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Abstract

We study the classification of varieties in the Marsden–Weinstein reduction and their
liftability. In particular the complete symplectic classification of the Bruce–Gaffney plane curve
singularites is provided and is applied to obtain naturally the Lagrangian openings.

1. Introduction

Symplectic structures arise naturally in diverse contexts such as Hamiltonian mechanics, field
theory, geometrical optics, algebraic geometry, etc. In all these theories the bifurcations of various
symplectic objects, like isotropic or Lagrangian varieties, representing the states of the systems
play an important role. The purpose of this article is twofold. First we formulate the theory of
symplectic bifurcations with the symplectic group actions on the reduced spaces. Secondly we
provide the complete classification of simple symplectic bifurcations of curves and determine the
possible differential and symplectic invariants, in particular, the symplectic defect.

We start with a coisotropic fibrationH : M2n → R
n−k, 0 � k � n − 1, of the symplectic space

(M2n, ω) of dimension 2n, n � 2. By the Jacobi–Liouville theorem, locally there exist relative
Darboux coordinatesp1, . . . , pn, q1, . . . , qn of M such thatω = ∑n

i=1 dpi ∧ dqi , and

H(p, q) = (q̄) = (qk+1, . . . , qn)

cf. [1, p. 301]. Then we consider the family of canonical reductions (Marsden–Weinstein symplectic
reduction)

q̄ �→ πq̄ : H−1(q̄) → H−1(q̄)/∼q̄ ∼= T ∗
R

k,

πq̄ : (p1, . . . , pk, q1, . . . , qk, pk+1, . . . , pn) �→ (p1, . . . , pk, q1, . . . , qk),
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where∼q̄ denotes the equivalence relation onH−1(q̄) induced by the characterisic foliation ofH .
Then we have the total projection

π : M2n → N n+k = T ∗
R

k × R
n−k,

π(p, q) = (p1, . . . , pk, q1, . . . , qk; qk+1, . . . , qn).

Let Lm ⊂ M2n be an isotropic variety (ω|L = 0, m � n). Then the projectionπ(L) ⊂ N =
T ∗

R
k ×R

n−k provides a bifurcation of(m −n +k)-dimensional isotropic varietiesπq̄(H−1(q̄)∩ L)

in T ∗
R

k with the parameter spaceRn−k . In this paper we consider the bifurcation of curves, namely,
the casem = n − k + 1.

Any map-germF : (Rn−k+1, 0) → N = T ∗
R

k×R
n−k is called a symplectic bifurcation problem

of curves. The germF is calledtransverse if F is transverse toT ∗
R

k × {0} at 0. Moreover any
symplectic bifurcation problem of curves is calledan isotropic bifurcation of curves if there exists
an isotropic map-germ̃F : (Rn−k+1, 0) → ((M2n, ω), 0) such thatπ ◦ F̃ = F, and F̃∗ω = 0;
cf. [17, p. 29]. We show thatany transverse symplectic bifurcation problem of curves is isotropic
(Proposition 2.3).

In the paper [22], V. M. Zakalyukin classified the simple stable Lagrangian submanifold-germs
(m = n) by symplectomorphisms which preserve a given coisotropic fibration. Then, admitting
Lagrangian or isotropic varieties, we study the liftability and the classification problem of varieties
in the reduced space. In other words, we consider the ‘bottom-up’ construction. The idea appeared
earlier in the Ph.D. Thesis of M. Mikosz and part of it is published in [19]. We see that there exist,
even in the simplest casen = 2, k = 1, many examples of non-transverse bifurcation problems
of curvesF : (R2, 0) → N = R

2 × R which are not liftable to isotropic mappings intoM
(Examples 2.6 and 2.7).

To make clear the problem we are going to study, let us consider the bifurcation problem of ‘cross
caps’ or ‘Whitney umbrellas’ in the three spaceR

2 × R = T ∗
R × R with the symplectic foliation.

Then we observe the four typical examples of bifurcationsF : (R2, 0) → (R2 × R), namely

(1) transverse immersions or no bifurcation,

(2) transverse Whitney umbrellas or cusp bifurcations,

(3) hyperbolic Whitney umbrellas orX -pinch bifurcations, and

(4) elliptic Whitney umbrellas or figure-8 bifurcations;

see Fig. 1; see also section 5. The classification is similar to the classification of functions on
cross-caps; see [7]. However, we remark that the non-transverse immersions are never isotropically
liftable (Proposition 2.5), so they do not enter into our list, contrary to ordinary singularity theory.
The first two are transverse and the last two are not. Note that changes of irreducible components
occur through the bifurcations of types (3) and (4), while the transverse bifurcations of curves
provide just irrreducible curves, like the cases (1) and (2).

In this paper we study the transverse bifurcation problem of curves in detail. In section 2,
we show the unique isotropic liftability of transverse bifurcations. In section 3, we study the
general classification problem of parametrized varieties in the reduced space under a natural
equivalence relation,liftable equivalence, that corresponds to the classification of isotropic varieties
by symplectomorphisms preservingπ -fibres for the given coisotropic fibrationH : R

2n → R
n−k .

We show that a liftable diffeomorphism is actually a diffeomorphism preserving the symplectic



SYMPLECTIC BIFURCATIONS 75

(1) (2) (3) (4)

Fig. 1 Typical isotropic bifurcations

foliation of N = T ∗
R

k × R
n−k . Thus the classification under the liftable equivalence turns out to

be reduced completely to the classification and deformation problem of curves on the symplectic
spaceT ∗

R
k = R

2k, k � 1.
In section 4, we give the classification of symplectic bifurcation problems of curves under the

liftable equivalence.
In particular, we study the simplest casek = 1, namely, the bifurcation problem of curves in the

symplectic plane, in detail.
Now we try to clarify the fundamental problem we face. Suppose two plane curve-germs are

transformed to each other by an orientation preserving diffeomorphism on the plane. Then, it is
natural to ask: Are they transformed by a symplectomorphism of the plane? Is singularity theory
using symplectomorphisms different from ordinary singularity theory even for plane curves? Then
we encounter ‘symplectic ghosts’ in the sense of Arnold [3]. After several preliminaries in sections 6
and 7 answering this question, we describe, in section 8, for a plane curve-germf : (R, 0) →
(R2, 0), the difference sp-codim( f ) − codim( f ) between the codimension(sp-codim( f )) of f
under the ‘symplectic equivalence’ and the right–left (that is,Ae) codimension codim( f ) of f in
an explicit way. We call this difference thesymplectic defect or thesymplectic ghost number of f .
We remark that our ghosts have moduli, while the ghosts which appeared in [3] are discrete.

Obviously the symplectic defect is an invariant under symplectic equivalence, namely a
symplectic invariant. However, we show that the symplectic defect is, in fact, anA-invariant of
f , not just a symplectic invariant.If the symplectic defect is positive, then the classification of
plane curves by symplectomorphisms differs from the classification by diffeomorphisms, and the
difference depends only on the A-equivalence class of the plane curves. Therefore the symplectic
codimension itself is anA-invariant. If two plane curve-germsf and f ′ areA-equivalent, then



76 G. ISHIKAWA AND S . JANECZKO

(1) (2)

Fig. 2 Swallowtail and folded umbrella

sp-codim( f ) = sp-codim( f ′). In fact we show that sp-codim( f ) is equal to theδ-invariant (the
number of complex double points after a perturbation) off . Note that, a priori, theδ-invariant has
nothing to do with symplectic equivalence. We also remark that, in the casek � 2, the symplectic
codimension off : (R, 0) → T ∗

R
k is, in fact, not necessarily anA-invariant (Remark 8.5).

Moreover, we show in section 10, that if the symplectic defect equals zero, the symplectic
classification of plane curves coincides with their isotopy classification. As an application,
we obtain normal forms under liftable equivalence for certain map-germs. Also, we calculate
symplectic defects forA-simple plane curves

A2�, E6�, E6�+2, W12, W18, W #
1,2q−1

classified by Bruce and Gaffney [5] and give the complete symplectic classification ofA-simple
plane curves (Theorems 9.2 and 9.6). Moreover we obtain the symplectically mini-versal unfoldings
of them (Proposition 9.9). As a byproduct of our approach, we give the classification (A2�, E6, E±

8 )
of ‘symplectically simple’ plane curves (Corollary 9.8).

As typical well-known examples of Lagrangian varieties, there are open Whitney umbrellas and
open swallowtails. In this paper, in a systematic way, we characterize the opening processes of
Whitney umbrellas and swallowtails; see sections 7, 9, 11 and 12. We show that the Lagrangian
liftings are obtained, in many cases, from open Whitney umbrellas by the reduction process
(Corollary 7.4). Also we study the polynomial construction of open swallowtails from the viewpoint
of the present paper (section 11). In section 12, we treat the construction of open swallowtails (Fig. 2
(1)) and also ‘open folded umbrellas’ (Fig. 2 (2)), via the notion of ‘frontal-symplectic’ versality.

2. Lagrangian liftability

Let F : (Rn−k+1, 0) → (N , 0) = (T ∗
R

k × R
n−k, 0) be a smooth map germ.

DEFINITION 2.1 By anisotropic lifting of F , we mean a smooth map-germ̃F : (Rn−k+1, 0) →
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(M, 0) which is isotropic, that is,̃F∗ω = 0, and for whichπ ◦ F̃ = F :

(Rn−k+1, 0)
F̃−−−−→ ((M, 0), ω)∥∥∥ �π

(Rn−k+1, 0)
F−−−−→ (N , 0).

Whenk = 1, we call an isotropic lifting also aLagrangian lifting.

Now we have the following sufficient condition for the isotropic liftability off .

DEFINITION 2.2 A smooth map-germF : (Rn−k+1, 0) → (N , 0) = (T ∗
R

k × R
n−k, 0) is called

transverse if F is transverse toT ∗
R

k × {0}.
The result mentioned in the Introduction is proved in the following precise form.

PROPOSITION 2.3 Let F : (Rn−k+1, 0) → (N , 0) be a transverse smooth map-germ. Then there
exists a smooth isotropic lifting F̃ : (Rn−k+1, 0) → M = R

2n for F. In fact, for some coordinates
x = (t, λ1, . . . , λn−k) with F(t, λ) = ( fλ(t), λ), the remaining components of F̃ are given by

p j (x) =
∫ t

0

(
k∑

i=1

∂pi

∂λ j

∂qi

∂t
− ∂pi

∂t

∂qi

∂λ j

)
dt (k + 1 � j � n).

Moreover the Lagrangian liftings of F are equivalent to each other by symplectomorphisms on M
preserving the fibres of H.

Proof. From the equatioñF∗ω = 0 we get the necessary condition for the germ to be a solution of
afirst-order partial differential equation. The details are as follows. (See also [12].)

By assumption, there exist coordinates

x = (x1, x2, . . . , xn−k+1) = (t, λ1, . . . , λn−k)

such that

F(t, λ1, . . . , λn−k) = (q1(t, λ), p1(t, λ), . . . , qk(t, λ), pk(t, λ), λ1, . . . , λn−k),

F̃(t, λ1, . . . , λn−k) = (F(t, λ), pk+1(t, λ), . . . , pn(t, λ)).

Set θ = ∑n
i=1 pi dqi , the Liouville form on M = T ∗

R
n . Thenω = dθ . Since the condition

F̃∗ω = 0 is equivalent toF̃∗θ being closed, we set, locally,̃F∗θ = de for some functione on
(Rn−k+1, 0). Then we get

∂e

∂t
=

k∑
i=1

pi (x)
∂qi

∂t
,

∂e

∂λ j
= pk+ j (t, λ) +

k∑
i=1

pi (t, λ)
∂qi

∂λ j

( j = 1, . . . , n − k). If we take a functione(x) satisfying the first equation, then we obtainpk+ j (x)

( j = 1, . . . , n − k) by the second equality. Now we set

e =
∫ t

0

k∑
i=1

pi (x)
∂qi

∂t
dt + ϕ(λ), λ = (λ1, . . . , λn−k),
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for some functionϕ which is independent oft . Then we have

∂e

∂λ j
=

∫ t

0

(
k∑

i=1

∂pi

∂λ j

∂qi

∂t
+ pi

∂2qi

∂t∂λ j

)
dt + ∂ϕ

∂λ j

=
∫ t

0

(
k∑

i=1

∂pi

∂λ j

∂qi

∂t
− ∂pi

∂t

∂qi

∂λ j

)
dt +

k∑
i=1

pi
∂qi

∂λ j
+ ∂ϕ

∂λ j
.

Thus we have

pk+ j (t, λ) =
∫ t

0

(
k∑

i=1

∂pi

∂λ j

∂qi

∂t
− ∂pi

∂t

∂qi

∂λ j

)
dt + ∂ϕ

∂λ j
(1 � j � n − k).

Note thatH ◦ F̃(x) = (λ1, . . . , λn−k). Then the local symplectomorphism

(p, q) �→
(

p1, . . . , pk, pk+1 − ∂ϕ(q̄)

∂qk+1
, . . . , pn − ∂ϕ(q̄)

∂qn
, q

)
,

q̄ = (qk+1, . . . , qn), eliminates the terms∂ϕ/∂λ j .

REMARK 2.4 (The coincidence of singular loci for the lifting and the original map) The singular
locus of F̃ coincides with the singular locus ofF :

Sing(F̃) = Sing(F) =
{
(t, λ) ∈ (Rn−k+1, 0)

∣∣∣∣∂qi

∂t
= ∂pi

∂t
= 0, 1 � i � k

}
.

In the casek = 1, moreover, we have the following.

PROPOSITION 2.5 If F : (Rn, 0) → N = T ∗
R × R

n−1 is an immersive germ, then the
transversality condition is the necessary and sufficient condition for the existence of Lagrangian
liftings for F.

Proof. Assume thatF is an immersion and not transverse toT ∗
R × {0}. Then we see that the

imageF∗(T0R
n) containsT0(T ∗

R × {0}) by a simple argument of dimension. This means that, for
any lifting F̃ of F , F̃∗(T0R

n) contains the (p1, q1)-plane inT0M . Then it is impossible that̃F is
isotropic. �

EXAMPLE 2.6 (Non-transversal and liftable germs) There exist non-transverse and liftable map-
germs. For example, if a Lagrangian immersionL : (Rn, 0) → M2n is not transverse to theH -level
H−1(H(L(0))) for H : M2n → R

n−1, then the tangent spaceL∗(T0R
n) contains a characteristic

direction andF = π ◦ L is not an immersion, whileF is liftable to L. In particular, a Lagrange
surface inR

4 projects to a Whitney umbrella. This observation is related to the study of smooth
perturbations of singular surfaces inR

4 [10].

EXAMPLE 2.7 (Non-transverse and non-liftable germs) LetF : (R2, 0) → (N , 0) = (R2 × R, 0)

be a non-transverse map-germ of the form

F(x1, x2) = (q1, p1, q2) = (q1(x), p1(x), 1
2(x2

1 ± x2
2)).

Consider the second-order differential operator	 = ∂2/∂x2
1±∂2/∂x2

2 associated to12(x2
1±x2

2). If F
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has a Lagrangian lifting, thendp1∧dq1+dϕ∧d(1
2(x2

1 ±x2
2)) = 0 for some functionϕ = ϕ(x1, x2).

Then we see, by simple formal calculations, that the JacobianJ (p1, q1) satisfies an infinite number
of conditions(	� J (p1, q1))(0, 0) = 0 for � = 0, 1, 2, . . . . So, if (	� J (p1, q1))(0, 0) �= 0 for some
�, thenF is never liftable. For example,

F(x1, x2) = (q1, p1, q2) = (x1, x3
2, 1

2(x2
1 ± x2

2))

is not liftable. On the other hand,(x1, x1x2,
1
2(x2

1 ± x2
2)) is liftable.

3. Liftable equivalence

Let φ : (N , 0) → (N , 0) be a diffeomorphism-germ. We callφ a symplectically liftable
diffeomorphism if there exists a symplectomorphism-germ� : ((M, 0), ω) → ((M, 0), ω) such
that the following diagram commutes:

((M, 0), ω)
�−−−−→ ((M, 0), ω)

π

� �π

(N , 0)
φ−−−−→ (N , 0).

DEFINITION 3.1 We say that the two map germsF1, F2 : (Rn−k+1, 0) → (N , 0) are liftably
equivalent if the following diagram commutes:

(Rn−k+1, 0)
F1−−−−→ (N , 0)

π←−−−− ((M, 0), ω)

ψ

� φ

� ��

(Rn−k+1, 0)
F2−−−−→ (N , 0)

π←−−−− ((M, 0), ω),

where ψ, φ are diffeomorphism-germs and� is a symplectomorphism-germ, that is,φ is a
symplectically liftable diffeomorphism.

The symplectically liftable diffeomorphisms of(N , 0) form a subgroupGsymp of the group
G of diffeomorphism-germs. Classification of singularities ofF according to the equivalence
group Gsymp is similar to the standard right–left classification of singularities of map-germs
(Rn−k+1, 0) → (Rn+k, 0); however, this is restricted to the space of map-germs which have
Lagrangian liftings.

Now we describe symplectically liftable diffeomorphisms in an explicit way.

PROPOSITION 3.2 For a diffeomorphism-germ φ : (N , 0) = (T ∗
R

k × R
n−k, 0) → (T ∗

R
k ×

R
n−k, 0), the following conditions are equivalent:

(1) φ is a symplectically liftable diffeomorphism;

(2) φ is a Poisson diffeomorphism (for the Poisson structure on N induced from M by π);

(3) φ is a family of symplectic diffeomorphisms on T ∗
R

k with parameter q̄ = (qk+1, . . . , qn).
Namely, if we set

φ(q1, p1, . . . , qk, pk, q̄) = (Q1, P1, . . . , Qk, Pk, Q̄),
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then Q = (Qk+1, . . . , Qn) depends only on q̄, and

(q1, p1, . . . , qk, pk) �→ (Q1, P1, . . . , Qk, Pk)

is a symplectomorphism on (T ∗
R

k, 0) for each fixed q̄ = (qk+1, . . . , qn);

(4) φ has a symplectic lifting � : (M, 0) → (M, 0) preserving fibres of H, namely, there exists a
diffeomorphism-germ σ : (Rn−k, 0) → (Rn−k, 0) such that the following diagram commutes.

(N , 0)
π←−−−− ((M, 0), ω)

H−−−−→ (Rn−k, 0)

φ

� �

� �σ

(N , 0)
π←−−−− ((M, 0), ω)

H−−−−→ (Rn−k, 0)

Proof. (1) ⇒ (2): We denote by{ , }M the Poisson bracket on the symplectic manifoldM . Then
the Poisson bracket{ , }N on N is defined by{h, k}N = {h ◦ π, k ◦ π}M for any functions on
(N , 0). Let � be a symplectic lifting ofφ on (M, 0). Then, for any functionsh, k on (N , 0), we
have{h ◦φ, k ◦φ}N = {h ◦φ ◦π, k ◦φ ◦π}M = {h ◦π ◦�, k ◦π ◦�}M = {h ◦π, k ◦π}M = {h, k}N .
Thusφ is a Poisson diffeomorphism.

(2) ⇒ (3): The Poisson structure onN induces the foliation by symplectic leaves,T ∗
R

k × {q̄},
intrinsically. So naturallyφ induces a family of symplectomorphisms onT ∗

R
k . Also we can argue

in a more direct way as follows. The derivations{Pi , ·}N {Qi , ·}N , (1 � i � k) generate the tangent
spaces to the leavesT ∗

R
k × {q̄}. Since we have, for eachj with 1 � j � n − k, {Pi , Qk+ j }N =

{Qi , Qk+ j }N = 0(1 � i � k), wesee that eachQk+ j is independent of(q1, p1, . . . , qk, pk).
(3) ⇒ (4): Let� : (M, 0) → (M, 0),

�(q1, p1, . . . , qk, pk, q̄) = (Q1, P1, . . . , Qk, Pk, Q, P),

P = (Pk+1, . . . , Pn) be a diffeomorphism-germ coveringφ with respect toπ . The condition that�
is a symplectomorphism is the existence of a smooth functionE : (M, 0) → R, called a generating
function of�, satisfying

�∗θ − θ = d E,

whereθ = ∑n
i=1 pi dqi . Then the condition is equivalent to

k∑
i=1

Pi
∂ Qi

∂q j
− p j = ∂ E

∂q j
(1 � j � k),

k∑
i=1

Pi
∂ Qi

∂p j
= ∂ E

∂p j
(1 � j � k),

k∑
i=1

Pi
∂ Qi

∂q j
+

n∑
i=k+1

Pi
∂ Qi

∂q j
− p j = ∂ E

∂q j
(k + 1 � j � n)

for some functionE : (N , 0) → R. The first and second equalities mean thatEq̄ is a
generating function of the symplectomorphismφq̄ for eachq̄ ∈ (Rn−k, 0). Therefore the function
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E : (N , 0) → R is uniquely determined by these two equalities up to the addition of functions on
q̄. Then, by the last equality, theH -level preserving symplectic lifting� of φ is given by setting

P =
(

∂ E

∂q̄
+ p̄ −

k∑
i=1

Pi
∂ Qi

∂q̄

) (
∂ Q�

∂q j

)−1

k+1���n,k+1� j�n

,

where
∂ E

∂q̄
=

(
∂ E

∂qk+1
, . . . ,

∂ E

∂qn

)
, and

∂ Qi

∂q̄
=

(
∂ Qi

∂qk+1
, . . . ,

∂ Qi

∂qn

)
.

(4) ⇒ (1): This implication is trivial.

REMARK 3.3 In the case whenk = 1, diffeomorphisms of type

φ(q1, p1, q̄) = (δ−1q1 + β(q̄), δp1 + α(q), γ (q̄))

and
φ(q1, p1, q̄) = (−p1, q1, q̄),

and their compositions are all symplectically liftable. (Hereα, β, γ are smooth functions,δ ∈
R − {0}, andq̄ = (q2, . . . , qn).)

REMARK 3.4 We have also the description of the infinitesimal deformations corresponding to
liftable and lifted equivalences. Any vector fieldX over N generating a liftable equivalence is
given by

X (q1, p1, . . . , qk, pk, q̄) = Xhq̄ (q1, p1, . . . , qk, pk) +
n−k∑
i=1

ai (q̄)
∂

∂qk+i

for some functionsh(q1, p1, . . . , qk, pk, q̄) andai (q̄), 1 � i � n−k, whereXhq̄ is the Hamiltonian
vector field overT ∗

R
k with the Hamiltonianhq̄ for each fixedq̄ ∈ (Rn−k, 0). The lifted

Hamiltonian vector field̃X over M = T ∗
R

n has the Hamiltoniañh = h + ∑n−k
i=1 pk+i ai (q̄);

X̃ = Xh̃ .

DEFINITION 3.5 Two isotropic map-germsL , L ′ : (Rn−k+1, 0) → (M, 0) are called H-
symplectically equivalent if there exist a symplectomorphism� : (M, 0) → (M, 0) and
diffeomorphismsψ : (Rn−k+1, 0) → (Rn−k+1, 0), σ : (Rn−k, 0) → (Rn−k, 0) such that the
following diagram commutes.

(Rn−k+1, 0)
L−−−−→ (M, 0)

H−−−−→ (Rn−k, 0)

ψ

� �

� �σ

(Rn−k+1, 0)
L ′−−−−→ (M, 0)

H−−−−→ (Rn−k, 0)

Now the following is clear.

COROLLARY 3.6 Let F, F ′ : (Rn−k+1, 0) → (T ∗
R

k ×R
n−k, 0) be transverse map-germs. If F and

F ′ are liftably equivalent, then their isotropic liftings F̃ and F̃ ′ are H-symplectically equivalent.
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4. Classification under liftable equivalence

In what follows, we concentrate on the symplectic bifurcation problem of curves on the symplectic
plane (k = 1). Thus we consider map-germsF : (Rn, 0) → (R2 × R

n−1, 0).

PROPOSITION 4.1 For a transverse map-germ F : (Rn, 0) → (N , 0) = (R2 × R
n−1, 0), we have

the following.

(a1) If F is an immersion at 0, then F is liftably equivalent to

(0, x1, x2, . . . , xn).

(a2) Suppose F is not an immersion at 0. Then F is liftably equivalent to the germ φ ◦ F ◦ ψ such
that the 2-jet j2(φ ◦ F ◦ ψ) is equal to (x2

1, x1x2, x ′), (x2
1, 0, x ′), (x1x2, 0, x ′) or (0, 0, x ′),

where x ′ = (x2, . . . , xn).

Proof. (a1) This follows from Proposition 4.2 below.

(a2) By Proposition 2.5 (a) and using a right equivalenceψ we can assume that,

j2F(0) = (c0x2
1 + c1(x ′)x1 + c2(x ′), b0x2

1 + b1(x ′)x1 + b2(x ′), x ′),

whereb1(0) = 0, c1(0) = 0 andx ′ = (x2, . . . , xn).
Let c0 �= 0. Then by using right equivalence, we can assumec0 = 1, c1(x ′) = 0. Then, by

applying the symplectically liftable diffeomorphism

(q1, p1, q ′) �→ (q1 − c2(q
′), p1 − b2(q

′), q ′),

the 2-jet is transformed to(x2
1, b0x2

1 + b1(x ′)x1, x ′).
Moreover, using the symplectically liftable diffeomorphism(q1, p1, q ′) �→ (q1, p1 − b0q1, q ′),

we get(x2
1, b1(x ′)x1, x ′) as the 2-jet. If the linear formb1(x ′) is not identically zero, by a coordinate

change ofx ′ we obtain(x2
1, x1x2, x ′). If b1(x ′) = 0, then we have(x2

1, 0, x ′).
If c0 = 0 andb0 �= 0, we can proceed as above using the symplectically liftable diffeomorphism

(q1, p1, q ′) �→ (−p1, q1, q ′). If b0 = c0 = 0, then we get(x1x2, 0, x ′) or (0, 0, x ′) as the 2-jet
within the liftable equivalence classes.

Now we have the following prenormal form forF .

PROPOSITION 4.2 Let F : (Rn, 0) → (N , 0) = (R2 × R
n−1, 0), F(x1, . . . , xn) =

(q1(x), p1(x), q ′(x)), be a smooth map-germ. Assume that F is transverse to R
2 × {0} and that F

is finite, namely, the ideal generated by components of F is of finite codimension. Then F is liftably
equivalent to one of the following forms, for some m � 2:

Fm(x) =
(

xm
1 +

m−2∑
i=1

ai (x ′)xi
1, x1c(x), x ′

)
,

where x ′ = (x2, . . . , xn), and ai (x ′), c(x) are smooth function-germs.
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Proof. By the transversality assumption, using right equivalence, one can reduceF to the form

(x1, x ′) �→ (a(x1, x ′), c1(x1, x ′), x ′).

SinceF is finite, we can assume,∂ma(0)/∂xm
1 �= 0, for somem, up to liftable equivalence. Then

by the classification ofAm-type singularities of functions, we obtain the liftably equivalent form

(x1, x ′) �→
(

xm
1 +

m−2∑
i=1

ai (x ′)xi
1 + a0(x ′), c2(x1, x ′), x ′

)
.

We write c2(x1, x ′) = x1c(x1, x ′) + c3(x ′). Then the liftable diffeomorphism(q1, p1, q ′) �→
(q1 − a0(q ′), p1 − c3(q ′), q ′) yields the required form.

REMARK 4.3 In the case whenm = 2, we get the form

F2(x1, x ′) = (x2
1, x1c(x1, x ′), x ′).

Then, by settingc(x1, x ′) = x1φ(x2
1, x ′) + ψ(x2

1, x ′) and by taking a liftable diffeomorphism
(q1, p1, q ′) �→ (q1, p1 − ψ(q1, q ′), q ′), wesee thatF2 is liftable equivalent to the form

F ′
2(x1, x ′) = (x2

1, x1φ(x2
1, x ′), x ′).

For the casem = 2, we have the normal forms, by using the versality theorem in the symplectic
case [8, pp. 223–254;9].

PROPOSITION 4.4 Let F : (Rn, 0) → (R2×R
n−1, 0) be a finite and transverse map germ. Assume

the 2-jet of F is equal to (x2
1, x1x2, 0) or (x2

1, 0, 0). Then F is liftably equivalent to

(q1, p1, q ′) = (x2
1, x2�+1

1 + λ1(x ′)x2�−1
1 + λ2(x ′)x2�−3

1 + · · · + λ�(x ′)x1, x ′)

for some positive integer �, and for some functions λ1(x ′), . . . , λ�(x ′) of x ′ = (x2, . . . , xn) with
λ j (0) = 0, 1 � j � �.

Proof. We may assumeF |R × {0} is of type A2� : f (t) = (q1, p1) = (t2, t2�+1), by using a
liftable diffeomorphism. Note that the right–left equivalence class and the symplectic equivalence
class coincide for a plane curve of typeA2�; see section 10. Then

G(t, λ1, . . . , λ�) = (t2, t2�+1 + λ1t2�−1 + λ2t2�−3 + · · · + λ�t, λ1, . . . , λ�)

is a versal unfolding ofF |R × {0} ([6]). ThenG is a symplectically versal unfolding ofF |R × {0};
see section 7. Letf : (R, 0) → (R2, 0) be a plane curve-germ. Recall that an unfolding
G : (R × R

�, 0) → (R2 × R
�, 0) of f is called symplectically versal if any unfolding

F : (R × R
s, 0) → (R2 × R

s, 0) of f is symplectically equivalent toϕ∗G for some smooth
map-germϕ : (Rs, 0) → (R�, 0).

Therefore, there exists a smooth mappingx ′ �→ λ(x ′) such that the pull-backλ∗G is liftably
equivalent toF .
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5. Non-transverse bifurcations of curves

In this section we consider map-germsF : (R2, 0) → (R2 × R, 0), F(x1, x2) =
(q1(x), p1(x), q2(x)) such thatq2 : (R2, 0) → (R, 0) is a submersion or a Morse function at 0.
We call such map-germsof Morse type. We consider the generic classification problem of liftable
germs among the class of map-germs of Morse type. Then we have the following.

PROPOSITION 5.1 Let F : (R2, 0) → (R2 × R, 0) be a generic liftable map-germ of Morse type,
namely, a generic one-parameter bifurcation problem of plane curves of Morse type. Then F is
liftably equivalent to one of following types (Fig. 3).

(1) (x1, x2) �→ (x1, 0, x2): The transverse immersion.

(2) (x1, x2) �→ (x2
1, x3

1 + x1x2, x2): The transverse Whitney umbrella, or the cusp bifurcation.

(3) (x1, x2) �→ (x1, x1x2 + O(3), 1
2(x2

1 − x2
2)): The hyperbolic Whitney umbrella, or the X-pinch

bifurcation.

(4) (x1, x2) �→ (x1, x1x2 + O(3), 1
2(x2

1 + x2
2)): The elliptic Whitney umbrella, or the figure-eight

bifurcation.

Here O(3) means the terms in x1, x2 at least of third order.
Moreover the germ F(x1, x2) = (x1, x1x2 + ϕ(x1, x2),

1
2(x2

1 ± x2
2)), ordϕ � 3, is liftable if and

only if ϕ is of the form

ϕ(x1, x2) =
∫ x2

0

(
∓x2

∂ψ

∂x1
+ x1

∂ψ

∂x2

)
dx2 + κ(x1)

for some smooth function ψ(x1, x2) of order at least 2 and κ(x1) of order at least 3.

Proof. Let F be transverse. ThenF is approximated by transverse immersions and a transverse
Whitney umbrella. A generic transversal Whitney umbrella is a versal one-parameter unfolding of
a plane curve of typeA2. Then F is liftably equivalent to the above normal form. Ifq2 is a non-
submersive Morse function, thenF is liftably equivalent to(q1(x), p1(x), 1

2(x2
1 ± x2

2)). Moreover
by the genericity assumption we may assume thatq1(x) = x1 using liftable equivalence. Then we
see thatF is liftably equivalent to(x1, x2) �→ (x1, ax1x2 + O(3), 1

2(x2
1 ± x2

2)), for a ∈ R − {0},
which is liftably equivalent to(x1, x1x2 + O(3), 1

2(x2
1 ± x2

2)).
The last statement is clear. We seeF is liftable if and only if there exists a functionφ such that

x1 + ∂ϕ

∂x2
± x2

∂φ

∂x1
− x1

∂φ

∂x2
= 0.

If suchφ exists, thenφ must have the formx2 + ψ , ordψ � 2.

Note that the lifting is an ordinary open Whitney umbrella in the case (2), while the lifting is an
immersion in each of the cases (3) and (4). Also note that the non-transverse immersions are never
liftable by Proposition 2.5. We do not have yet the exact normal forms for hyperbolic and elliptic
Whitney umbrellas under liftable equivalence.
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(1) (2) (3) (4)

Fig. 3 Liftable germs of Morse type

6. Symplectic equivalence of plane curves

A transversal map-germF : (Rn, 0) → (R2 × R
n−1, 0) is liftably equivalent to an unfolding

(t, λ) �→ ( fλ(t), λ), where λ ∈ (Rn−1, 0) and fλ is a family of parametrized curves in the
symplectic planeR2, t being the inner variable andλ = (λ1, . . . , λn−1) the outer variables.
Therefore we proceed to consider the classification problems of bifurcations (unfoldings) of curves
in the symplectic plane.

Two families of plane curvesfλ, f ′
λ, (λ ∈ (R�, 0)) are calledsymplectically equivalent if

there exist a family of diffeomorphisms� = (σλ) : (R × R
�, 0) → (R, 0), a family of

symplectomorphismsT = (τλ) : (R2 × R
�, 0) → (R2, 0), and a diffeomorphismϕ : (R�, 0) →

(R�, 0) such thatτλ ◦ f ′
λ ◦ σλ = fϕ(λ), for some representatives of germs. Then, setting

F : (R × R
�, 0) → (R2 × R

�, 0), F(t, λ) = ( fλ(t), λ) and F ′ : (R × R
�, 0) → (R2 × R

�, 0),
F(t, λ) = ( f ′

λ(t), λ), we see that if fλ and f ′
λ are symplectically equivalent thenF and F ′ are

liftably equivalent.
In ordinary singularity theory, the versal unfolding of a singularity dominates any other

unfoldings. To seek the versal unfolding of curves on the symplectic plane for symplectic
equivalence, we must first study the symplectic classification problem of plane curves.

For example, consider the simple cusp (A2) f = (t2, t3) : (R, 0) → (R2, 0). Then the unfolding
F : (R × R, 0) → (R2 × R, 0) defined byF(t, λ) = (t2, t3 + λt, λ) is versal with respect to the
right–left equivalence. Then we ask: Is it a symplectically versal unfolding?

Now first we consider the basic problem. LetC, C ′ ⊂ (R2, 0) be two curve germs. Assume that
there exist a diffeomorphism-germσ : (R2, 0) → (R2, 0) with σ(C) = C ′. Then does there exist a
symplectic (area-preserving) diffeomorphismσ ′ : (R2, 0) → (R2, 0) with σ ′(C) = C ′?

We call two map germsf, f ′ : (R, 0) → (R2, 0) isotopic (resp. equivalent) if there exist a
smooth familyτs : (R2, 0) → (R2, 0) of diffeomorphism-germs starting from the identityτ0 (resp.
a diffeomorphism-germτ : (R2, 0) → (R2, 0)) and a diffeomorphism-germσ : (R, 0) → (R, 0)

such thatf ′ ◦ σ = τ1 ◦ f (resp. f ′ ◦ σ = τ ◦ f ). Moreover f and f ′ are calledsymplectically
isotopic (resp.symplectically equivalent) if we can take, in the above definitions,τs (resp.τ ) to be
symplectic.

A map-germ f : (R, 0) → (R2, 0), is called achiral (resp. chiral) if f and f̄ are isotopic
(resp. non-isotopic). Here we denote byf̄ the map-germ(R, 0) → (R2, 0) defined by f̄ (t) =
( f1(t), − f2(t)).

Here we give several examples illustrating the notions introduced above.

EXAMPLE 6.1 (About the definition of isotopy) Consider curvesf (t) = (t2, t3) and f ′(t) =
(t2, −t3) of type A2 (resp. f (t) = (t3, t4) and f ′(t) = (t3, −t4) of type E6) . Then we see
that f and f ′ are symplectically isotopic, by just takingτs identity (resp. the rotation bysπ ) and
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σ(t) = −t . Therefore germs(t2, t3) and(t3, t4) are achiral. However, there does not exist a smooth
family of pairs of diffeomorphism-germs(σs, τs) starting from(idR, idR2) with f ′ ◦ σ1 = τ1 ◦ f .

EXAMPLE 6.2 (The difference between equivalence and isotopy) Consider curvesf (t) = (t3, t5)

and f ′(t) = (t3, −t5) of type E8. Then f and f ′ are equivalent but not isotopic. Therefore the
germ(t3, t5) is chiral.

LEMMA 6.3 Let m, k be positive integers and k even. Then the two curve-germs f = (tm, tm+k +
o(tm+k)) and f ′ = (tm, −tm+k + o(tm+k)) are not isotopic.

Proof. Assumeσ(t) = αt + · · · , α �= 0, τ (p1, q1) = (ap1 + bq1 + · · · , cp1 + dq1 + · · · ) and
that τ ◦ f ◦ σ = f ′. Then we see that, first,aαm = 1, cαm = 0. Soc = 0, a = α−m . Then
we seeαm+kd = −1, sod = −α−m−k . Therefore the linear term ofτ must have the negative
determinant−α−2m−k < 0. Then it is impossible to connectτ and the identity by a smooth family
of diffeomorphism-germs.

Since any symplectomorphism-germ can be connected to the identity through
symplectomorphism-germs, we see thatf and f ′ are symplectically isotopic if and only if
they are symplectically equivalent. Therefore the following is clear.

LEMMA 6.4 If f, f ′ : (R, 0) → (R2, 0) are symplectically equivalent, then they are isotopic.

Now naturally we are led to the following question: Aref, f ′ : (R, 0) → (R2, 0) symplectically
equivalent if they are isotopic? We answer in detail in the following sections.

7. Symplectic versality and stability

Let f : (R, 0) → (R2, 0) be a map-germ. Recall the codimension off is defined by

codim( f ) := dimR

(
V f /t f (V1) + w f (V2)

)
,

whereV f := {v : (R, 0) → T R
2 | π ◦ v = f } is the space of vector field-germs alongf , V1

(resp. V2) is the space of vector field-germs over(R, 0) (resp. (R2, 0)), andt f : V1 → V f (resp.
w f : V2 → V f ) is the homomorphism defined byt f (ξ) := f∗(ξ) (resp.w f (η) := η ◦ f ). A plane
curve f is calledA-finite if codim( f ) < ∞. Then f has anA-versal unfolding with the parameter
dimension codim( f ). If f is analytic, the condition ofA-finiteness is equivalent to, for instance,
that the complexification off has an injective representative.

Moreover, in general, we define

sp-codim( f ) := dimR

(
V f /t f (V1) + w f (V H2)

)
,

whereV H2 ⊆ V2 the space of Hamiltonian vector field-germs over the symplectic plane(R2, 0).
Then clearly

sp-codim( f ) � codim( f ).

Let f : (R, 0) → (R2, 0) be a plane curve-germ. An unfoldingF : (R × R
�, 0) → (R2 × R

�, 0)

of f is calledsymplectically versal if any unfolding G : (R × R
s, 0) → (R2 × R

s, 0) of f is
symplectically equivalent toϕ∗F for some smooth map-germφ : (Rs, 0) → (R�, 0). The following
result is a special case of the versality theorem in [9].
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PROPOSITION 7.1 An unfolding F : (R × R
�, 0) → (R2 × R

�, 0) of f : (R, 0) → (R2, 0) is
symplectically versal if and only if F is infinitesimally symplectically versal, that is,

V f =
〈

∂ F̄

∂λ1

∣∣∣∣
R×0

, . . . ,
∂ F̄

∂λ�

∣∣∣∣
R×0

〉
R

+ t f (V1) + w f (V H2).

Moreover two versal unfoldings F and F ′ of f with the same parameter dimension are liftably
equivalent.

A map-germ f : (R, 0) → (R2, 0) has a symplectically versal unfolding if and only if
sp-codim( f ) < ∞.

REMARK 7.2 By Damon’s theory [9], we have the characterization of ‘symplectic finite
determinacy’. A map-germf : (R, 0) → (R2, 0) is calledsymplectically finitely determined if
there exists a positive integerk such that anyf ′ : (R, 0) → (R2, 0) with j k f ′(0) = j k f (0)

is symplectically equivalent tof . Then f is symplectically finitely determined if and only if
sp-codim( f ) < ∞.

Wehave a close relation between symplectic versality and symplectic stability [15] via the notion
of Lagrangian liftings.

THEOREM 7.3 (Symplectic versality and stability)Let F : (R × R
�, 0) → (R2 × R

�, 0) be a
symplectically versal unfolding. Then the Lagrangian lifting F̃ : (R × R

�, 0) → (R2 × R
2�, 0)

is symplectically stable, that is, any isotropic deformation of F̃ is trivialized by symplectic
equivalences. Therefore F̃ is symplectically equivalent to an open Whitney umbrella [14]. In
particular F̃ has an injective representative.

Proof. To see the symplectic stability of̃F , we apply [15, Proposition 5.1]. Then it suffices
to show thatF̃ is right–left equivalent to an analytic map-germ, thatRF̃ = F̃∗E2+2� and that
codim(SingF̃C) � 2. Here RF̃ is the space of function-germsh ∈ E1+� such that the exterior
differential dh of h is a linear combination of the exterior differentials of components inF̃ with
coefficients fromE1+�.

Since f = F |R×0 is symplectically finitely determined,f (resp. F) is symplectically
equivalent to a polynomial map-germ. Moreover, we have that SingF̃C = SingFC =
{q1 ◦ F/∂t = p1 ◦ F/∂t = 0} is of codimension 2.

SinceF is finite map-germ of corank one, by [15, Corollary 2.4], we haveRF̃ = RF is a finite
E2+�-module viaF . Therefore it is a finiteE2+2�-module viaF̃ . On the other hand, we see that
p j+1 ◦ F̃ is a generating function of∂ F̄/∂λ j |R×0, settingF(t, λ) = (F̄(t, λ), λ). Thus, by the
symplectic versality ofF , we seeRF̃ ⊆ F̃∗E2+2� + m� RF ⊆ F̃∗E2+2� + m2+2� RF . Then, by
Nakayama’s lemma, we see thatRF̃ ⊆ F̃∗E2+2�. Since the converse inclusion is clear, we have the
equalityRF̃ = F̃∗E2+2�.

Thus we seẽF is symplectically stable. Then, by [15, Proposition 5.1], we deduce that̃F is
symplectically equivalent to an open Whitney umbrella.

For a mappingϕ : (Rs, 0) → (R�, 0), and an unfoldingF : (R × R
�, 0) → (R2 × R

�, 0),
F(t, λ) = ( fλ(t), λ), we define the pull-back unfoldingϕ∗F : (R × R

s, 0) → (R2 × R
s, 0) by

(ϕ∗F)(t, µ) = ( fϕ(µ)(t), µ).

PROPOSITION 7.4 Let F : (R × R
�, 0) → (R2 × R

�, 0) be an unfolding of f = F |R×0 and F̃
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a Lagrangian lifting of F. Let ϕ : (Rs, 0) → (R�, 0) be a map-germ. Then the lifting ϕ̃∗F :
(R × R

s, 0) → (R2 × R
s, 0) of ϕ∗F defined by

p j :=
∑

1�k��

∂ϕk

∂µ j
(pk+1 ◦ F̃), (2 � j � s + 1)

is a Lagrangian lifting of ϕ∗F. In fact we have

ϕ̃∗F
∗
θR2×R2s = (idR × ϕ)∗ F̃∗θR2×R2�

for the Liouville form θR2×R2s on R
2 × R

2s = T ∗(R × R
s) (respectively θR2×R2� on R

2 × R
2� =

T ∗(R × R
�)).

The above Proposition 7.4 means the Lagrangian lifting of the pull-back unfolding can be
obtained by reduction from the Lagrangian lifting of the original unfolding. In particular we have
the following.

COROLLARY 7.5 Let G : (Rn, 0) → (N , 0) = (R2 × R
n−1, 0) be a transverse map-germ to

R
2 × {0}. Assume the restriction (G−1(R2 × {0}), 0) → R

2 × {0} is A-finite; then G is obtained
from an open Whitney umbrella by a reduction process.

Proof. We may suppose thatG is an unfolding of anA-finite map-germg : (R, 0) → (R2, 0). Let
F : (R×R

k, 0) → (R2×R
k, 0) be a symplectically versal unfolding ofg. Then there exists a map-

germϕ : (Rn−1, 0) → (Rk, 0) such thatG is symplectically equivalent to the pull-back unfolding
ϕ∗F . Then the Lagrangian lifting̃G is H -symplectically equivalent tõϕ∗F , that is a reduction of
the open Whitney umbrellãF .

8. Symplectic defect

Set, for a map-germf = ( f1, f2) : (R, 0) → (R2, 0),

G f := {h ∈ E1 | dh ∈ 〈d f1, d f2〉 f ∗E2} = {h ∈ E1 | dh ∈ f ∗(�1
2)},

whereE1 (resp.E2) is theR-algebra ofC∞ map-germs on(R, 0) (resp. (R2, 0)), �1
2 is the space

of differential 1-forms on(R2, 0) and the homomorphismf ∗ : E2 → E1 (resp. f ∗ : �1
2 → �1

1) is
defined by the pull-back byf . Moreover we set

R f := {h ∈ E1 | dh ∈ 〈d f1, d f2〉E1}
(cf. [15]). Thus we have defined intrinsically the sequence of vector spaces

E1 ⊇ R f ⊇ G f ⊇ f ∗E2

for the right–left equivalence class off .
For each elementh ∈ G f , the exterior differentialdh is written as(b ◦ f )d f1 − (a ◦ f )d f2 =

f ∗(bdq1 − adp1) for some functionsa, b ∈ E2. Through the symplectic structuredp1 ∧ dq1 on
the (q1, p1)-planeR

2, the 1-formbdq1 − adp1 on (R2, 0) corresponds to the vector fieldη =
a∂/∂q1 + b∂/∂p1 over (R2, 0). The vector fieldw f (η) along f is regarded as an infinitesimal
isotropic deformation off . In this case we say thath is a generating function ofw f (η).



SYMPLECTIC BIFURCATIONS 89

In general, any functionh(t) is calleda generating function of a vector field

v = v1(t)

(
∂

∂q
◦ f

)
+ v2(t)

(
∂

∂p
◦ f

)
: (R, 0) → T R

2

along f : (R, 0) → (R2, 0) if dh = v2d f1 − v1d f2(= v∗θ̃ ), the pull-back by the isotropic map
v : (R, 0) → T R

2 ∼= T ∗
R

2 of the Louville 1-form onT R
2.

Thus,G f is the space of generating functions of infinitesimal deformations off induced from
diffeomorphisms on the planeR2. Then we see thatG f is anR-vector subspace ofE1 and that
G f containsf ∗E2. Similarly, f ∗E2 is regarded as the space of generating functions of infinitesimal
deformations off induced from symplectomorphisms on the planeR

2. Moreover,R f is the space
of generating functions of all infinitesimal deformations off .

Then the following is clear.

LEMMA 8.1 Let f : (R, 0) → (R2, 0) be a map-germ. For a diffeomorphism τ : (R2, 0) →
(R2, 0), we have Rτ◦ f = R f and Gτ◦ f = G f . Morover, for a diffeomorphism σ : (R, 0) → (R, 0),
σ ∗ : E1 → E1 maps R f to R f ◦σ and G f to G f ◦σ respectively.

The next lemma is the main lemma of this paper.

LEMMA 8.2 There exists a vector-space isomorphism

t f (V1) + w f (V2)

t f (V1) + w f (V H2)
∼= G f

f ∗E2
.

Proof. Taking generating functions (modf ∗E2) we define a linear map� : t f (V1) + w f (V2) →
E1/ f ∗E2. Note that, for eacht f (ξ) = (a(t) f ′

1, a(t) f ′
2) ∈ t f (V1), we havea(t) f ′

2d f1−a(t) f ′
1d f2 =

0, andt f (V1) maps to 0 modf ∗E2; see also [15]. The image of� coincides withG f / f ∗E2. Wewill
show that the kernel of� is equal tot f (V1) + w f (V H2). Using a symplectic equivalence, we may
assume ord( f1) < ord( f2) �∈ Z(ord( f1)). Now suppose, forη = a(q, p)∂/∂q + b(q, p)∂/∂p ∈
V2, a generating function ofw f (η) belongs tof ∗E2. This meansb( f1, f2)d f1 − a( f1, f2)d f2 =
d H( f1, f2) for someH ∈ E2. Thenb( f1, f2) f ′

1 − a( f1, f2) f ′
2 = Hq( f1, f2) f ′

1 + Hp( f1, f2) f ′
2.

So

b( f1, f2) = (
a( f1, f2) + Hp( f1, f2)

) f ′
2

f ′
1

+ Hq( f1, f2).

Since ord
(

f ′
2/ f ′

1

) = ord( f2) − ord( f1) �= ord( f1), we see thata(0, 0) + Hp(0, 0) = 0. So the
quotientc(t) := (a( f1, f2) + Hp( f1, f2))/ f ′

1 belongs toE1. Then(
a( f1, f2)
b( f1, f2)

)
= c(t)

(
f ′
1

f ′
2

)
+

( −Hp

Hq

)
∈ t f (V1) + w f (V H2).

It is clear thatt f (V1) + w f (V H2) is included in the kernel of�. Thus we have the required
isomorphism.

Note that the dimension ofG f / f ∗E2 depends only on the right–left equivalence class off . Thus
we have the following theorem.
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THEOREM 8.3 Let f : (R, 0) → (R2, 0) be an A-finite map-germ. Then the symplectic defect

sd( f ) := sp-codim( f ) − codim( f )

is equal to dim(G f / f ∗E2), and depends only on the right–left equivalence class of f , that is, the
symplectic defect is an A-invariant. Hence sp-codim( f ) is an A-invariant.

REMARK 8.4 If f is A-finite, then, by the Mather–Gaffney theorem, we seef is L-finite [21,
p. 494]. Then we have that the vector spaceE1/ f ∗E2 is of finite dimension. So, iff is A-finite,
namely, if codim( f ) is finite, then sp-codim( f ) is necessarily finite.

REMARK 8.5 The symplectic codimension is not anA-invariant (a diffeomorphism invariant) for
map-germsR → R

4. For example, consider map-germs

A2,0 : (q1 = t2, p1 = t3, q2 = 0, p2 = 0)

and
A2,1 : (q1 = t2, p1 = t5, q2 = t3, p2 = 0),

from Arnold’s classification [3]. Then A2,0 and A2,1 are clearlyA-equivalent. However we have
sp-codim(A2,0) = 3, and sp-codim(A2,1) = 4. In fact, whenf = A2,0 : (R.0) → (R4, 0), wecan
take t (0, t, 0, 0), t (0, 0, t, 0), t (0, 0, 0, t) as a basis of the vector spaceV f /(t f (V1) + w f (V H4)).
For f = A2,1 we needt (0, t2, 0, 0) in addition.

From the definition of the symplectic defect, we have the following.

PROPOSITION 8.6 Let F : (R × R
�, 0) → (R2 × R

�, 0) be an A-versal unfolding of f : (R, 0) →
(R2, 0) with sd( f ) = 0. Then F is a symplectically versal unfolding of f .

Finally we show that the symplectic codimension of anA-finite map-germ is, actually, equal to
the classicalδ-invariant.

Let f : (R, 0) → (R2, 0) be anA-finite map-germ. Then we setδ( f ) := dimR E1/ f ∗E2.

THEOREM 8.7 For an A-finite map-germ f : (R, 0) → (R2, 0),

sp-codim( f ) = δ( f ).

Proof. Wehave an exact sequence of vector spaces:

0 → V ′
f

t f (V1)
→ V f

t f (V1) + w f (V H2)
→ R f

f ∗E2
→ 0,

where V ′
f is the space of vector fields alongf having zero generating functions. Note that

w f (V H2) ∩ V ′
f ⊆ t f (V1). Now wehave

dimR

V ′
f

t f (V1)
= dimR

E1

R f
.

To see this, we may assumef1 = tk and ord( f2) > k, for some positive integer. ThenR f = R+mk
1.
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So dimR(E1/R f ) = k − 1. On the other hand, if we setϕ(t) = f ′
2/ f ′

1, the vector spaceV ′
f /t f (V1)

has basis (
1
ϕ

)
,

(
t

tϕ

)
, . . . ,

(
tk−2

tk−2ϕ

)
.

Therefore we see that also dimR V ′
f /t f (V1) is equal tok − 1.

Thus

sp-codim( f ) = dimR

V f

t f (V1) + w f (V H2)

= dimR

V ′
f

t f (V1)
+ dimR

R f

f ∗E2

= dimR

E1

R f
+ dimR

R f

f ∗E2

= dimR

E1

f ∗E2
= δ( f ).

REMARK 8.8 The vector spaceV ′
f /t f (V1) has a clear geometric meaning: The spaceV ′

f consists
of vector fieldsv ∈ V f along f such that, for any regular pointt ∈ R of f , v(t) ∈ f∗(TtR). Such
a vector field may not come from a vector field overR via f∗. ThenV ′

f /t f (V1) measures its gap.
Also it has the clear algebraic meaning as the cohomology of a complex 0→ V1 → V ′

f → 0
defined by the Jacobi matrix off .

REMARK 8.9 For anA-finite map-germf : (R, 0) → (R2, 0) the Milnor numberµ is equal to 2δ
(cf. [20]). So we have sp-codim( f ) = 1

2µ.

9. Symplectic defects and symplectically versal unfoldings of simple plane curves

In this section, we calculate the symplectic defects, defined in the previous section, in several cases.
First we give examples of plane-curves without symplectic defect

PROPOSITION 9.1 If a plane curve is right–left equivalent to f : (R, 0) → (R2, 0), f (t) =
(tm, tm+k) for some positive integers m, k, then its symplectic defect is equal to zero.

Proof. It is sufficient to see sd( f ) = 0. Leth ∈ G f . Then

dh = a(tm, tm+k)d(tm) + b(tm, tm+k)d(tm+k)

for somea, b ∈ E2. Note that there is a positive integer� such thatf ∗E2 contains functions with
order at least�. Now it is easy to see thath is a function oftm, tm+k up to functions with order at
least�. Therefore we haveh ∈ f ∗E2. ThusG f / f ∗E2 = 0 and sd( f ) = 0.

Bruce and Gaffney [5] classified simple plane curves. TheA-equivalence class of simple (0-
modal) plane curves are given in the following list:

A2� : t �→ (t2, t2�+1);
E6� : t �→ (t3, t3�+1 ± t3(�+p)+2), 0 � p � � − 2; t �→ (t3, t3�+1);
E6�+2 : t �→ (t3, t3�+2 ± t3(�+p)+4), 0 � p � � − 2; t �→ (t3, t3�+2);
W12 : t �→ (t4, t5 ± t7); t �→ (t4, t5);
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W18 : t �→ (t4, t7 ± t9); t �→ (t4, t7 ± t13); t �→ (t4, t7);
W #

1,2q−1 : t �→ (t4, t6 + t2q+5), q � 1.

Note that, in the above list, the germs(t3, t4 ± t5) and(t3, t4) of type E6 (resp.(t3, t5 ± t7) and
(t3, t5) of type E8) are actuallyA-equivalent; see also [4, pp. 57–59].

Then we have the following.

THEOREM 9.2 (1)If f is equivalent to A2�, E6, E8 or E6� : (t3, t3�+1); E6�+2 : (t3, t3�+2); W12 :
(t4, t5); W18 : (t4, t7) then sd( f ) = 0.

(2) If f is equivalent to E6� : (t3, t3�+1 ± t3(�+p)+2), 0 � p � � − 2, � � 2, then
t3(�+p+1)+2, . . . , t6�−1 form a basis of G f / f ∗E2 and sd( f ) = � − p − 1. The family

(t3, (±1)�+1t3�+1 + ∑�−1
j=1 λ j t3(�+ j)−1) contains all symplectic classes of type E6�. If f is

equivalent to E6�+2 : (t3, t3�+2 ± t3(�+p)+4), then t3(�+p+1)+4, . . . , t6�+1 form a basis of G f / f ∗E2

and sd( f ) = � − p − 1. The family (t3, (±1)�t3�+2 + ∑�−1
j=1 λ j t3(�+ j)+1) contains all symplectic

classes of type E6�+2.
(3) If f is equivalent to W12 : (t4, t5 ± t7), then t11 forms a basis of G f / f ∗E2 and sd( f ) = 1.

The family (t4, t5 + λt7) contains all symplectic classes of type W12.
(4) If f is equivalent to W18 : (t4, t7 ± t9), then t13, t17 form a basis of G f / f ∗E2 and sd( f ) = 2.

If f is equivalent to W18 : (t4, t7 ± t13), then t17 forms a basis of G f / f ∗E2 and sd( f ) = 1. The
family (t4, t7 + λt9 + µt13) contains all symplectic classes of type W18.

(5) If f is equivalent to W #
1,2q−1 : (t4, t6 ± t2q+5), then t2q+9, t2q+13 form a basis of G f / f ∗E2

and sd( f ) = 2. The family (t4, ±t6 + λt2q+5 + µt2q+9), λ �= 0, contains all symplectic classes of
type W #

1,2q−1.

To examine the symplectic equivalence classes, we first note the following results.

LEMMA 9.3 Let f : (R, 0) → (R2, 0) be A-finite. If ord( f ) = m, then f is symplectically
equivalent to (tm, tm�+ j + o(tm�+ j )) for some � � 1 and j with 1 � j � m − 1. In particular,
if ord( f ) = 2, then f is symplectically equivalent to (t2, t2�+1 + o(t2�+1)) for some � � 1. If
ord( f ) = 3, then f is symplectically equivalent to (t3, t3�+1 + o(t3�+1)) or (t3, t3�+2 + o(t3�+2))

for some � � 1.
If ord( f ) = 4 and f is A-simple, then f is symplectically equivalent to (t4, t5 + o(t5)), (t4, t6 +

o(t6)) or (t4, t7 + o(t7)).

REMARK 9.4 If f is symplectically equivalent to(t4, t� + o(t�)), � � 9, then f is notA-simple.
Moreover if ord( f ) � 5, then f is notA-simple; see [5].

Proof of Theorem 9.2. We give the calculation forW18 in detail. Other cases can be treated in a
similar way, so we omit the detail for them.

Let f : (R, 0) → (R2, 0) be the map-germ defined byf (t) = (q1, p1) = (t4, t7 + t13) (the most
degenerate case of typeW18). We examine the quotient spaceE1/ f ∗E2. The implicit equation of
the curve is

y4 = x7 + 4x5y2 − 2x10 + x13.

Then examining monomialsxi y j , i � 0, 0 � j � 3 pulled back byf , we see

f ∗E2 = 〈1, t4, t8, t12, t16, t14, t15, t7 + t13, t11 + t17〉R + m18
1 .

So the projections oft, t2, t3, t5, t6, t9, t10, t13, t17 form a basis ofE1/ f ∗E2 overR. Further, we see

G f = 〈t11, t17〉R + f ∗E2.
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In fact, note that a functionh ∈ E1 with dh = (t7 + t13)d(t4) belongs toG f . Thush = 4
11t11 +

4
17t17 ∈ G f . Since t11 + t17 ∈ f ∗E2 ⊆ G f , we see botht11 andt17 belong toG f . Morever we
easily see that any polynomial with just monomialst, t2, t3, t5, t6, t9, t10 belonging toG f must be
zero. Therefore we seet17 forms a basis ofG f / f ∗E2. SodimR G f / f ∗E2 = 1, and sd( f ) = 1.

Similarly, for f = (t4, t7 + t9), we have

f ∗E2 = 〈1, t4, t8, t12, t16, t14, t7 + t9, t11 + t13, t15 + t17〉R + m18
1

and
G f = 〈t11, t13, t15, t17〉R + f ∗E2.

Here we remark, in this case,
∫
(t7 + t9)d(t4) = 4

11t11+ 4
13t13 ∈ G f , and also

∫
t4(t7 + t9)d(t4) =

4
15t15 + 4

17t17 ∈ G f . Thus we seet13, t17 form a basis ofG f / f ∗E2, and sd( f ) = 2.
For the casef = (t4, t7), wesee sd( f ) = 0 by Proposition 9.1.
Now consider the two-parameter familyfλ,µ(t) = (t4, t7 + λt9 + µt13).
Weshow that, if a germf is of typeW18, namely, if f isA-equivalent to(t4, t7), (t4, t7 + t9) or

(t4, t7 + t13), then f is symplectically equivalent tofλ,µ = (t4, t7 +λt9 +µt13) for some(λ, µ) ∈
R

2. First assumef is of typeW18. Then f is symplectically equivalent tof ′ = (t4, t7 + o(t7)) by
Lemma 9.3. We write

f ′(t) = (t4, t7 + λt9 + µt13 + �(t)),

where� ∈ 〈t8, t10, t11, t12〉R + m14
1 . Setv = �(t)

(
∂

∂p
◦ f ′

)
∈ V f ′ . Consider the generating

function e ∈ m1 of v so thatde = �(t)d(t4). Thene ∈ 〈t12, t14, t15, t16〉R + m18
1 . We remark

that 〈t12, t14, t15, t16〉R + m18
1 ⊆ f ′∗m2

2. Therefore,e = f ′∗ H , for someH ∈ m2
2. Consider

the Hamiltonian vector fieldX H with HamiltonianH . Note thatX H ∈ V H2 ∩ m2V2. Then the
generating function of the vector fieldv − X H ◦ f ′ along f ′ is zero. So,v − X H ◦ f ′ ∈ V ′

f ′ .
Moreover ord(v − X H ◦ f ′) � 4. By Lemma 9.5 below, we see that there existsξ ∈ m1V1 such
thatv − X H ◦ f ′ = t f ′(ξ). Thus we havev ∈ t f (m1V1) + w f (V H2 ∩ m2V2). Then, using the
homotopy method we seef is symplectically equivalent tofλ,µ.

LEMMA 9.5 Let w ∈ V ′
f . If ord(w) � ord( f ) − 1, then w ∈ t f (V1). If ord(w) � ord( f ), then

w ∈ t f (m1V1).

Proof. Let w = a∂/∂q + b∂/∂p. Sincew ∈ V ′
f , we see thatbd f1/dt − ad f2/dt = 0. Set

c(t) = a/ (d f1/dt). Then we seet (a, b) = c(t) t (d f1/dt, d f1/dt).

In Theorem 9.2, each symplectic normal form (family) may have finite redundancy. In fact,
we know, by the infinitesimal method, that the intersection of the family and an orbit under the
symplectic equivalence forms, in a jet space, a zero-dimensional algebraic set, so a finite set.

Actually, by direct and formal calculations, we have the exact description of the symplectic
moduli spaces ofA-simple plane curves. Indeed the exact determination of symplectic normal form
turns out to be a surprisingly simple task, after the infinitesimal consideration stated in Theorem
9.2.

THEOREM 9.6 (1)Let � � 2. Then any plane curve germ of type E6� is symplectically equivalent
to

fλ =
(

t3, (±1)�+1t3�+1 +
�−1∑
j=1

λ j t
3(�+ j)−1

)
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for some λ = (λ1, . . . , λ�−1) ∈ R
�−1. Moreover fλ and fλ′ are symplectically equivalent if and

only if λ′ = (±1)�−1λ.
(2) Let � � 2. Then any plane curve germ of type E6�+2 is symplectically equivalent to

fλ =
(

t3, (±1)�t3�+2 +
�−1∑
j=1

λ j t
3(�+ j)+1

)

for some λ = (λ1, . . . , λ�−1) ∈ R
�−1. Moreover fλ and fλ′ are symplectically equivalent if and

only if λ′ = (±1)�λ.
(3) Any plane curve germ of type W12 is symplectically equivalent to

fλ = (t4, t5 + λt7)

for some λ ∈ R. Moreover fλ and f ′
λ are symplectically equivalent if and only if λ′ = λ.

(4) Any plane curve germ of type W18 is symplectically equivalent to

fλ,µ = (t4, t7 + λt9 + µt13)

for some (λ, µ) ∈ R
2. Moreover fλ,µ and fλ′,µ′ are symplectically equivalent if and only if

(λ′, µ′) = (λ, µ).
(5) Let q � 1. Then any plane curve germ of type W #

1,2q−1 is symplectically equivalent to

fλ,µ = (t4, ±t6 + λt2q+5 + µt2q+9)

for some (λ, µ) ∈ (R − {0}) × R. Moreover fλ,µ and fλ′,µ′ are symplectically equivalent if and
only if (λ′, µ′) = ±(λ, µ).

For the proof of Therem 9.6, we need the following lemma.

LEMMA 9.7 Let Q = q+bp+h1q2+h2qp+h3 p2+· · · , P = p+k1q2+k2qp+k3 p2+· · · indicate
the 2-jet of a symplectomorphism-germ (R2, 0) → (R2, 0). Then we have 2h1 − 2bk1 + k2 = 0 and
h2 − bk2 + 2k3 = 0.

Proof. Since we haved P ∧ d Q = (1+ 2h1q + h2 p − 2bk1q + k2q − bk2 p + 2k3 p + . . . )dp ∧ dq,
the result is straightforward.

Proof of Therem 9.6. Wegive the proof just in the caseW18. The remaining cases, more or less, can
be treated similarly.

Suppose(t4, t7 + λt9 + µt13) and (t4, t7 + λ′t9 + µ′t13) are symplectic equivalent by
a difeomorphism-germσ : (R, 0) → (R, 0), σ (t) = a1t + a2t2 + a3t3 + · · · , and a
symplectomorphism-germτ : (R2, 0) → (R2, 0), τ (p, q) = (P, Q) with Q = aq + bp + h1q2 +
h2qp + h3 p2 + . . . , P = cq + ep + k1q2 + k2qp + k3 p2 + . . . . Namely we suppose that

at4 + b(t7 + λt9 + µt13) + h1t8 + h2t4(t7 + λt9 + µt13) + · · · = (a1t + a2t2 + a3t3 + · · · )4

and

ct4 + e(t7 + λt9 + µt13) + k1t8 + k2t4(t7 + λt9 + µt13) + · · ·
= (a1t + a2t2 + a3t3 + · · · )7 + λ′(a1t + a2t2 + a3t3 + · · · )9

+µ′(a1t + a2t2 + a3t3 + · · · )13.
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Table 1 The symplectic classification of simple plane curves

Diff. normal form Defect Sym. normal form

A2� (t2, t2�+1) 0 (t2, t2�+1)

E6 (t3, t4) 0 (t3, t4)

(t3, t3�+1 ± t3(�+p)+2), 0 � p � � − 2 � − p − 1
E6�(� � 2) (t3, (±1)�+1t3�+1 + ��−1

j=1λ j t3(�+ j)−1)

(t3, t3�+1) 0

E8 (t3, t5) 0 (t3, ±t5)

(t3, t3�+2 ± t3(�+p)+4), 0 � p � � − 2 � − p − 1
E6�+2(� � 2) (t3, (±1)�t3�+2 + ��−1

j=1λ j t3(�+ j)+1)

(t3, t3�+2) 0

(t4, t5 ± t7) 1
W12 (t4, t5 + λt7)

(t4, t5) 0

(t4, t7 ± t9) 2

W18 (t4, t7 ± t13) 1 (t4, t7 + λt9 + µt13)

(t4, t7) 0

W #
1,2q−1 (t4, t6 + t2q+5), q � 1 2 (t4, ±t6 + λt2q+5 + µt2q+9)

Then we havea = a4
1, c = 0, e = a7

1. Thus we have 1= ae = a11
1 , so we havea1 = 1 and

a = 1, c = 0, e = 1. In particular, the 2-jet ofτ has the form as in Lemma 9.7. Then, from the
first equation, we seea2 = 0, a3 = 0, b = 4a4, h1 = 4a5, bλ = 4a6. Moreover, from the second
equation, we havek1 = 0, λ = λ′, a4 = 0. Then we havek2 = 7a5 andµ + k2λ = µ′ + 9a5λ

′,
besidesb = 0. By Lemma 9.7, we see 0= 2h1 − 2bk1 + k2 = 8a5 + 7a5 = 15a5, hencea5 = 0,
as well ask1 = 0. Therefore we haveλ = λ′ andµ = µ′.

Wesummarize the result in Table 1. We have the following corollary.
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COROLLARY 9.8 The symplectically simple (0-modal) plane curves are symplectically classified
into A2�, � = 1, 2, 3, . . . ; E6 : t �→ (t3, t4); E±

8 : t �→ (t3, ±t5).

Proof. By Theorem 9.2, the germs of typeE6� (� � 2), E6�+2 (� � 2), W12, W18, or W #
1,2q−1 are

never symplectically simple. SinceA2� is adjacent to justA2m with m � �, E6 is adjacent to just
E6, A4, A2, A0, andE±

8 is adjacent to justE±
8 , E6, A4, A2, A0. So they have nearby just finitely

many symplectic equivalence classes.

For the symplectically versal unfoldings we have the following results.

PROPOSITION 9.9 The symplectically versal unfolding with the minimal number of parameters for
each A-simple plane curve is given by

A2� (sp-codim= �): (
t2, t2�+1 +

�∑
j=1

λ j t
2�−2 j+1

)
,

(λ1, . . . , λ�) ∈ (R�, 0).
E6� (sp-codim= 3�) :(

t3 + λt,
(±1)�+1t3�+1 + ∑�

j=1 µ j t3�−3 j+1 + ∑2�−1
j=1 ν j t6�−3 j−1

)
,

(ν1, . . . , ν�−1) ∈ R
�−1, (λ, µ1, . . . , µ�, ν�, . . . , ν2�−1) ∈ (R2�+1, 0).

E6�+2 (sp-codim= 3� + 1) :(
t3 + λt,
(±1)�t3�+2 + ∑�

j=1 µ j t3�−3 j+2 + ∑2�
j=1 ν j t6�−3 j+1

)
,

(ν1, . . . , ν�−1) ∈ R
�−1, (λ, µ1, . . . , µ�, ν�, . . . , ν2�) ∈ (R2�+2, 0).

W12 (sp-codim= 6) : (
t4 + λ1t2 + λ2t,
t5 + µ1t7 + µ2t3 + µ3t2 + µ4t

)
,

µ1 ∈ R, (λ1, λ2, µ2, µ3, µ4) ∈ (R5, 0).
W18 (sp-codim= 9) :(

t4 + λ1t2 + λ2t,
t7 + µ1t13 + µ2t9 + µ3t6 + µ4t5 + µ5t3 + µ6t2 + µ7t

)
,

(µ1, µ2) ∈ R
2, (λ1, λ2, µ3, µ4, µ5, µ6, µ7) ∈ (R7, 0).

W #
1,2q−1 (sp-codim= q + 7) :(

t4 + λt2 + ρt,

±t6 + t2q+5 + µt2q+9 + ∑q+2
j=0 ν j t2q+5−2 j + θ t2 + ρt2q+2

)
,

(ν0, µ) ∈ R
2, ν0 �= −1, (λ, ν1, . . . , νq+2, θ, ρ) ∈ (Rq+5, 0).
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Remarkably the symplectic versal unfolding can be taken uniformly for each class of simple
plane curves; this is not the case for theA-versal unfoldings. This is natural because theA-E-
W -W #-classification is based on the constancy of the Milnor numberµ, and theµ-constant strata
coincide with the sp-codim constant strata (cf. Theorem 8.7).

PROPOSITION 9.10 Let F : (Rn, 0) → (R2 × R
n−1) be a symplectically versal unfolding of

A2� : (t2, t2�+1), � � n − 1. Then F is liftable equivalent to

(x1, x2, . . . , xn) = (t, λ1, . . . , λn−1) �→
(q1, p1, q2, . . . , qn) = (t2, t2�+1 + λ1t2�−1 + λ2t2�−3 + · · · + λ�t, λ1, . . . , λn−1).

EXAMPLE 9.11 (The opening of Whitney umbrella) Any symplectically versal unfolding ofA1 :
(t2, t3) is liftable equivalent to

(x1, x2, . . . , xn) = (t, λ1, . . . , λn−1) �→ (q1, p1, q2, . . . , qn) = (t2, t3 + λ1t, λ1, . . . , λn−1).

The Lagrangian lifting is symplectically equivalent to

(x1, x2, . . . , xn) = (t, λ1, . . . , λn−1) �→
(q1, p1, q2, . . . , qn, p2, . . . , pn) = (t2, t3 + λ1t, λ1,

2
3t3, 0, . . . , 0).

10. Isotopy and symplectic classifications
We show that if the symplectic defect vanishes, then the classifications by isotopy and by
symplectomorphism coincide.

LEMMA 10.1 There are isomorphisms of the vector spaces

t f (m1V1) + w f (m2V2)

t f (m1V1) + w f (m2V2 ∩ V H2)
∼=

G ′
f

f ∗m2
2

∼= G f

f ∗E2
,

where m1 (resp. m2) is the maximal ideal of E1 (resp. E2) consisting of functions H with H(0) = 0,
and G ′

f = {h ∈ m1 | dh ∈ 〈d f1, d f2〉 f ∗m2}.
Proof. In the proof of Lemma 8.2, assumea(0, 0) = b(0, 0) = 0. Then, froma(0, 0) = 0, we
have thatHp(0, 0) = 0, and fromb(0, 0) = 0, we have thatHq(0, 0) = 0. So we havec(0) = 0.
Therefore we have the first isomorphism.

To get the second isomorphism, first we remark that if we have(A ◦ f )d f1 + (B ◦ f )d f2 = 0,
then we haveA(0, 0) = B(0, 0) = 0. (This is proved by comparing orders of terms easily.) Then
we showG ′

f ∩ f ∗E = f ∗m2
2. In fact, the inclusionG ′

f ∩ f ∗E ⊇ f ∗m2
2 is clear. Leth = a( f1, f2) ∈

G ′
f ∩ f ∗E . Thendh = (C ◦ f )d f1 + (D ◦ f )d f2 with C(0, 0) = 0, D(0, 0) = 0. Besides we have

dh =
(

∂a

∂q
◦ f

)
d f1 +

(
∂a

∂p
◦ f

)
d f2. So we have{(

∂a

∂q
− C

)
◦ f

}
d f1 +

{(
∂a

∂p
− D

)
◦ f

}
d f2 = 0.

Therefore we have∂a(0, 0)/∂q = ∂a(0, 0)/∂p = 0, namelya ∈ m2
2. Soh = a ◦ f ∈ f ∗m2

2.
Lastly we show for anyh ∈ G f , there existα, β, γ ∈ R with h − (α +β f1 + γ f2) ∈ G ′

f . In fact,
dh = (R ◦ f )d f1 + (S ◦ f )d f2, for someR, S ∈ E2. Thend(h − h(0) − R(0, 0) f1 − S(0, 0) f2) ∈
〈d f1, d f2〉 f ∗m2.
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COROLLARY 10.2 The symplectic defect of a plane curve-germ measures the codimension of the
symplectic equivalence orbit in the A-equivalence orbit of the germ (in the jet space of sufficiently
high order).

REMARK 10.3 Let f : (R, 0) → (R2, 0) be a map-germ. Then, for diffeomorphismsτ : (R2, 0) →
(R2, 0) andσ : (R, 0) → (R, 0), we haveG ′

τ◦ f = G ′
f andσ ∗(G ′

f ) = G ′
f ◦σ .

THEOREM 10.4 Let f : (R, 0) → (R2, 0) be an A-finite map-germ with sd( f ) = 0. If a map-germ
f ′ : (R, 0) → (R2, 0) is isotopic to f , then f ′ is symplectically equivalent to f .

Proof. Using a right equivalence, we may assumef ′ = τ1 ◦ f , for a family of diffeomorphisms
τs : (R2, 0) → (R2, 0) starting fromτ0 = idR. Set fs = τs ◦ f : (R, 0) → (R2, 0). Then
sd( fs) = 0. Thust fs(m1V1) + w fs(m2V2) ⊆ t fs(m1V1) + w fs(m2V2 ∩ V H2). By the homotopy
method, we have the required result.

EXAMPLE 10.5 The plane curves of typeE8 are classified up to isotopy intoE+
8 : t �→ (t3, t5)

andE−
8 : t �→ (t3, −t5), because they are chiral. Then, since the symplectic defect vanishes in this

case, this gives also the symplectic classification.

11. Lagrangian liftings of the swallowtails

Let M2k be the space of polynomials of degree 2k + 1 of the form (cf. [2,11,13,18])

M2k =
{

x2k+1

(2k + 1)! + q1
x2k−1

(2k − 1)! + · · · + qk
xk

(k)! − pk
xk−1

(k − 1)! + · · · + (−1)k p1

}

endowed with the symplectic Darboux form
∑k

i=1 dpi ∧ dqi (reduction of the sl2-invariant
symplectic form on the space of binary forms of degree 2k + 3).

The canonical projection intoN is given by the derivative

Dk−1 = dk−1

dxk−1
,

which projectsM2k into the space of polynomials

N =
{

xk+2

(k + 2)! + q1
xk

(k)! + · · · + qk x − pk

}
.

The standard (generalized) swallowtail inN is defined as the space�k ⊂ N of polynomials having
at least one root of multiplicity at least 2.

The derivatived/dx of the polynomial decreases the multiplicities of its roots, however, the
difference of the degree of polynomial and the multiplicity of the root, called the comultiplicity, is
not affected by the derivative. So the polynomials of�k have roots of comultiplicity at mostk.

The canonical Lagrangian variety, which is a Lagrangian lifting of�k , is defined by V. I. Arnold
as the spacẽ�k of polynomials inM2k having a root of multiplicity at leastk + 1. This lifting is
most regular (stabilization in the sense of Arnold) because the multiplicity is at leastk + 1 and the
degree of the polynomial is 2k + 1 and finally the polynomials of̃�k have only one unique root of
this multiplicity. So the intersection points of�k are avoided.
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A parametrization of�k is given in the form

F : (Rk, 0) → (N , 0),

F(s) =
(

s1, . . . , sk−1, − sk+1
k

(k + 1)! −
k−1∑
i=1

si
sk−i

k

(k − i)! ,

− sk+2
k

(k + 2)k! −
k−1∑
i=1

sk−i
sk−i+1

k

(k − i + 1)(k − i − 1)!

)
.

Its Lagrangian lifting̃�k, F̃ : (Rk, 0) → (M2k, ω) is generated by the following generating family
(cf. [16, p. 106]):

Pk(q, λ) = 1

2

∫ l

0

(
k + 2

(k + 1)! xk+1 +
k∑

i=1

qi
xk−i

(k − i)!

)2

dx .

Thus the associated symplectic bifurcating family of curves (swallowtail bifurcation family) in
(R2, dpk ∧ dqk) is defined by

qk = − k + 2

(k + 1)! xk+1 −
k−1∑
i=1

1

(k − i)!qi xk−i ,

pk = − 1

k! xk+2 −
k−1∑
i=1

1

(k − i + 1)(k − i − 1)!qi xk−i ,

wherex is the curve parameter and(q1, . . . , qk−1) are the bifurcation parameters of the family. We
see that this is an unfolding of the curve

(qk, pk) =
(

− k + 2

(k + 1)! xk+1, − 1

k! xk+2
)

.

In a more general setting, this result may be formulated in the following way.

PROPOSITION 11.1 Let G : (R × N k+1, 0) → R be a function family germ with Ak+1-type
singularity. Let �k be the discriminant set of G,

�k = {u ∈ N k+1 | G(x, u) = 0, G ′
x (x, u) = 0, for somex ∈ (R, 0)}.

Then there exist a symplectic space (R2k, ω) and an isotropic fibration

π : ((R2k, ω), 0) → (N k+1, 0); (p, q) �→ (q1, . . . qk, pk)

and a Lagrangian lifting �̃ of �. Moreover �̃ is uniquely defined by the conditions

�̃ =
{

ū ∈ R
2k | D−(k−l)G(x, u) +

k−l∑
i=1

(−1)i−1 pk−i
xk−i−l

(k − i − l)! = 0, 1 � � � k

}
,

where D0G(x, u) = G(x, u) and ū = (u, p1, . . . , pk−1).
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12. Frontal-symplectic versality and open swallowtails

In the casek = 2, we interpret Givental’s construction from the versality viewpoint of ‘frontal-
symplectic’ category, based on the fact that the swallowtail surface provides the versal unfolding of
plane curve of typeE6 : t �→ (t3, t4), among wave-front curves.

Here we give a direct method to construct a versal unfolding in the frontal-symplectic category.
Let f : (R, 0) → (R2, 0) be a non-flat map-germ. After using a symplectomorphism ofR

2,
we assume ordf1 < ord f2. Let ( f, ϕ) : (R, 0) → (R3, 0) be the Legendrian liftings off for
the contact formα = dy − pdx . In fact ϕ = (d f2/dt)/(d f1/dt), and thend f2 − ϕd f1 = 0.
Note that ordϕ = ord f2 − ord f1. Let w = ( f, ϕ; ξ, η, ψ) : (R, 0) → T R

3 be an infinitesimal
deformation of( f, ϕ) among Legendrian (integral) mappings. Thendη − ψd f1 − ϕdξ = 0, that is,
d(η−ϕξ) = −ξdϕ+ψd f1. Setk = η−ϕξ . Thenk −k(0) has order at least min{ord f1, ordϕ}. For
the induced infinitesimal deformationv = ( f ; ξ, η) : (R, 0) → T R

2 of f , take a functionh with
dh = ηd f1−ξd f2, agenerating function of v. Thendh = ηd f1−ξϕd f1 = (η−ξϕ)d f1 = kd f1. So
h − h(0) is a sum of a monomial of order ordf1 and a function of order at least min{2ordf1, ord f2}.

Setm = ord f1, k = min{2ordf1, ord f2} and set

S = R + Rtm + mk
1.

ThenS is a vector subspace ofE1 containing f ∗E2.

LEMMA 12.1 Let F : (R1×R
�, 0) → (R2×R

�, 0), F(t, λ) = (F̄(t, λ), λ) be a frontal unfolding of

a non-flat map-germ f : (R, 0) → (R2, 0). Assume ord( f1) < ord( f2). If
∂ F̄

∂λ1

∣∣∣∣
R×0

, . . . ,
∂ F̄

∂λ�

∣∣∣∣
R×0

generate S/ f ∗E2 via generating functions over R, and also generate vector fields

t i ∂

∂q1
◦ f + ϕt i ∂

∂p1
◦ f

(2ord( f1)− ord( f2) � i � ord( f1)− 2) over R, then F is a frontal-symplectically versal unfolding
of f . Frontal-symplectically versal unfoldings are unique up to liftable equivalence.

EXAMPLE 12.2 (The open swallowtail) Letf : (R, 0) → (R2, 0), f (t) = (t3, t4) be a map-germ
of type E6. Then the one-parameter unfoldingF : (R2, 0) → (R3, 0), F(t, λ) = (q1, p1, q2) =
(t3 + 3λt, t4 + 2λt2, λ) of f is a frontal-symplectic versal unfolding off . The image ofF is the
swallowtail surface and has the double point locus. The Lagrangian lifting

F̃(t, λ) = (q1, p1, q2, p2) = (t3 + 3λt, t4 + 2λt2, λ, 6
5t5 + 2λt3)

of F coincides with the open swallowtail surface, which has no self-intersections.

EXAMPLE 12.3 (The open folded umbrella) Letf : (R, 0) → (R2, 0), f (t) = (t2, t5) be a
map-germ of typeA4. Then the one-parameter unfoldingF : (R2, 0) → (R3, 0), F(t, λ) =
(q1, p1, q2) = (t2, t5 + λt3, λ) of f is a frontal-symplectic versal unfolding off . The image
of F is the folded umbrella and has the double point locus. The Lagrangian lifting

F̃(t, λ) = (q1, p1, q2, p2) = (t2, t5 + λt3, λ, 2
5t5)

of F has no selfintersections and may be called ‘the open folded umbrella’.
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