain a symplectic
pre-normal form for any equi-singular class, in Theorem 3.1 of §3. Then we
classify each equi-singular class of simple and uni-modal singularities under
symplectomorphic equivalence (Theorems 3.10 and 4.1) in §3 and in §4, and
then under diffeomorphic equivalence (Theorem 5.1) in § 5.

The symplectic classification of curves in a symplectic space was also
started by Arnold [2]. Note that symplectically simple curves are classified
in [15] in the case of plane branches and then in [19] for simple multi-germs
in symplectic spaces of arbitrary dimension. Other analytic invariants (Ło-
jasiewicz invariants, polar invariants) inspiring our investigation were studied
in [9, 26] (see also [4]).

It is worth remarking that the symplectic classification of plane curves is
regarded as a special and important case of the classification of Lagrangian
varieties in a symplectic space, as well as of the classification of varieties un-
der volume preserving diffeomorphisms. For the classification of Lagrangian
varieties, Givental’ [10] provides the foundations of the theory. We study the
classification of parametric Lagrangian varieties in [18]. For the classification
of hypersurfaces under volume preserving diffeomorphisms, see [20], [30]. For
recent results on the classification of map-germs (Cn, 0)→ (Cp, 0) and vari-
eties in (Cp, 0) under volume preserving diffeomorphisms on (Cp, 0), see [6].
For recent results on the classification of function-germs (Cn, 0) → (C, 0)
under volume preserving (isochore) diffeomorphisms on (Cn, 0), see [8].

2. Puiseux characteristics. Let f : (C, 0)→ (C2, 0), f(t)= (x(t), y(t)),
be a germ of holomorphic parametric plane curve. Set m = ord(f), the
minimum of the order of x(t) and that of y(t) at t = 0. Then, using a re-
parametrization and the symplectomorphism (x, y) 7→ (y,−x) if necessary,
we see that f is symplectomorphic to a germ of the form (tm,

∑∞
k=m akt

k).
Suppose m ≥ 2, that is, f is not an immersion.

Set β1 = min{k | ak 6= 0, m - k} and let e1 be the greatest common
divisor of m and β1, and inductively set βj = min{k | ak 6= 0, ej−1 - k}, and
let ej be the greatest common divisor of βj and ej−1, j ≥ 2. Then eq−1 > 1,
eq = 1 for sufficiently large q, and we call (m = β0, β1, . . . , βq) the Puiseux
characteristic of f . The Puiseux characteristic is a basic diffeomorphism
invariant, and it determines exactly the homeomorphic equivalence class of
f ([22], [34]). For example, setting e0 = m, we have the number of double
points δ(f) described by δ(f) = 1

2

∑q
j=1(βj − 1)(ej−1 − ej) ([25], [33]).

First we show:

Lemma 2.1. f is symplectomorphic to a germ (tm, tβ1 +
∑∞

k=β1+1 bkt
k).
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Proof. Set ψ(x) =
∑β1−1

k=m akx
k/m and τ1(x, y) = (x, y − ψ(x)). Then

τ1(f(t)) = (tm,
∑∞

k=β1
akt

k) with aβ1 6= 0. Define α ∈ C∗ = C \ {0} by
αm+β1aβ1 = 1, and set σ(t) = αt and τ2(x, y) = (α−mx, αmy). Then τ1, τ2 are
both symplectomorphisms and we see that τ2(τ1(f(σ(t)))) has the required
form.

Now we recall the infinitesimal method by means of vector fields, which
we are going to use throughout this paper.

Let fλ(t) be a holomorphic family of plane curve-germs. We fix λ once
for all. Then, as an infinitesimal deformation of fλ : (C, 0) → (C2, 0), we
consider a holomorphic map-germ v : (C, 0) → TC2 to the tangent bundle
of C2 covering fλ via the natural projection π : TC2 → C2. We call such a
mapping v a vector field along fλ. Then, for a given vector field v along fλ,
we consider the equation

v = t(fλ)ξ + w(fλ)η(2.1)

on a pair of holomorphic vector fields ξ over (C, 0) and η over (C2, 0) with
the conditions ξ(0) = 0, η(0, 0) = 0. Here t(fλ)ξ is the composition of
ξ : (C, 0) → TC with the tangent mapping (fλ)∗ : (TC, T0C) → TC2 of
fλ and w(fλ)η = (fλ)∗η = η(fλ), the pull-back by fλ of η : (C2, 0) →
TC2. We call the equation (2.1) Mather’s equation of fλ for v (cf. [24]). It
expresses the infinitesimal condition that the infinitesimal deformation by v
is recovered by diffeomorphic equivalences. Note that Mather’s equation is a
non-homogeneous linear equation over C.

We call v solvable if Mather’s equation for v has a solution (ξ, η) satisfying
the required conditions ξ(0) = 0, η(0, 0) = 0 and holomorphically depending
on λ. Note that, if v is solvable, then cv (c ∈ C) is also solvable by (cξ, cη).

Suppose fλ(t) has the form

fλ(t) =
(
tm,

∞∑
k=β1

bk(λ)tk
)
.

Then we consider in particular the vector field v along fλ of the form v(t) =
tk(∂/∂y ◦ fλ), or simply, v(t) = (0, tk), the infinitesimal deformation of fλ in
the second component by the term tk. Then we call v solvable up to higher
order terms if v(t) = (tk + ψ(t))(∂/∂y ◦ fλ) = (0, tk + ψ(t)) is solvable for
some ψ(t) with ord(ψ) ≥ k + 1.

In the above situation, if η can be taken to be a Hamiltonian vector field,
which generates a family of symplectomorphisms by integration against the
holomorphic symplectic form dx ∧ dy on C2, then v is called symplectically
solvable (resp. symplectically solvable up to higher order terms).

In the following sections, we are going to apply our infinitesimal method
to find normal forms of plane curve-germs. Before that, we characterize
simple and uni-modal singularities by means of their Puiseux characteristics.
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Lemma 2.2. Let f : (C, 0) → (C2, 0) be a curve-germ with the Puiseux
characteristic (m,β1, . . . ). If m = 4 and β1 ≥ 13, or m = 5 and β1 ≥ 9, or
m ≥ 6, then the modality of f is at least 2.

Proof. First we assume m = 4, β1 = 13. Then, in any neighborhood
of f , there exists a family of germs at 0 which are diffeomorphic to

gλ,ρ = (t4, t13 + t14 + λ1t
15 + λ2t

19 + t20ρ(t))

for some (λ1, λ2) belonging to a non-empty open subset in C2 and ρ ∈ O1.
We find this family by an infinitesimal calculation: First, for each k ∈ N, we
try to solve Mather’s equation(

0
tk

)
≡
(

4t3ξ
(13t12 + · · · )ξ

)
+
(
η1(t4, t13 + · · · )
η2(t4, t13 + · · · )

)
mod

(
0

tk+1O1

)
,

with ξ ∈ O1 and η1, η2 ∈ O2 with ξ(0) = 0, η1(0, 0) = 0, η2(0, 0) = 0. Then
we see that (0, tk) is not solvable up to higher order terms for k = 15 and
k = 19. Second, by a formal calculation, we verify that if gλ,ρ and gλ′,ρ′ are
diffeomorphic, then necessarily λ′1 = λ1, λ′2 = λ2. Then we see that if m = 4,
β1 = 13, then the modality of f is ≥ 2. Moreover, if m = 4, β1 ≥ 13 then in
any neighborhood of f , there exists a germ with characteristic (4, 13). From
this observation we see that if m = 4, β1 ≥ 13, then the modality of f is
≥ 2.

In the case m = 5, β1 ≥ 9, we find that, in any neighborhood of f , there
exists a family of germs at 0 which are diffeomorphic to

gλ,ρ = (t5, t9 + t11 + λ1t
12 + λ2t

17 + t18ρ(t)).

Moreover we see that if gλ,ρ and gλ′,ρ′ are diffeomorphic, then necessarily
λ′1 = ±λ1, λ

′
2 = λ2. Thus we see that if m = 5, β1 ≥ 9, then the modality

of f is ≥ 2.
For the case m = 6, β1 ≥ 7, similarly to the above, we find

gλ,ρ = (t6, t7 + t9 + λ1t
10 + λ2t

11 + t12ρ(t)),

and if gλ,ρ and gλ′,ρ′ are diffeomorphic, then necessarily λ′1 = ±λ1, λ
′
2 = λ2.

(A detailed classification of the case (6, 7) is given at the end of §5.) Thus
we see that if m = 6, β1 ≥ 7, then the modality of f is ≥ 2.

Lastly in the case m ≥ 7, we see that in any neighborhood of f there
exists a germ with m = 6, β1 ≥ 7. Therefore also in this case we find that
the modality of f is greater than or equal to 2.

We give an exact classification for the remaining characteristics in §5,
and, in fact, any germ with one of those Puiseux characteristics turns out to
be simple or uni-modal.
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3. Symplectic normal forms. Let f : (C, 0) → (C2, 0) be a holomor-
phic map-germ.

We briefly recall the theory developed in [15], which is applied to the
complex analytic case: The symplectic codimension of f is defined by

sp-cod(f) = dimC
Vf

tf(V1) + wf(V H2)

as an infinitesimal symplectic invariant of Mather’s type. Here Vf is the space
of germs of holomorphic vector fields v : (C, 0)→ TC2 along f , which is the
space of infinitesimal deformations of f , V1 the space of germs of holomor-
phic vector fields over (C, 0) and V H2 the space of germs of holomorphic
Hamiltonian vector fields over (C2, 0). The homomorphisms tf : V1 → Vf
and wf : V H2 → Vf are defined by tf(ξ) := f∗(ξ), ξ ∈ V1 and wf(η) := η◦f
respectively as in §2. Here we assume neither ξ(0) = 0 nor η(0, 0) = 0.

An unfolding F : (C × Cr, (0, 0)) → (C2 × Cr, (0, 0)) of f , F (t, u) =
(fu(t), u), is symplectically versal if ∂fu

∂u1
(t, 0), . . . , ∂fu∂ur

(t, 0) generate Vf ,
over C, up to the space tf(V1)+wf(V H2) of deformations which are covered
by symplectomorphisms ([15, Proposition 7.1]).

Set f(t) = (x(t), y(t)). For a vector field v(t) = a(t)∂/∂x + b(t)∂/∂y
along f , we define a generating function e(t) ∈ O1 of v by

d(e(t)) = b(t)d(x(t))− a(t)d(y(t)),

or e′(t) = b(t)x′(t)− a(t)y′(t). The generating function is determined up to
a constant term. The generating function of tf(ξ)+wf(Xk) is equal to f∗k,
where k is a Hamiltonian function of the Hamiltonian vector field Xk. Then
there exists an exact sequence of vector spaces

0→
V ′f

tf(V1)
→

Vf
tf(V1) + wf(V H2)

→
Rf
f∗O2

→ 0,

where
Rf = {e(t) ∈ O1 | ord(e′(t)) ≥ ord(f)− 1} = C + mm

1 ,

where m1 = {a(t) ∈ O1 | a(0) = 0}, and

V ′f = {v(t) = a(t)∂/∂x+ b(t)∂/∂y ∈ Vf | b(t)x′(t)− a(t)y′(t) = 0}.

Then we see that dimC V
′
f/tf(V1) = ord(f)− 1 = dimCO1/Rf . Therefore

sp-cod(f) = dimC V
′
f/tf(V1) + dimCRf/f

∗O2 = dimCO1/f
∗O2 = δ(f).

For example, the symplectically versal unfolding of the germ f(t) =
(t5, t6) of type N20, δ(f) = 10, is given by{

x = t5 + µ1t
3 + µ2t

2 + µ3t,

y = t6 + λ1t
8 + λ2t

9 + λ3t
14 + ν1t

4 + ν2t
3 + ν3t

2 + ν4t,
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with ten parameters µ1, µ2, µ3, λ1, λ2, λ3, ν1, ν2, ν3, ν4. In fact, V ′f is gener-
ated by the vector fields (1, 6

5 t), (t,
6
5 t

2), (t2, 6
5 t

3), (t3, 6
5 t

4) modulo tf(V1).
On the other hand, Rf/f∗O2 has the basis t7, t8, t9, t13, t14, t19. Then the
vector fields (0, t2), (0, t3), (0, t4), (0, t8), (0, t9), (0, t14) have generating func-
tions which generate Rf/f∗O2. Therefore these ten vector fields form a basis
of Vf modulo tf(V1) + wf(V H2). Moreover the first four vector fields can
be replaced by (0, t), (t, 0), (t2, 0), (t3, 0) modulo tf(V1) + wf(V H2). Note
that (1, 0) ∈ wf(V H2). Thus we have the above symplectically versal un-
folding.

The symplectically mini-versal unfolding is unique up to symplectomor-
phism of unfoldings.

In general, some of the parameters of the symplectically versal unfold-
ing correspond to deformations into less singular germs, and the remaining
parameters provide the symplectic normal form within a given equi-singular
class up to some discrete symplectomorphism classes. For instance, in the
above example, setting µ1 = µ2 = µ3 = 0, ν1 = ν2 = ν3 = ν4 = 0, we have
the symplectic normal form for N20.

Let f be of Puiseux characteristic (m,β1, . . . , βq). A monomial basis of
O1/f

∗O2 can be calculated by considering the order semigroup

S(f) = {ord(k) | k ∈ f∗O2} ⊆ N.

In fact {tr | r ∈ N \ S(f), r > 0} forms a monomial basis of O1/f
∗O2.

We show the following general result on symplectic classification via the
order semigroup:

Theorem 3.1. Let f : (C, 0)→ (C2, 0), f(t) = (tm, tβ1 +
∑∞

k=β1+1 bkt
k)

be a germ of Puiseux characteristic (m,β1, . . . , βq). Let r1 + m, . . .
. . . , rs+m (r1 < · · · < rs) be all elements of N\S(f) with rj >β1 (1≤ j ≤ s).
Then f is symplectomorphic to

fλ(t) = (tm, tβ1 + λ1t
r1 + · · ·+ λst

rs)

for some λ = (λ1, . . . , λs) ∈ Cs.

Theorem 3.1 is an improvement of Zariski’s result ([34, Proposition 1.2])
on the short representation of a branch.

To prove Theorem 3.1, note that a system of generators for the semigroup
S(f) is calculated explicitly from the Puiseux characteristic (m,β1, . . . , βq).
Define an integer (for 0 ≤ j < q)

βj+1 := βj+1 +
m− e1

ej
β1 +

e1 − e2

ej
β2 + · · ·+ ej−1 − ej

ej
βj .

Recall that ej is the greatest common divisor of βj and ej−1 (j ≥ 1), and
e0 = m. Then we have
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Lemma 3.2 ([33]).

(1) The semigroup S(f) is generated by m,β1, . . . , βq, which is a minimal
number of generators. The number βj is the least element of S(f) not
divisible by ej−1.

(2) Each βj belongs to the additive semigroup 〈β1, . . . , βj〉 generated by
β1, . . . , βj (j ≥ 1).

(3) β1 = β1, βj > βj +m, and βj +m 6∈ S(f) for 2 ≤ j ≤ q.
Proof. The proof of (1) is given in [33, Theorem 4.3.5]. The claim (2) is

clear from the above definition of βj . Also the claims in (3) that β1 = β1

and βj > βj + m are clear. To see the rest of (3), suppose βj + m belongs
to the semigroup S(f) = 〈m,β1, . . . , βq〉. Then βj + m would belong to
〈m,β1, . . . , βj−1〉, since βj > βj +m. Then, by (2), βj +m would belong to
〈m,β1, . . . , βj−1〉 ⊆ 〈ej−1〉. This contradicts the fact that βj is not divisible
by ej−1. Therefore we have (3).

Lemma 3.3. Under the notation of Theorem 3.1, we have

{β2, . . . , βq} ⊆ {r1, . . . , rs}.
Proof. By Lemma 3.2, we see that βj + m ∈ N \ S(f) (2 ≤ j). Since

βj > β1 we conclude that βj ∈ {r1, . . . , rs}.
We call a deformation of plane curve singularities equi-singular if the

Puiseux characteristic is preserved.
For an equi-singular deformation fλ of f , we can take a monomial basis of

O1/f
∗
λO2. Moreover there exists a number N depending only on the Puiseux

characteristic of f such that if φ(t) ∈ O1 has order > N , then φ(t) ∈ f∗O2

([33, Prop. 4.3.2]). In fact we may set N = max{r ∈ N \ S(f)}. Note that
N = µ− 1 for the Milnor number µ.

Example 3.4. (1) (W30) Letm = 4, β1 = 11. Then the semigroup S(f)
is generated by 4 and 11, and we have

N \ S(f) = {1, 2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 18, 21, 25, 29}.
A monomial basis of O1/f

∗O2 is given by t, t2, t3, t5, t6, t7, t9, t10, t13, t14,
t17, t18, t21, t25, t29. We see r1 = 13, r2 = 14, r3 = 17, r4 = 21, r5 = 25 and
N = 29.

(2) (W#
1,2`−1) Letm = 4, β1 = 6 and β2 = 2`+5. Then S(f) is generated

by 4, 6 and 2` + 11. The complement N \ S(f) consists of 1, 2, 3, 5, 7, 9, 11,
. . . , 2`+ 9, 2`+ 13. We have N = 2`+ 13.

(3) (W#
2,2`−1) Let m = 4, β1 = 10 and β2 = 2`+ 9. Then S(f) is gener-

ated by 4, 10 and 2`+19. The complement N\S(f) consists of 1, 2, 3, 5, 7, 9,
11, 13, 15, 17, 19, 21, 23, . . . , 2`+13, 2`+15, 2`+17, 2`+21, 2`+25. We have
N = 2`+ 25.
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Every equi-singular deformation of f is a δ-constant deformation. Con-
versely we have:

Lemma 3.5. Every δ-constant deformation is equi-singular.

Proof. Let fλ : (C, 0) → (C2, 0) (λ ∈ (Ck, 0)) be a δ-constant deforma-
tion of f0 = f . Then, in a neighborhood of 0 in Ck, we can take a monomial
basis of O1/f

∗O2, so we see that the order semigroup S(fλ) is constant and
therefore fλ has the same Puiseux characteristic as f .

Remark 3.6. (1) Homeomorphic plane curve-germs are connected by an
equi-singular deformation. In fact the equi-singular germs form (in a finite
jet space) a linear subspace with a finite number of linear subspaces deleted.

(2) In the parameter space of the symplectically versal unfolding of f ,
each δ-constant stratum is a union of equi-singular strata by Lemma 3.5; dif-
ferent equi-singular strata cannot be connected by a δ-constant deformation.

(3) Lemma 3.5 is true only for irreducible curves. It is no longer true for
reducible curves.

Consider an equi-singular deformation fλ (λ ∈ Cs) of a plane curve-
germ f with Puiseux characteristic (m,β1, . . . , βq). Suppose fλ(t) has the
form

fλ(t) =
(
tm,

∞∑
k=β1

bk(λ)tk
)
.

To get normal forms under symplectomorphisms, we have to show that
a vector field v along fλ is symplectically solvable for Mather’s equation

v = tfλ(ξ) + wfλ(η),

with ξ(0) = 0, η(0, 0) = 0. Then we have to show that the generating
function of v belongs to f∗m2

2, where m2
2 = {h ∈ O2 | ord(h) ≥ 2}. Note that

the Hamiltonian vector field Xh with the Hamiltonian h = h(x, y), where
h(0, 0) = 0, satisfies the condition Xh(0, 0) = 0 if and only if (∂h/∂x)(0, 0) =
(∂h/∂y)(0, 0) = 0.

Then we have the following:

Lemma 3.7. Let N denote max{r ∈ N \ S(f)}. Then:
(1) For any ψ(t) with ord(ψ) > N , there exists a holomorphic function

hλ(x, y) on (C2, 0), holomorphically depending on λ and satisfying
ψ(t) = hλ(fλ(t)) and ord(hλ) ≥ 2.

(2) Any vector field v = (0, ρ(t)) along fλ is symplectically solvable if
ord(ρ) > N −m.

Proof. (1) Define F : (C × Cs, (0, 0)) → (C2 × Cs, (0, 0)) by F (t, λ) =
(fλ(t), λ). Then we see

mN+1
1 O1+s ⊆ F ∗O2+s + msF

∗O2+s.
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Since F ∗O2+s is a finite Os-module, we see mN+1
1 O1+s ⊆ F ∗O2+s by Naka-

yama’s lemma (see for instance [24]). Suppose ψ(t) = hλ(fλ(t)) for some
hλ(x, y) ∈ O3 and ord(ψ(t)) > N . Set hλ(x, y) = aλ + bλx + cλy + kλ(x, y)
with aλ, bλ, cλ ∈ Os, ord(kλ) ≥ 2. Then ψ(t) = hλ(fλ(t)) = aλ + bλxλ(t) +
cλyλ(t)+kλ(fλ(t)). Since ord(φ(t)) > N ≥ β1 > m, we see aλ = bλ = cλ = 0.
Thus ord(hλ) ≥ 2.

(2) If ord(ρ) > N −m, then ρ has a generating function ψ of order > N .
Then by (1), ρ = h(fλ(t)) with ord(h) ≥ 2. Then the Hamiltonian vector
field Xh satisfies Xh(0, 0) = 0. Hence v − wf(Xh) belongs to V ′fλ . Since
components of v−wf(Xh) have order ≥ m, we see that v−wf(Xh) = tf(ξ)
for some ξ with ξ(0) = 0. Thus v is symplectically solvable.

Proof of Theorem 3.1. Consider the infinitesimal deformation v =
κ(t)(∂/∂y ◦ f), κ(t) = −

∑
bkt

k, where the summation runs over k different
from r1, . . . , rs. Then the deformation

fu =
(
tm, tβ1 +

∞∑
k=β1+1

bkt
k + uκ(t)

)
(u ∈ [0, 1]) corresponding to v is equi-singular. In fact, for u 6= 1, fu is
equi-singular to f0 by the definition of Puiseux characteristic. At u = 1, let
(m,β1, β

′
2, . . . , β

′
q′) be the Puiseux characteristic of f1. Then β′2 ≥ β2. By

Lemma 3.3, β2 ∈ {r1, . . . , rs}, so β′2 = β2. In the same way, β′3 = β3, . . . and
finally q′ = q.

Then, by Lemma 3.7, there exist wu =
∑s

j=1 cj,ut
rj , cj,u ∈ C, ξu ∈

V1, ξu(0) = 0, and ηu ∈ V H2, ηu(0) = 0, smoothly depending on u and
satisfying v = (0, wu) + tfu(ξu) + wfu(ηu). By integrating from u = 0 to
u = 1 we see that f is symplectomorphic to

fλ(t) = (tm, tβ1 + λ1t
r1 + · · ·+ λst

rs)

for some λ = (λ1, . . . , λs) ∈ Cs. Thus we have proved Theorem 3.1.

Remark 3.8. The family fλ (λ ∈ Cs) of Theorem 3.1 need not be equi-
singular on the whole Cs. However, on each equi-singular domain E, the
family fλ (λ ∈ E) gives a mini-transversal to the symplectic orbit of each fλ
belonging to the space of germs equi-singular to fλ.

A family fλ(t) (λ ∈ Cs) is called a symplectic normal form for the Puiseux
characteristic (m,β1, . . . , βq) if any plane curve-germ of Puiseux characteris-
tic (m,β1, . . . , βq) is symplectomorphic to fλ(t) for some λ ∈ Cs, and those
λ ∈ Cs for which fλ is symplectomorphic to a given plane branch form a
discrete subset in Cs.

If there exists a symplectic normal form, then we have a surjective map-
ping Cs →Msymp(f) with discrete fibers.
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Actually we have the following result for the simple or uni-modal cases
which we mainly study in this paper.

Proposition 3.9. Under the same notation as in Theorem 3.1, we have
the following:

(1) If the Puiseux characteristic is (m,β1), then the family

fλ(t) = (tm, tβ1 + λ1t
r1 + · · ·+ λst

rs),

λ = (λ1, . . . , λs) ∈ Cs, is a symplectomorphic normal form for the
Puiseux characteristic (m,β1).

(2) If the Puiseux characteristic is (4, 6, 2`+5), then s = `+1 and r1 = 7,
r2 = 9, . . . , r`−1 = 2`+3, r` = 2`+5, r`+1 = 2`+7. Inside the family

fc(t) = (t4, t6 + c1t
7 + c2t

9 + · · ·+ c`−1t
2`+3 + c`t

2`+5 + c`+1t
2`+7),

the subfamily

fλ(t) = (t4, t6 + λ1t
2`+5 + λ2t

2`+7),

λ = (λ1, λ2) ∈ C2, λ1 6= 0, is a symplectic normal form for the
Puiseux characteristic (4, 6, 2`+ 5).

(3) If the Puiseux characteristic is (4, 10, 2`+9), then s = `+4 and r1 =
11, r2 = 13, r3 = 15, . . . , r`−1 = 2`+ 7, r` = 2`+ 9, r`+1 = 2`+ 11,
r`+2 = 2`+ 13, r`+3 = 2`+ 17, r`+4 = 2`+ 21. Inside the family

fc(t) = (t4, t10 + c1t
11 + c2t

13 + c3t
15 + · · ·+ c`−1t

2`+7

+ c`t
2`+9 + c`+1t

2`+11 + c`+2t
2`+13 + c`+3t

2`+17 + c`+4t
2`+21),

the subfamily

fλ(t) = (t4, t10 +λ1t
2`+9 +λ2t

2`+11 +λ3t
2`+13 +λ4t

2`+17 +λ5t
2`+21),

λ = (λ1, λ2, λ3, λ4, λ5) ∈ C5, λ1 6= 0, is a symplectic normal form for
the Puiseux characteristic (4, 10, 2`+ 9).

Proof. In the case (1), by Theorem 3.1, there are no restrictions on λ

and we get the symplectic normal forms given in (1). In the case of W#
1,2`−1,

f is symplectomorphic to

fc = (t4, t6 + c1t
7 + · · ·+ c`t

2`+5 + c`+1t
2`+7).

Since the Puiseux characteristic of f is (4, 6, 2`+5), we necessarily have c1 =
0, . . . , c`−1 = 0 and c` 6= 0. Setting λ = c`, µ = c`+1, we get the symplectic
normal form as in (2). In the case of W#

2,2`−1, f is symplectomorphic to

fc = (t4, t10 + c1t
11 + c2t

13 + c3t
15 + · · ·+ c`t

2`+9

+ c`+1t
2`+11 + c`+2t

2`+13 + c`+3t
2`+17 + c`+4t

2`+21).

Since the Puiseux characteristic of f is (4, 10, 2`+9), we have c1 = 0, . . . , c`−1

= 0 and c` 6= 0, which gives the symplectic normal form as in (3).
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Proposition 3.9 implies the following exact list of normal forms under
symplectomorphic equivalence:

Theorem 3.10. Every simple or uni-modal singularity f : (C, 0) →
(C2, 0) is symplectomorphic to a germ which belongs to one of the follow-
ing families (called “symplectic normal forms”):

A2` : (t2, t2`+1),

E6` : (t3, t3`+1 +
∑`−1

j=1 λjt
3(`+j)−1),

E6`+2 : (t3, t3`+2 +
∑`−1

j=1 λjt
3(`+j)+1),

W12 : (t4, t5 + λt7),

W18 : (t4, t7 + λt9 + µt13),

W#
1,2`−1 : (t4, t6 + λt2`+5 + µt2`+9), λ 6= 0 (` = 1, 2, . . . ),

N20 : (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14),

N24 : (t5, t7 + λ1t
8 + λ2t

11 + λ3t
13 + λ4t

18),

N28 : (t5, t8 + λ1t
9 + λ2t

12 + λ3t
14 + λ4t

17 + λ5t
22),

W24 : (t4, t9 + λ1t
10 + λ2t

11 + λ3t
15 + λ4t

19),

W30 : (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25),

W#
2,2`−1 : (t4, t10 + λ1t

2`+9 + λ2t
2`+11 + λ3t

2`+13 + λ4t
2`+17 + λ5t

2`+21),

λ1 6= 0 (` = 1, 2, . . . )

4. Symplectic moduli spaces. The symplectic moduli spaces are de-
termined by the following result:

Theorem 4.1. Let fλ(t) = (tm, tn+λ1t
r1 +λ2t

r2 + · · ·+λst
rs) be one of

the symplectic normal forms in Theorem 3.10. Then two curve-germs fλ and
fλ′ belonging to the same family are symplectomorphic if and only if there
exists an (m+ n)th root ζ ∈ C of unity satisfying

λ′1 = ζr1−nλ1, λ′2 = ζr2−nλ2, . . . , λ
′
s = ζrs−nλs.

In particular each symplectic moduli space of a family is a Hausdorff space
in the natural topology and it extends to a cyclic quotient space.

The symplectic moduli spaces are given in Tables 1 and 2.
In the process of symplectic classification, we observe a kind of rigidity.

Let fλ (λ ∈ Cs) be one of the symplectic normal forms of simple or uni-modal
parametric plane curve singularities. Since the symplectic normal form gives
a mini-transversal to symplectic orbits in a sufficiently high order jet space,
we see that each symplectomorphic equivalence class is isolated in the pa-
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rameter space Cs. Moreover we have a stronger rigidity, symplectic rigidity,
which implies Theorem 4.1. To see that, we need a series of conditions on
non-linear symplectomorphisms, which is obtained via straightforward cal-
culations.

Table 1. The complex symplectic moduli spaces of simple parametric plane curve
singularities

Diff. normal form Symp. normal form Symp. moduli space

A2` (t2, t2`+1) (t2, t2`+1)

E6`

(` ≥ 1)

(t3, t3`+1+t3(`+p)+2)

(0 ≤ p ≤ `− 2)

(t3, t3`+1)

(t3, t3`+1

+
`−1P
j=1

λjt
3(`+j)−1)

C`−1/G, G = Z/(3`+ 4)Z
(λ1, . . . , λ`−1) 7→

(ζλ1, . . . , ζ
3j−2λj , . . . , ζ

3`−5λ`−1)

(ζ3`+4 = 1,primitive)

E6`+2

(`≥1)

(t3, t3`+2+t3(`+p)+4)

(0 ≤ p ≤ `− 2)

(t3, t3`+2)

(t3, t3`+2

+
`−1P
j=1

λjt
3(`+j)+1)

C`−1/G, G = Z/(3`+ 5)Z
(λ1, . . . , λ`−1) 7→

(ζ2λ1, . . . , ζ
3j−1λj , . . . , ζ

3`−4λ`−1)

(ζ3`+5 = 1,primitive)

W12
(t4, t5 + t7)

(t4, t5)
(t4, t5 + λt7)

C/G, G = Z/9Z
λ 7→ ζλ (ζ9 = 1)

W18

(t4, t7 + t9)

(t4, t7 + t13)

(t4, t7)

(t4, t7 + λt9 + µt13)
C2/G, G = Z/11Z

(λ, µ) 7→ (ζλ, ζ3µ) (ζ11 = 1)

W#
1,2`−1

(` ≥ 1)
(t4, t6 + t2`+5)

(t4, t6 + λt2`+5

+ µt2`+9)

(λ 6= 0)

(C∗ × C)/G, G = Z/10Z,
(λ, µ) 7→ (ζ2`−1λ, ζ2`+3µ)

(ζ10 = 1, primitive)

Lemma 4.2. Let τ : (C2, 0)→ (C2, 0) be a symplectomorphism. Set

x ◦ τ(x, y) = ax+ by + h1x
2 + h2xy + h3y

2 + `1x
3 + `2x

2y + `3xy
2 + `4y

3

+ r1x
4 + r2x

3y + r3x
2y2 + r4xy

3 + r5y
4 + · · · ,

y ◦ τ(x, y) = cx+ ey + k1x
2 + k2xy + k3y

2 +m1x
3 +m2x

2y +m3xy
2

+m4y
3 + s1x

4 + s2x
3y + s3x

2y2 + s4xy
3 + s5y

4 + · · · .

Then∣∣∣∣∣ a b

c e

∣∣∣∣∣ = 1,

∣∣∣∣∣ 2h1 b

2k1 e

∣∣∣∣∣+
∣∣∣∣∣ a h2

c k2

∣∣∣∣∣ = 0,

∣∣∣∣∣ h2 b

k2 e

∣∣∣∣∣+
∣∣∣∣∣ a 2h3

c 2k3

∣∣∣∣∣ = 0,
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Table 2. The complex symplectic moduli spaces of uni-modal parametric plane
curve singularities

Symp. normal form Symp. moduli space

N20 (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14)

C3/G, G = Z/11Z
(λ1, λ2, λ3) 7→ (ζ2λ1, ζ

3λ2, ζ
8λ3)

(ζ11 = 1)

N24 (t5, t7 + λ1t
8 + λ2t

11 + λ3t
13 + λ4t

18)

C4/G, G = Z/12Z
(λ1, λ2, λ3, λ4) 7→

(ζλ1, ζ
4λ2, ζ

6λ3, ζ
11λ4)

(ζ12 = 1, primitive)

N28
(t5, t8 + λ1t

9 + λ2t
12

+λ3t
14 + λ4t

17 + λ5t
22)

C5/G, G = Z/13Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζλ1, ζ
4λ2, ζ

6λ3, ζ
9λ4, ζ

14λ5),

(ζ13 = 1, primitive)

W24 (t4, t9 + λ1t
10 + λ2t

11 + λ3t
15 + λ4t

19)

C4/G, G = Z/13Z
(λ1, λ2, λ3, λ4) 7→

(ζλ1, ζ
2λ2, ζ

6λ3, ζ
10λ4)

(ζ13 = 1)

W30
(t4, t11 + λ1t

13 + λ2t
14 + λ3t

17

+λ4t
21 + λ5t

25)

C5/G, G = Z/15Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζ2λ1, ζ
5λ2, ζ

6λ3, ζ
10λ4, ζ

14λ5)

(ζ15 = 1, primitive)

W#
2,2`−1

(t4, t10 + λ1t
2`+9 + λ2t

2`+11 + λ3t
2`+13

+ λ4t
2`+17 + λ5t

2`+21) (λ1 6= 0)

(C∗ × C4)/G, G = Z/14Z
(λ1, λ2, λ3, λ4, λ5) 7→
(ζ2`−1λ1, ζ

2`+1λ2,

ζ2`+3λ3, ζ
2`+7λ4, ζ

2`+11λ5)

(ζ14 = 1, primitive)

∣∣∣∣∣ 6`1 b

6m1 e

∣∣∣∣∣+ 2

∣∣∣∣∣ 2h1 h2

2k1 k2

∣∣∣∣∣+
∣∣∣∣∣ a 2`2
c 2m2

∣∣∣∣∣ = 0,∣∣∣∣∣ 2`2 b

2m2 e

∣∣∣∣∣+
∣∣∣∣∣ 2h1 2h3

2k1 2k3

∣∣∣∣∣+
∣∣∣∣∣ a 2`3
c 2m3

∣∣∣∣∣ = 0,∣∣∣∣∣ 2`3 b

2m3 e

∣∣∣∣∣+ 2

∣∣∣∣∣ 2h2 h3

2k2 k3

∣∣∣∣∣+
∣∣∣∣∣ a 6`4
c 6m4

∣∣∣∣∣ = 0,∣∣∣∣∣ 24r1 b

24s1 e

∣∣∣∣∣+ 3

∣∣∣∣∣ 6`1 h2

6m1 k2

∣∣∣∣∣+ 3

∣∣∣∣∣ 2h1 2`2
2k1 2m2

∣∣∣∣∣+
∣∣∣∣∣ a 6r2

c 6s2

∣∣∣∣∣ = 0.

Next, we have the symplectic rigidity:
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Proposition 4.3. Let fλ and fλ′ be germs belonging to one of the sym-
plectic normal forms of simple or uni-modal parametric plane curve singu-
larities. If fλ and fλ′ are symplectomorphic, then they are linearly symplec-
tomorphic: If there exists a symplectomorphic equivalence (σ, τ) satisfying
τ ◦fλ′ = fλ ◦σ, then there exists a symplectomorphic equivalence (Σ,T ) such
that T ◦fλ′ = fλ ◦Σ, Σ : (C, 0)→ (C, 0) is a complex linear transformation,
and T : (C2, 0)→ (C2, 0) is a complex linear symplectic transformation.

Proof. We give the calculation in the case of W30. Other cases can be
treated similarly.

Set fλ = (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25), and suppose fλ

and fλ′ are symplectomorphic for λ = (λ1, . . . , λ5) and λ′ = (λ′1, . . . , λ
′
5).

Set σ(t) = a1t+ a2t
2 + · · · and, as components of τ(x, y),

x ◦ τ(x, y) = ax+ by + h1x
2 + h2xy + h3y

2 + `1x
3 + `2x

2y + `3xy
2

+ `4y
3 + · · · ,

y ◦ τ(x, y) = cx+ ey + k1x
2 + k2xy + k3y

2 +m1x
3 +m2x

2y +m3xy
2

+m4y
3 + · · · .

Consider the equation fλ(σ(t)) = τ(fλ′(t)):

σ(t)4 = x ◦ τ(t4, t11 + λ′1t
13 + λ′2t

14 + λ′3t
17 + λ′4t

21 + λ′5t
25),(∗)

σ(t)11 + λ1σ(t)13 + λ2σ(t)14 + λ3σ(t)17 + λ4σ(t)21 + λ5σ(t)25(∗∗)
= y ◦ τ(t4, t11 + λ′1t

13 + λ′2t
14 + λ′3t

17 + λ′4t
21 + λ′5t

25).

Now we are going to determine the coefficients of σ and τ of lower degree
terms, using the equations (∗) and (∗∗) in a zigzag manner. We denote the
terms of degree i of both sides in (∗) (resp. (∗∗)) by (*i) (resp. (**i)). First
by (*4), we have a4

1 = a. By (*5), (*6), (*7), a2 = 0, a3 = 0, a4 = 0. By (**4),
c = 0. By (**8), k1 = 0. By (**11), a11

1 = e. Since τ is a symplectomorphism,
we see that ae = 1, by Lemma 4.2, so a15

1 = 1. By (**12),m1 = 0. By (**13),
λ1a

13 = eλ′1 and therefore λ1a
2 = λ′1. By (**14), λ2a

14 = eλ′2 and therefore
λ1a

3 = λ′1. By (**15), 11a10
1 a5 = k2. From (*8), 4a3a5 = h1. Since τ is a

symplectomorphism, we have 2h1e + ak2 = 0, by Lemma 4.2. Thus we see
that a5 = 0. Then k2 = 0, h1 = 0. By (*9), 4a3a6 = 0 so a6 = 0. By (*10),
a7 = 0. By (*11), 4a3

1a8 = b. Then by (**17), λ3a
17 = eλ′3, thus λ3a

6 = λ′3.
By (**18), a8 = 0. Therefore b = 0. By (*12), 4a3

1a8 = `1. By (**19),
11a10

1 a9 = m2. Since τ is a symplectomorphism, we have 6`1e + 2am2 = 0
by Lemma 4.2. Thus a9 = 0. Then `1 = 0, m2 = 0. By (*13)–(*14), a10 = 0,
a11 = 0. By (**21), λ4a

21 = eλ′4 so λ4a
10 = λ′4. By (**22), 11a10

1 a12 = k3. By
(*15), 4a3

1a12 = h2. Since τ is a symplectomorphism, we have h2e+2ak3 = 0
by Lemma 4.2. Therefore a12 = 0, and k3 = 0, h2 = 0. Then, by (**23),
a13 = 0, and by (*17)–(*18), a14 = 0, a15 = 0. Finally, by (**25), λ5a

25 =



Symplectic classification of complex curves 279

eλ′5, and λ5a
13 = λ′5. Therefore, defining T and Σ to be the linear parts of

τ and σ respectively, we have T ◦ fλ′ = fλ ◦Σ.

Proof of Theorem 4.1. Once the rigidity as in Proposition 4.3 is estab-
lished, it suffices just to observe that T ◦ fλ′ = fλ ◦ Σ for a linear trans-
formation Σ(t) = a1t and a symplectic linear transformation T (x, y) =
(ax + by, cx + ey). Then we easily see that am1 = a, c = 0, an1 = e. Since
T ∈ SL(2,C) we see am+n

1 = 1. Then, setting ζ = a1, we obtain Theo-
rem 4.1.

Remark 4.4. If two curve-germs f, g : (C, 0) → (C2, 0) are symplecto-
morphic, then they are symplectically isotopic, that is, there exist C∞ fami-
lies of bi-holomorphic diffeomorphisms σs and bi-holomorphic symplectomor-
phisms τs (s ∈ [0, 1]) on (C, 0) and (C2, 0) respectively such that σ0(t) = t,
τ0(x, y) = (x, y) and τ1(g(t)) = f(σ1(t)). This is a feature of the complex
case and it is proved by using the fact that SL(2,C) is arc-wise connected
and the group of symplectomorphisms with identity linear part is arc-wise
connected (cf. [14]). Thus our symplectic moduli spaces in Tables 1 and 2
are also moduli spaces for symplectic isotopy equivalence (cf. [30]).

5. Differential normal forms. The classification of simple singularities
by Bruce–Gaffney [3] is extended to the following:

Theorem 5.1. Under diffeomorphic equivalence the simple and uni-modal
singularities of parametric plane curves f : (C, 0) → (C2, 0) are completely
classified into the following list:

A2` : (t2, t2`+1) (` = 1, 2, 3, . . . ),

E6` : (t3, t3`+1 + t3(`+p)+2) (0 ≤ p ≤ `− 2), (t3, t3`+1),

E6`+2 : (t3, t3`+2 + t3(`+p)+4) (0 ≤ p ≤ `− 2), (t3, t3`+2),

W12 : (t4, t5 + t7), (t4, t5),

W18 : (t4, t7 + t9), (t4, t7 + t13), (t4, t7),

W#
1,2`−1 : (t4, t6 + t2`+5),

N20 : (t5, t6 + t8 + λt9) (−λ ∼ λ), (t5, t6 + t9), (t5, t6 + t14), (t5, t6),

N24 : (t5, t7 + t8 + λt11), (t5, t7 + t11 + λt13) (−λ ∼ λ),
(t5, t7 + t13), (t5, t7 + t18), (t5, t7),

N28 : (t5, t8 + t9 + λt12), (t5, t8 + t12 + λt14) (−λ ∼ λ),
(t5, t8 + t14 +λt17) (−λ ∼ λ), (t5, t8 + t17), (t5, t8 + t22), (t5, t8),
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W24 : (t4, t9 + t10 + λt11) (λ 6= 19
18), (t4, t9 + t10 + 19

18 t
11 + λt15),

(t4, t9 + t11), (t4, t9 + t15), (t4, t9 + t19), (t4, t9),

W30 : (t4, t11 + t13 + λt14) (−λ ∼ λ), (t4, t11 + t14 + λt17) (λ 6= 25
22),

(t4, t11 + t14 + 25
22 t

17 + λt21) (ωλ ∼ λ, ω3 = 1),
(t4, t11 + t17), (t4, t11 + t21), (t4, t11 + t25), (t4, t11),

W#
2,2`−1 : (t4, t10 + t2`+9 +λt2`+11) (ωλ ∼ λ, ω2`−1 = 1) (`= 1, 2, 3, . . . ).

In the list, for instance −λ ∼ λ means that (t5, t6 + t8 + λ′t9) is diffeo-
morphic to (t5, t6 + t8 + λt9) if and only if λ′ = ±λ.

Remark 5.2. Ebey [7] gave diffeomorphic classifications of the cases
(2, 2` + 1), (3, 3` + 1), (3, 3` + 2), (4, 5), (4, 6, 2` + 5), (4, 7) and (5, 9). Also
he classified the cases (4, 9), (4, 10, 2` + 9) and (4, 11), but his classification
has several omissions and errors, which are corrected in our classification.
Note moreover that several cases with modality ≥ 2 are classified under
diffeomorphisms by several authors: (5, 9) ([7]); (6, 7) ([34]); (5, 11) ([21]);
(2p, 2q, 2q + `) ([23]); (6, 9, 10) ([11]).

Proof of Theorem 5.1: Theorem 5.1 can be established by a similar
method to the one in [3]. However, we note that the symplectic normal forms
(Theorem 3.10) can play the role of an intermediate classification, which also
makes the diffeomorphic classification easier and clearer.

Theorem 5.1 will be proved if we classify all remaining cases of Lemma 2.2.
Here we will treat only the classes N20 and W30 with Puiseux character-

istic (5, 6) and (4, 11) respectively. The remaining cases can be treated by
the same method.

We start with the symplectic normal form

fλ(t) = (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14),

of class N20. Consider, for a given vector field v(t) = (0, ρ(t)), Mather’s
equation (

0
ρ(t)

)
= ξ

(
5t4

6t5 + 8λ1t
7 + · · ·

)
+
(
η1(fλ(t))
η2(fλ(t))

)
,

and try to find ξ(t), η1(x, y), η2(x, y) with ξ(0) = 0, η1(0, 0) = 0, η2(0, 0) = 0.
We can take N ′ = 20 in the notation of Lemma 3.7(1), so, by Lemma 3.7(2),
v = (0, ρ(t)) is symplectically solvable if ord(ρ) ≥ 15.

If λ1 6= 0, then v = (0, tk) is solvable up to higher order terms for k = 8,
10, 11, 12, 13, 14. Thus we reduce our family to fλ(t) = (t5, t6 + t8 + λt9),
λ ∈ C, by diffeomorphisms. By further calculations on formal power series,
we see that fλ and fλ′ are diffeomorphic if and only if λ′ = ±λ.
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If λ1 = 0, λ2 6= 0, then v = (0, tk) is solvable up to higher order terms for
k = 9, 10, 11, 12, 13, 14, and we have the differential normal form (t5, t6 + t9).

If λ1 = 0, λ2 = 0, λ3 6= 0, then v = (0, t14) is solvable, and we get the
differential normal form (t5, t6 + t14).

Lastly if λ1 = 0, λ2 = 0, λ3 = 0, then (t5, t6) is regarded as the differential
normal form.

For the case W30, consider the symplectic normal form

fλ(t) = (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25).

Consider Mather’s equation(
0
ρ(t)

)
= ξ

(
4t3

11t10 + 13λ1t
12 + · · ·

)
+
(
η1(fλ(t))
η2(fλ(t))

)
.

We can take N ′ = 30 in this case so v(t) = (0, ρ(t)) is symplectically solvable
if ord(ρ) ≥ 26. Suppose λ1 6= 0. Then we see v(t) = (0, tk) is solvable for
k = 13, up to higher order terms, and solvable for any k ≥ 15. Then, by
the homotopy method, we see that, if λ1 6= 0, then f is diffeomorphic to
(t4, t11 +t13 +λt14) for some λ ∈ C. If λ1 = 0, λ2 6= 0, then f is diffeomorphic
to (t4, t11+t14+λt17) for some λ ∈ C, λ 6= 25

22 , or to (t4, t11+t14+ 25
22 t

17+λt21)
for some λ ∈ C. If λ1 = 0, λ2 = 0, λ3 6= 0 (resp. λ1 = 0, λ2 = 0, λ3 = 0,
λ4 6= 0; λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 0, λ5 6= 0), then f is diffeomorphic
to (t4, t11 + t17) (resp. (t4, t11 + t21); (t4, t11 + t25)). The exact determination
of the differential moduli space is completed just by straightforward formal
calculations.

Remark 5.3. In general, for each equi-singularity class, the symplectic
moduli space is mapped canonically onto the differential moduli space, i.e.
the ordinary moduli space. The dimension of the fiber over a diffeomorphism
class [f ] is called the symplectic defect and denoted by sd(f) in [15]. It is
known that sd(f) = µ(f)−τ(f), where µ(f) = 2δ(f) is the Milnor number of
f and τ(f) is the Tyurina number of f ([30], [20], [5]). Let s(f) (resp. c(f)) be
the symplectic modality, that is, the number of parameters in the symplectic
normal form of f (resp. the codimension of the locus in the parameter space
corresponding to germs diffeomorphic to f). Then s(f) − c(f) = sd(f).
Thus we have the following formula for the Tyurina number (by means of
Varchenko–Lando’s formula):

τ(f) = 2δ(f) + c(f)− s(f).

For example, for f = (t4, t11 + t21) in the case of W30, we have δ(f) =
15, c(f) = 3, s(f) = 5 and in fact τ(f) = 28.

Note that the differential moduli space is not a Hausdorff space, while
the symplectic moduli space is, at least for 0-modal and 1-modal cases, as
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we clearly observe in Theorems 5.1 and 4.1. Therefore the symplectic moduli
space can be called a Hausdorffication of the differential moduli space.

Remark 5.4. The adjacency of simple and uni-modal singularities of
parametric plane curves is generated (as an ordering) by A2` ← A2`+2, E6` ←
E6`+2 ← E6`+6 (` = 1, 2, . . . ), A6s−2 ← E12s−6, A6s ← E12s, A6s−2 ←
E12s−4, A6s+2 ← E12s+2 (s = 1, 2, . . . ), E8 ← W12 ← W18, W12 ← W#

1,1,
E12 ← W#

1,1 ← W18, W
#
1,2`−1 ← W#

1,2`+1 (` = 1, 2, . . . ), W#
1,1 ← N20 ←

N24 ← N28, W18 ← N24, W24 ← N28, W18 ← W24 ← W30, E18 ← W24 ←
W#

2,1, E20 ←W30, W
#
2,2`−1 ←W#

2,2`+1 (` = 1, 2, . . . ).

Remark 5.5 (Classification of curves with characteristic (6, 7)). Let f :
(C, 0) → (C2, 0) be a plane branch of characteristic (6, 7), m = 6, β1 = 7.
The quotient O1/f

∗O2 has the monomial basis

t, t2, t3, t4, t5, t8, t9, t10, t11, t15, t16, t17, t22, t23, t29.

The symplectic normal form is given by

fλ(t) = (t6, t7 + λ1t
9 + λ2t

10 + λ3t
11 + λ4t

16 + λ5t
17 + λ6t

23),

(λ1, λ2, λ3, λ4, λ5, λ6) ∈ C6. Moreover we can check that fλ and fλ′ are sym-
plectomorphic if and only if there exists a ζ ∈ C with ζ13 = 1 satisfying

λ′1 = ζ2λ1, λ′2 = ζ3λ2, λ′3 = ζ4λ3, λ′4 = ζ9λ4, λ′5 = ζ10λ5, λ′6 = ζ16λ6.

Thus the symplectic moduli space Msymp(6, 7) is homeomorphic to C6/G
for G = Z/13Z with the representation G→ GL(6,C) given by

ζ 7→ ((λ1, λ2, λ3, λ4, λ5, λ6) 7→ (ζ2λ1, ζ
3λ2, ζ

4λ3, ζ
9λ4, ζ

10λ5, ζ
16λ6)).

As a by-product we get an exact diffeomorphic classification of plane
curves of characteristic (6, 7) due to Zariski using our symplectic method:

Theorem 5.6 (Zariski [34]). Any plane curve-germ f : (C, 0)→ (C2, 0)
of Puiseux characteristic (6, 7) is diffeomorphic to one of the following nor-
mal forms:

Z0
λ,µ : (t6, t7 + t9 + λt10 + µt11), µ 6= 9

8λ
2 + 23

14 , (±λ, µ) ∼ (λ, µ),

Z1
λ,ν : (t6, t7 + t9 + λt10 + (9

8λ
2 + 23

14)t11 + νt17), (±λ, ν) ∼ (λ, ν),

Z ′1λ : (t6, t7 + t10 + λt11), ωλ ∼ λ, ω3 = 1,

Z2
λ : (t6, t7 + t11 + λt16), ωλ ∼ λ, ω4 = 1,

Z3
λ : (t6, t7 + t16 + λt17), ωλ ∼ λ, ω9 = 1,

Z4 : (t6, t7 + t17),

Z5 : (t6, t7 + t23),

Z6 : (t6, t7).
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