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Abstract

We study the classification of varieties in the Marsden—Weinstein reduction and their
liftability. In particular the complete symplectic classification of the Bruce—Gaffney plane curve
singularites is provided and is applied to obtain naturally the Lagrangian openings.

1. Introduction

Symplectic structures arise naturally in diverse contexts such as Hamiltonian mechanics, field
theory, geometrical optics, algebraic geometry, etc. In all these theories the bifurcations of various
symplectic objects, like isotropic or Lagrangian varieties, representing the states of the systems
play an important role. The purpose of this article is twofold. First we formulate the theory of
symplectic bifurcations with the symplectic group actions on the reduced spaces. Secondly we
provide the complete classification of simple symplectic bifurcations of curves and determine the
possible differential and symplectic invariants, in particular, the symplectic defect.

We start with a coisotropic fibratiodl : M2" — R" % 0 < k < n — 1, of the symplectic space
(M?", ») of dimension &, n > 2. By the Jacobi-Liouville theorem, locally there exist relative
Darboux coordinateps, ..., pn, 41, . . ., g Of M such thatw = Zi"zldpi A dgi, and

H(p, ) = (@) = (Ok+1,--->0n)

cf. [1, p. 301]. Then we consider the family of canonical reductions (Marsden—Weinstein symplectic
reduction)

g+ mg: H @) — H 1)/ ~q = T*RX,
nq : (pla"'a pk’q].’""qk’ pk+la"'7 pn)'_) (p].""’ pkaq].?""qk)’
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where~q denotes the equivalence relation | 1(g) induced by the characterisic foliation bf.
Then we have the total projection

7 M2 N THRK o ROK
(P, d) = (P1s---»5 Pks A1, - -+ Ok; Okt2s - - - On)-

Let L™ ¢ M?" be an isotropic variety«{|. = 0, m < n). Then the projectiom(L) C N =
T*RK x R"K provides a bifurcation ofm—n+k)-dimensional isotropic varietieg (H ~1(g) N L)
in T*RX with the parameter spa@ K. Inthis paper we consider the bifurcation of curves, namely,
the casen =n —k + 1.

Any map-gernF : (R" k1 0) - N = T*RXxR"Kis called a symplectic bifurcation problem
of curves. The gernf is calledtransverse if F is transverse td *RK x {0} at 0. Moreover any
symplectic bifurcation problem of curves is calladlisotropic bifurcation of curves if there exists
an isotropic map-gern : (R" k1, 0) - ((M?", w), 0) such thatr o F = F, and F*w = 0;
cf. [17, p. 29]. We show thatny transverse symplectic bifurcation problem of curves is isotropic
(Proposition 2.3).

In the paper22], V. M. Zakalyukin classified the simple stable Lagrangian submanifold-germs
(m = n) by symplectomorphisms which preserve a given coisotropic fibration. Then, admitting
Lagrangian or isotropic varieties, we study the liftability and the classification problem of varieties
in the reduced space. In other words, we consider the ‘bottom-up’ construction. The idea appeared
earlier in the Ph.D. Thesis of M. Mikosz and part of it is publishedl®].[ We see that there exist,
ewen in the simplest case = 2, k = 1, many examples of non-transverse bifurcation problems
of curvesF : (R2,00) — N = R? x R which are not liftable to isotropic mappings intd
(Examples 2.6 and 2.7).

To make clear the problem we are going to study, let us consider the bifurcation problem of ‘cross
caps’ or ‘Whitney umbrellas’ in the three spaé x R = T*R x R with the symplectic foliation.
Then we observe the four typical examples of bifurcatiBns(R2, 0) — (R2 x R), namely

(1) transverse immersions or no bifurcation,

(2) transverse Whitney umbrellas or cusp bifurcations,

(3) hyperbolic Whitney umbrellas of-pinch bifurcations, and
(4) elliptic Whitney umbrellas or figure-8 bifurcations;

see Fig. 1; see also section 5. The classification is similar to the classification of functions on
cross-caps; sed]. However, we remark that the non-transverse immersions are never isotropically
liftable (Proposition 2.5), so they do not enter into our list, contrary to ordinary singularity theory.
The first two are transverse and the last two are not. Note that changes of irreducible components
occur through the bifurcations of types (3) and (4), while the transverse bifurcations of curves
provide just irrreducible curves, like the cases (1) and (2).

In this paper we study the transverse bifurcation problem of curves in detail. In section 2,
we show the unique isotropic liftability of transverse bifurcations. In section 3, we study the
general classification problem of parametrized varieties in the reduced space under a natural
equivalence relationiftable equivalence, that corresponds to the classification of isotropic varieties
by symplectomorphisms preservingfibres for the given coisotropic fibratiod : RZ" — R,

We show that a liftable diffeomorphism is actually a diffeomorphism preserving the symplectic
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Fig. 1 Typical isotropic bifurcations

foliation of N = T*R¥ x R"K. Thus the classification under the liftable equivalence turns out to
be reduced completely to the classification and deformation problem of curves on the symplectic
spaceT*RK = R k > 1.

In section 4, we give the classification of symplectic bifurcation problems of curves under the
liftable equivalence.

In particular, we study the simplest cdse= 1, namely, the bifurcation problem of curves in the
symplectic plane, in detail.

Now we try to clarify the fundamental problem we face. Suppose two plane curve-germs are

transformed to each other by an orientation preserving diffeomorphism on the plane. Then, it is
natural to ask: Are they transformed by a symplectomorphism of the plane? Is singularity theory
using symplectomorphisms different from ordinary singularity theory even for plane curves? Then
we encounter ‘symplectic ghosts’ in the sense of Arn8]dAfter several preliminaries in sections 6
and 7 answering this question, we describe, in section 8, for a plane curvefger(®, 0) —
(R2, 0), the difference sp-codiff) — codim(f) between the codimensiogsp-codini f)) of f
under the ‘symplectic equivalence’ and the right—left (that4s) codimension codirtf ) of f in
an explicit way. We call this difference trsgmplectic defect or thesymplectic ghost number of f.
We remark that our ghosts have moduli, while the ghosts which appear8pandg discrete.

Obviously the symplectic defect is an invariant under symplectic equivalence, namely a
symplectic invariant. However, we show that the symplectic defect is, in fact-avariant of
f, not just a symplectic invariantlf the symplectic defect is positive, then the classification of
plane curves by symplectomorphisms differs from the classification by diffeomorphisms, and the
difference depends only on the A-equivalence class of the plane curves. Therefore the symplectic
codimension itself is amd-invariant. If two plane curve-germ$ and f’ are A-equivalent, then
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Fig. 2 Swallowtail and folded umbrella

sp-codin( f) = sp-codin{f’). In fact we show that sp-codif) is equal to theS-invariant (the
number of complex double points after a perturbationf oNote that, a priori, thé-invariant has
nothing to do with symplectic equivalence. We also remark that, in thelkcgas@, the symplectic
codimension off : (R, 0) — T*RXis, in fact, not necessarily as-invariant (Remark 8.5).

Moreover, we show in section 10, that if the symplectic defect equals zero, the symplectic
classification of plane curves coincides with their isotopy classification. As an application,
we obtain normal forms under liftable equivalence for certain map-germs. Also, we calculate
symplectic defects far-simple plane curves

#
Az¢, Eee, Eery2, Wiz, Wig, Wy 51

classified by Bruce and Gaffneg][and give the complete symplectic classificationokimple

plane curves (Theorems 9.2 and 9.6). Moreover we obtain the symplectically mini-versal unfoldings
of them (Proposition 9.9). As a byproduct of our approach, we give the classificatipnHg, Egﬁ)

of ‘symplectically simple’ plane curves (Corollary 9.8).

As typical well-known examples of Lagrangian varieties, there are open Whitney umbrellas and
open swallowtails. In this paper, in a systematic way, we characterize the opening processes of
Whitney umbrellas and swallowtails; see sections 7, 9, 11 and 12. We show that the Lagrangian
liftings are obtained, in many cases, from open Whitney umbrellas by the reduction process
(Corollary 7.4). Also we study the polynomial construction of open swallowtails from the viewpoint
of the present paper (section 11). In section 12, we treat the construction of open swallowtails (Fig. 2
(1)) and also ‘open folded umbrellas’ (Fig. 2 (2)), via the notion of ‘frontal-symplectic’ versality.

2. Lagrangian liftability
Let F : (R"*+1 0) - (N, 0) = (T*RX x R"K, 0) be a smooth map germ.

DEFINITION 2.1 By anisotropic lifting of F, we mean a smooth map-gerﬁl : (R"*+L 0) —
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(M, 0) which is isotropic, that isE*w = 0, and for whichr o F = F:

(R"—k+1 Q) —ﬁ> ((M, 0), w)

| L

®k1 0 —5 5 (N,0).

Whenk = 1, we call an isotropic lifting also bagrangian lifting.
Now we have the following sufficient condition for the isotropic liftability bf

DEFINITION 2.2 A smooth map-gerrf : (R" k1 0) — (N, 0) = (T*RX x R"k, 0) is called
transverseif F is transverse td *RK x {0}.

The result mentioned in the Introduction is proved in the following precise form.

PrROPGCSITION 2.3 Let F (]R“—NKH, 0) — (N, 0) be a transverse smooth map-germ. Then there
exists a smooth isotropic lifting F : (R"k*+1 0) - M = R? for F. In fact, for some coordinates
X=(, A1, ..., An—k) With F(t, 1) = (f, (1), A), the remaining components of F are given by

t k
api 9gi  9p; 3G :
() = — 221 )dt k+1<j<n).
Pj (X) /o (; arj ot ot a,\j) ktlsism

Moreover the Lagrangian liftings of F are equivalent to each other by symplectomorphisms on M
preserving the fibres of H.

Proof. From the equatiorl?*a) = 0 we get the necessary condition for the germ to be a solution of
afirst-order partial differential equation. The details are as follows. (See H$d [
By assumption, there exist coordinates

X = (X1, X2, ..., Xn—k+1) = (t, A1, ..., An—k)
such that

F(tv )\'1: st )\'n—k) = (ql(t7 )")7 pl(tv )\')ﬂ R qk(tv )\')7 pk(t7 )")7 )"17 DR )&n—k),
F(t7 )\'la ceey )\'nfk) = (F(t7 )")a pk+l(ta )")5 ceey pn(t’ )\'))'

Set = > pidgi, the Liouville form onM = T*R". Thenw = d#. Since the condition
F*» = 0 is equivalent toF*# being closed, we set, locallfs*0 = de for some functiore on
(R"k+1 0). Then we get

e & ag  de K g
— =Y p0— — =Pt D)+ Y Pt )

(j =1,...,n=K). If wetake a functiore(x) satisfying the first equation, then we obtaikg, j (X)
j =1,...,n—Kk) by the second equality. Now we set

e—/tik: ‘(X)%dt-l- ), r2=(@( An—k)
— 0 I:lpl 8t @ 3 —_— 1, --+5 An=k);
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for some functiory which is independent daf Then we have
de t (& api ag; 320 g
= —_— - dt + —
| /0 (; ar; ot Patar; )¢ T
t [/ k k
_ opi 3G Ip; I Gle]
_/0 (;a/\j ot ot axj>dt+;p'axj+a,\,

Thus we have

t /K a0 ) )
pk+j(t,/\)=/0(zaﬂaﬂ—%8i)d +3_(p A<j<n=k).
i

— 0Aj ot ot OA; oAj
Note thatH o E(x) = (M, ..., An—k). Then the local symplectomorphism
dp(q) dp(q) )
) = EECICIRIEY ) - EECIEIIEY - ) )
(p, Q) <p1 Pks Pk+1 201 " oan q

g = (Ok+1, - - -» On), eliminates the term&yp /oA ;.

REMARK 2.4 (The coincidence of singular loci for the lifting and the original map) The singular
locus of F coincides with the singular locus &f:
9gi _ opi

Sing(F) = Sing(F) = {(t,k) e (R"*+1 o) 5= = 0,1<i < k} )

In the cas&k = 1, moreover, we have the following.

PROPCSITION25If F : (R",00 — N = T*R x R"™1 is an immersive germ, then the
transversality condition is the necessary and sufficient condition for the existence of Lagrangian
liftingsfor F.

Proof. Assume that~ is an immersion and not transverseTdR x {0}. Then we see that the
imageF, (TOR”) containsTo(T*R x {0}) by a simple argument of dimension. This means that, for
any lifting F of F, F*(TOR”) contains the jf1, g1)-plane inToM. Then it is impossible thak is
isotropic. O

ExAMPLE 2.6 (Non-transversal and liftable germs) There exist non-transverse and liftable map-
germs. For example, if a Lagrangian immersion(R", 0) — M?" is not transverse to thid -level
H=L(H(L(0))) for H : M2 — R"-1 then the tangent spade.(ToR") contains a characteristic
direction andF = 7 o L is not an immersion, whilé is liftable to L. In particular, a Lagrange
surface inR* projects to a Whitney umbrella. This observation is related to the study of smooth
perturbations of singular surfacesi [10].

ExAMPLE 2.7 (Non-transverse and non-liftable germs) Eet (R2,0) — (N, 0) = (R? x R, 0)
be a non-transverse map-germ of the form

F (X1, X2) = (G1, P1, G2) = (Gu(X), p1(X), 2(xZ £ x3)).

Consider the second-order differential operatos 92/9x2+32/9x3 associated tg (x2£x3). If F
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has a Lagrangian lifting, theﬂplAdqler(p/\d(%(xf:I:x%)) = 0for some functiorp = ¢(X1, X2).
Then we see, by simple formal calculations, that the Jacobip, q;) satisfies an infinite number
of conditions(A¢J(p1, g1))(0,0) = 0for¢ = 0,1, 2, .... So, if (A J(p1, 1)) (0, 0) # Ofor some
¢, thenF is never liftable. For example,

F (X1, X2) = (01, P1. G2) = (X1, X3, 3(X¢ £ X3))
is not liftable. On the other hang, x1x2, 5 (X2 & x2)) is liftable.

3. Liftable equivalence

Let ¢ : (N,0) — (N,0) be a diffeomorphism-germ. We cali a symplectically liftable
diffeomorphism if there exists a symplectomorphism-g&bm ((M, 0), ) — ((M, 0), @) such
that the following diagram commutes:

(M, 0),w) —2— ((M,0), w)

N,o —2> (NO).

DEFINITION 3.1 We say that the two map gernig, F> : (R"%+1 0) — (N, 0) areliftably
equivalent if the following diagram commutes:

Rk 0) — L, (NLO) «— (M, 0), w)

| a Lo
Rk 0) —2 L (N.0) < F— (M., 0), w),

where v, ¢ are diffeomorphism-germs and is a symplectomorphism-germ, that ig, is a
symplectically liftable diffeomorphism.

The symplectically liftable diffeomorphisms @i, 0) form a subgroupGsymp of the group
g of diffeomorphism-germs. Classification of singularities faccording to the equivalence
group Gsymp is similar to the standard right-left classification of singularities of map-germs
(R"k*+10) — (R™K, 0); howewer, this is restricted to the space of map-germs which have
Lagrangian liftings.

Now we describe symplectically liftable diffeomorphisms in an explicit way.

PROPGSITION 3.2 For a diffeomorphismgerm ¢ : (N, 0) = (T*RK x R"K 0) — (T*RX x
R"K, 0), the following conditions are equivalent:

(1) ¢ isasymplectically liftable diffeomorphism;
(2) ¢ isa Poisson diffeomorphism (for the Poisson structure on N induced from M by r);

(3) ¢ is a family of symplectic diffeomorphisms on T*RK with parameter § = (Oks1, - - -, On)-
Namely, if we set

¢ (0, P1. - - -+ Uk Pk @) = (Q1, P1, ..., Qk, Pk, Q),
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then Q = (Qk41, ..., Qn) depends only on ¢, and
(ql? pl? AR qu pk) H (Ql? Pl? ey Qk’ Pk)
is a symplectomorphismon (T*RK, 0) for each fixed § = (Qu1, - . . , an);

(4) ¢ hasa symplectic lifting @ : (M, 0) — (M, 0) preserving fibres of H, namely, there exists a
diffeomorphismrgermo : (R"K, 0) — (R"X, 0) such that the following diagram commutes.

(N,0) <Z— ((M,0),») —— ®R"™, 0)

a Ji I
(N,0) < ((M,0),0) — Rk, 0)

Proof. (1) = (2): We denote by, } the Poisson bracket on the symplectic manifdld Then
the Poisson brackdt, }n on N is defined by{h, k}n = {h o 7,k o w}m for any functions on
(N, 0). Let ® be a symplectic lifting ofp on (M, 0). Then, for any function#, k on (N, 0), we
havelho¢, kog}n = {hogpom, kopom}y = {homo®, komro®}y = {hom, komr}ym = {h, k}n.
Thus¢ is a Poisson diffeomorphism.

(2) = (3): The Poisson structure d induces the foliation by symplectic leavés RK x {q},
intrinsically. So naturallyp induces a family of symplectomorphisms BHRX. Also we can argue
in a more direct way as follows. The derivatiof3, -}n{Qi, -}n, (1 < i < K) generate the tangent
spaces to the leavas RK x {g}. Since we have, for eachwith 1 < j <n—k, {F, QuyjlIn =
{Qi, Qk+jin = 0(1 <i <K), wesee that eacly,j is independent ofq, p, ..., Ok, Px)-

(3)= (4): Let® : (M, 0) — (M, 0),

(0, P, - -+ Uk Prs @) = (Q1, P1, ..., Qk, P, Q, P),

P = (Pki1, ..., Py) be a diffeomorphism-germ coveriggwith respect tor. The condition thatb
is a symplectomorphism is the existence of a smooth fundfiontM, 0) — R, called a generating
function of @, satisfying

®*9 — 6 = dE,

whered = Y"' ; pidg;. Then the condition is equivalent to

k .
SR B a<j<k,
—  0q Gle};
k .
SRl _ 1<j<k,
= 9P 9P
k n
8Qi 8Qi 0E .
QL s A B i<
; 90, i:zk—:i-l TR

for some functionE : (N,0) — R. The first and second equalities mean tiig{ is a
generating function of the symplectomorphiggifor eachg e (R"K, 0). Therefore the function
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E : (N, 0) — Ris uniquely determined by these two equalities up to the addition of functions on
d. Then, by the last equality, thie-level preserving symplectic lifting of ¢ is given by setting

P_( i 8Q|><8Qe)_1
30 / ky1<e<n k1< <n

aE_< dE 8E) ang’Q _<3Qi 8Qi>
9  \9Gkt1 3G/ 9  \80k+1 T dan )

(4) = (2): This implication is trivial.

where

REMARK 3.3 In the case whek = 1, diffeomorphisms of type

¢, P, §) = (a1 + B(@), 8p1 + a(q), (@)

and
¢(q1’ P1, q) = (_ P1, 91, Q),

and their compositions are all symplectically liftable. (He#sg3, y are smooth functions§ €
—{0}, andg = (g2, ..., 6h).)

REMARK 3.4 We have also the description of the infinitesimal deformations corresponding to
liftable and lifted equivalences. Any vector fiekl over N generating a liftable equivalence is

given by
n—k

_ 0
X(@1, PL. - - Gk Pks @) = Xng (A1, P1. -+, Gk P + ) 8 (6) —
i1 90k
for some function$i(qs, p1, - - -, dk, Pk, §) anda; (), 1 <i < n—k,whereXr1q is the Hamiltonian

vector field overT*RK with the Hamiltonianhg for each fixedg € (R"% 0). The lifted
Hamiltonian vector fieldX over M = T*R" has the Hamiltoniath = h + Zi”:’f Pk+i & (Q);
X = X,

h

DEFINITION 3.5 Two isotropic map-germ&, L’ : (R" k1 0) — (M,0) are calledH-
symplectically equivalent if there exist a symplectomorphisi® : (M,0) — (M,0) and
diffeomorphismsy : (R" %1 0) — (R"*+1 0), ¢ : (R"K 00 — (R"K, 0) such that the
following diagram commutes.

®RHH0) L (M) — ®R"K,0)
v| o] l
Rk 0) — 5 (M, 0) —2— R"K, 0)
Now the following is clear.

COROLLARY 3.6 Let F, F': (R"**1,0) — (T*RKxR"K, 0) betransverse map-germs. If F and
F’ are liftably equivalent, then their isotropic liftings F and F’ are H- -symplectically equivalent.



82 G. ISHIKAWA AND S. JANECZKO

4. Classification under liftable equivalence

In what follows, we concentrate on the symplectic bifurcation problem of curves on the symplectic
plane k = 1). Thus we consider map-gerrfs: (R", 0) — (R? x R"1, 0).

PROPGCSITION 4.1 For atransverse map-germ F : (R", 0) — (N, 0) = (R? x R"~1, 0), we have
the following.

(al1) If F isanimmersion at O, then F isliftably equivalent to

(07 Xla XZ’ RN Xn)'

(a2) Suppose F isnot animmersion at 0. Then F isliftably equivalent to the germ¢ o F o ¢ such
that the 2-jet j2(¢ o F o ¥) is equal to (X2, x1Xz, X)), (X2, 0, X'), (X1X2, 0, X) or (0,0, x'),
wherex’ = (Xo, ..., Xn).

Proof. (al1) This follows from Proposition 4.2 below.

(a2) By Proposition 2.5 (a) and using a right equivalefioge can assume that,

i2F(0) = (cox? + ca(X)x1 + C2(X'), box? + by (X)x1 + ba(x'), X)),

whereb1(0) = 0, c1(0) = 0andx’ = (X2, ..., Xn).
Letcg # 0. Then by using right equivalence, we can asseme- 1,c;(x’) = 0. Then, by
applying the symplectically liftable diffeomorphism

(01, P1,d) — (1 — c2(q), p1 — b2(d), 4,

the 2-jet is transformed t()(f, boxf + bi(X")x1, X).

Moreover, using the symplectically liftable diffeomorphism, p1,q’) — (91, p1 — bod1, '),
we get(xf, b1 (x)x1, X") as the 2-jet. If the linear forrny (x’) is not identically zero, by a coordinate
change ok’ we obtain(x2, xyxz, X). If by(X') = 0, then we havex?, 0, x').

If cg = 0andbg # 0, we can proceed as above using the symplectically liftable diffeomorphism
(q1, p1,9) = (—p1,91,9). If bg = cg = 0, then we getxixz, 0, X") or (0, 0, X’) as the 2-jet
within the liftable equivalence classes.

Now we have the following prenormal form fér.

PROPCBITION4.2 Let F : (R",00 — (N,0) = (R?2 x R"1,0), F(x1,....xn) =
(qu(X), p1(X), g'(x)), be a smooth map-germ. Assume that F istransverseto R? x {0} and that F
isfinite, namely, the ideal generated by components of F is of finite codimension. Then F isliftably
equivalent to one of the following forms, for somem > 2:

m—2
Fn(X) = (xf‘ + Z a (X)X}, X16(X), x’) ,

i=1

where X’ = (X2, ..., Xn), and g (x"), c(x) are smooth function-germs.
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Proof. By the transversality assumption, using right equivalence, one can rédiacthe form
(x1, X') > (@(x1, X), c1(x1, X), X).

SinceF is finite, we can assuméa(0)/dx]" # 0, for somem, up to liftable equivalence. Then
by the classification oAn-type singularities of functions, we obtain the liftably equivalent form

m—2
(X1, X') > <XT + > a(X)xy + ao(X), ca(xa. X'). x/> .
i=1

We write cx(X1, X') = X1¢(X1, X') + c3(x’). Then the liftable diffeomorphisnigs, p1,q") —
(g1 — ap(q"), p1 — c3(q"), ') yields the required form.

REMARK 4.3 In the case whem = 2, we get the form
Fa(x1. X') = (&, x16(x1, X)), X).

Then, by settingc(xg, X') = x1¢>(xf, X') + w(xf, x’) and by taking a liftable diffeomorphism
(q1, p1,9) — (g1, p1 — ¥ (a1, q"), q’), we see that; is liftable equivalent to the form

Fox1, X)) = (X2, x19 (X3, X'), X).

For the casen = 2, we have the normal forms, by using the versality theorem in the symplectic
case 8, pp. 223-2549].

PROPCSITION 4.4 Let F : (R, 0) — (R?x R""1, 0) bea finite and transverse map germ. Assume
the 2-jet of F isequal to (X2, x1x2, 0) or (x2, 0, 0). Then F isliftably equivalent to

(@1, P1, @) = (x2, X2 4 )X 4 ()3 4 4 he(X)xe, X)

for some positive integer £, and for some functions A1(x’), ..., A¢(X") of X' = (X2, ..., Xn) With
2j(0)=0,1<j <t

Proof. We may assumd=|R x {0} is of type Ay : f(t) = (qi, p1) = (t3 t%+1), by using a
liftable diffeomorphism. Note that the right—left equivalence class and the symplectic equivalence
class coincide for a plane curve of type,; see section 10. Then

G(t, AL, ..oy he) = (262 aqt2 L ot 3 ot A, L Ae)

is a versal unfolding oF |R x {0} ([6]). ThenG is a symplectically versal unfolding &f|R x {0};
see section 7. Lef : (R,0) — (R? 0) be a plane curve-germ. Recall that an unfolding
G : R xRLO — (R?2 x RY,0) of f is called symplectically versal if any unfolding
F: [R xRS0 — (R%x RS 0) of fissymplectically equivalent t¢*G for some smooth
map-germy : (RS, 0) — (R¢, 0).

Therefore, there exists a smooth mappkig— A(x’) such that the pull-back*G is liftably
equivalent toF.
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5. Non-transver se bifurcations of curves

In this section we consider map-gern’s : (R2,00 — (R? x R,0), F(xg,x2) =
(q1(X), p1(x), g2(x)) such thaty, : (R%,0) — (R, 0) is a submersion or a Morse function at 0.
We call such map-germsf Morse type. We consider the generic classification problem of liftable
germs among the class of map-germs of Morse type. Then we have the following.

PROPGSITION 5.1 Let F : (R2,0) — (R? x R, 0) be a generic liftable map-germ of Morse type,
namely, a generic one-parameter bifurcation problem of plane curves of Morse type. Then F is
liftably equivalent to one of following types (Fig. 3).

(1) (X1, X2) — (X1, 0, X2): The transverse immersion.
(2) (X1, X2) > (xf, xf’ + X1X2, X2): The transverse Whitney umbrella, or the cusp bifurcation.

(3) (X1, X2) — (X1, X1%2 + O(3), %(xf — X3)): The hyperbolic Whitney umbrella, or the X-pinch
bifurcation.

(4) (X1, %2) > (X1, X1X2 + O(3), (X2 + x2)): Theelliptic Whitney umbrella, or the figure-eight
bifurcation.

Here O(3) meansthetermsin X1, X, at least of third order.
Moreover the germ F(xq, X2) = (X1, X1X2 + @ (X1, X2), 3(xZ £ x2)), ordp > 3, isliftable if and
only if ¢ is of the form

x2 oy oy
0(X1, X2) = [O <:FX28_X1 + XlB_X2> dxz + x(X1)

for some smooth function v (X1, X2) of order at least 2 and « (x1) of order at least 3.

Proof. Let F be transverse. TheR is approximated by transverse immersions and a transverse
Whitney umbrella. A generic transversal Whitney umbrella is a versal one-parameter unfolding of
aplane curve of typeA,. ThenF is liftably equivalent to the above normal form. df is a non-
submersive Morse function, thdnis liftably equivalent to(qi(x), p1(X), %(xf + x%)). Moreover
by the genericity assumption we may assume ¢hét) = x; using liftable equivalence. Then we
see thatF is liftably equivalent to(xy, xo) > (x1, ax1Xz + O(3), 3(x2 £ x2)), fora € R — {0},
which is liftably equivalent taxy, X1z + O(3), 3(x2 £ x2)).

The last statement is clear. We deés liftable if and only if there exists a functigp such that

0 0 0
X1+ —(p:I:X2—¢ —X1—¢ =0.
X2 0X1 X2

If such¢ exists, thenp must have the formy + v, ordyy > 2.

Note that the lifting is an ordinary open Whitney umbrella in the case (2), while the lifting is an
immersion in each of the cases (3) and (4). Also note that the non-transverse immersions are never
liftable by Proposition 2.5. We do not have yet the exact normal forms for hyperbolic and elliptic
Whitney umbrellas under liftable equivalence.
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1) (2) (3) (4)
Fig. 3 Liftable germs of Morse type

6. Symplectic equivalence of plane curves

A transversal map-ger® : (R",0) — (R? x R""1,0) is liftably equivalent to an unfolding
(t,2) > (fi(t), 1), wherex € (R"1,0) and f, is a family of parametrized curves in the
symplectic planeR?, t being the inner variable and = (A1, ..., An_1) the outer variables.
Therefore we proceed to consider the classification problems of bifurcations (unfoldings) of curves
in the symplectic plane.

Two families of plane curved,, f,, (A € (R?, 0)) are calledsymplectically equivalent if
there exist a family of diffeomorphism& = (0) : R x RY, 00 — (R,0), a family of
symplectomorphism3 = (z;) : (R? x R¢,0) — (R, 0), and a diffeomorphisnp : (R¢, 0) —
(Rt,0) such thatr, o f) o0, = f,u), for some representatives of germs. Then, setting
F:@®xRL0 — (R2x RE0), Ft,a) = (f(t),4) andF’ : (R x RY, 0) - (R2 x R¢, 0),
Ft, A = (f/(t),2), we e that if f, and f; are symplectically equivalent thefa and F’ are
liftably equivalent.

In ordinary singularity theory, the versal unfolding of a singularity dominates any other
unfoldings. To seek the versal unfolding of curves on the symplectic plane for symplectic
equivalence, we must first study the symplectic classification problem of plane curves.

For example, consider the simple cuspy) f = (t2,t3) : (R, 0) — (R2, 0). Then the unfolding
F: (R xR,0 — (R? x R, 0) defined byF (t, ») = (t2, t3 + At, 1) is versal with respect to the
right—left equivalence. Then we ask: Is it a symplectically versal unfolding?

Now first we consider the basic problem. I&tC’ c (R2, 0) be two curve germs. Assume that
there exist a diffeomorphism-gersn: (R2, 0) — (R2, 0) with o (C) = C’. Then does there exist a
symplectic (area-preserving) diffeomorphisth: (R2, 0) — (R2, 0) with ¢’(C) = C'?

We call two map germsf, f : (R,0) — (R?, 0) isotopic (resp. equivalent) if there exist a
smooth familyrs : (R?, 0) — (R?, 0) of diffeomorphism-germs starting from the identity(resp.
adiffeomorphism-gernt : (R?,0) — (R?, 0)) and a diffeomorphism-germ : (R, 0) — (R, 0)
such thatf’ oo = 710 f (resp. f' oo = 7t o f). Moreoverf and f’ are calledsymplectically
isotopic (resp.symplectically equivalent) if we can take, in the above definitions, (resp.t) to be
symplectic.

A map-germf : (R,0) — (R?,0), is alled achiral (resp. chiral) if f and f are isotopic
(resp. non-isotopic). Here we denote bythe map-germ(R, 0) — (R?, 0) defined byf (t) =
(f(t), —fa(t)).

Here we give several examples illustrating the notions introduced above.

EXAMPLE 6.1 (About the definition of isotopy) Consider curvést) = (t2,t3) and f'(t) =
(t2, —t3) of type A, (resp. f(t) = (t3,t% and f'(t) = (t3, —t%) of type Eg) . Then we see
that f and f’ are symplectically isotopic, by just taking identity (resp. the rotation bgr) and
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o (t) = —t. Therefore germg?, t3) and(t3, t*) are achiral. However, there does not exist a smooth
family of pairs of diffeomorphism-germes, ts) starting from(idg, idg2) with f’ o o1 = 71 0 f.

EXAMPLE 6.2 (The difference between equivalence and isotopy) Consider chitves= (t3, t°)
and f'(t) = (t3, —t°) of type Eg. Then f and f’ are equivalent but not isotopic. Therefore the
germ(t3, t9) is chiral.

LEMMA 6.3 Let m, k be positive integers and k even. Then the two curve-germs f = (t™, t™+k 4+
o(t™*)) and f’ = (M, —t™+K 4 o(t™*K)) are not isotopic.

Proof. Assumes(t) = at+---,a #0, t(p1,01) = (@p1 +bgs +---,cpy +dgs +---) and
thatt o f o 0 = f’. Then we see that, firsge™ = 1,ca™ = 0. Soc = 0,a = ™. Then
we seex™Kd = —1, sod = —a~™ K. Therefore the linear term of must have the negative
determinant-o—2™K < 0. Then it is impossible to connectand the identity by a smooth family
of diffeomorphism-germs.

Since any symplectomorphism-germ can be connected to the identity through
symplectomorphism-germs, we see thfatand f’ are symplectically isotopic if and only if
they are symplectically equivalent. Therefore the following is clear.

LEMMA 6.4 If f, f: (R, 0) — (R?, 0) are symplectically equivalent, then they are isotopic.

Now naturally we are led to the following question: Afef’ : (R, 0) — (R2, 0) symplectically
equivalent if they are isotopic? We answer in detail in the following sections.

7. Symplectic versality and stability
Let f : (R, 0) — (R?, 0) be a map-germ. Recall the codimensionfas defined by

codim(f) := dimg (V¢ /tf (V1) + wf (Vo))

whereVs := {v : (R,0) - TR? | 7 ov = f} is the space of vector field-germs alofig V1
(resp. Vo) is the space of vector field-germs ov@, 0) (resp. (R2, 0)), andtf : Vi — V; (resp.
wf : Vo — Vi) isthe homomorphism defined by (¢) := f.(&) (resp.wf(n) := no f). A plane
curve f is called.A-finite if codim(f) < oco. Then f has an4-versal unfolding with the parameter
dimension codimf). If f is analytic, the condition ofd-finiteness is equivalent to, for instance,
that the complexification of has an injective representative.

Moreover, in general, we define

sp-codin( f) := dimg (V¢ /tf (V1) + wf(VHp),

whereV Hy C Vs the space of Hamiltonian vector field-germs over the symplectic plRAg0).
Then clearly
sp-codinm( f) > codim(f).

Let f : (R, 0) — (R2, 0) be a plane curve-germ. An unfoldifig: (R x R¢, 0) — (R? x R¢, 0)
of f is calledsymplectically versal if any unfoldingG : (R x RS,0) — (R? x RS,0) of f is
symplectically equivalent tp* F for some smooth map-gerg: (RS, 0) — (R, 0). The following
result is a special case of the versality theoren®]n [
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PROPGSITION 7.1 An unfolding F : (R x R¢,0) - (R?2 x R¢,0) of f : (R,0) — (R%,0) is
symplectically versal if and only if F isinfinitesimally symplectically versal, that is,

dF aF
Vi ={( — e, — +tf (V1) + wf(VH>).
0A1 R0 oAg Rx0
Moreover two versal unfoldings F and F’ of f with the same parameter dimension are liftably

equivalent.
A map-germ f : (R,0) — (R2 0) has a symplectically versal unfolding if and only if
sp-codim(f) < oo.

REMARK 7.2 By Damon’s theory 9], we have the characterization of ‘symplectic finite
determinacy’. A map-gernf : (R,0) — (R?,0) is calledsymplectically finitely determined if
there exists a positive integérsuch that anyf’ : (R,0) — (R2,0) with j*f/(0) = jkf(0)

is symplectically equivalent td. Then f is symplectically finitely determined if and only if
sp-codim(f) < oo.

We have a close relation between symplectic versality and symplectic stabiijtyip the notion
of Lagrangian liftings.

THEOREM7.3 (Symplectic versality and stabilityet F : (R x R*,0) — (R? x R, 0) be a
symplectically versal unfolding. Then the Lagrangian lifting F : (R x R, 0) — (R? x R%, 0)
is symplectically stable, that is, any isotropic deformation of F is trivialized by symplectic
equivalences. Therefore F is symplectically equivalent to an open Whitney umbrella [14]. In
particular F has an injective representative.

Proof. To see the symplectic stability of, we apply [15, Proposition 5.1]. Then it suffices
to show thatF is right—left equivalent to an analytic map-germ, thig¢ = F*82+2[ and that
codlm(Slnch) > 2. HereRg is the space of function-gernts € €14 such that the exterior
differential dh of h is a linear combination of the exterior differentials of component§ iwith
coefficients from€y .

Since f = F|rxo is symplectically finitely determinedf (resp. F) is symplectically
equivalent to a polynomial map-germ. Moreover, we have that ’ging= SingFc =
{q1 0 F/dt = p1 o F/at = 0} is of codimension 2.

SinceF is finite map-germ of corank one, b$d, Corollary 2.4], we havRz = R is a finite
E2+¢-module viaF. Therefore it is a f|n|te€2+2@ -module viaF. On the other hand, we see that
Pj+1o0 Fisa generating function diF/BA,|RX0, settingF (t, 1) = (F(t, 1), 1). Thus, by the
symplectic versality of~, weseeRg C F*&212 + MyRr C F*82+2[ + may2¢RE. Then, by
Nakayama’s Iemma we see tHat C F*&>, . Since the converse inclusion is clear, we have the
equalityRg = F* o401

Thus we se€F is symplectically stable. Then, byl%, Proposition 5.1], we deduce th&t is
symplectically equivalent to an open Whitney umbrella.

For amappingy : (RS,0) — (R!, 0), and an unfoldingF : (R x R¢,0) — (R? x R¢,0),
F(t,2) = (f,.(t), 1), we define the pull-back unfolding*F : (R x RS,0) — (RZ x RS, 0) by
(P*F)(t, ) = (T (1), p).

PROPCSITION 7.4 Let F : (R x R¢,0) — (R? x R¢, 0) be an unfolding of f = F|gyo and E



88 G. ISHIKAWA AND S. JANECZKO

a Lagrangian lifting of F. Let ¢ : (RS,0) — (R, 0) be a map-germ. Then the lifting <p?T: :
(R x RS, 0) — (R? x RS, 0) of p*F defined by

oo

pj = (pky10F), @< j<s+1)

1500 i
isa Lagrangian lifting of ¢*F. In fact we have
‘/;I:I/Z*ORZXRZS = (ld]R X (p)* E*QRZXRZZ

for the Liouville form 2, g2s 0N R? x R? = T*(R x RS) (respectively Oz, gz 0N R? x R? =
T*[R x RY).

The above Proposition 7.4 means the Lagrangian lifting of the pull-back unfolding can be
obtained by reduction from the Lagrangian lifting of the original unfolding. In particular we have
the following.

COROLLARY 7.5 Let G : (R",0) — (N,0) = (R? x R"1 0) be a transverse map-germ to
R2 x {0}. Assume the restriction (G~ 1(R? x {0}), 0) — R? x {0} is A-finite; then G is obtained
from an open Whitney umbrella by a reduction process.

Proof. We may suppose tha® is an unfolding of anA4-finite map-gernyg : (R, 0) — (R2, 0). Let
F: (R xRK 0) > (R2xRK, 0) be a symplectically versal unfolding gf Then there exists a map-
germg : (R"1,0) - (R¥, 0) such thatG is symplectically equivalent to the pull-back unfolding
¢*F. Then the Lagrangian liftings is H-symplectically equivalent t¢*F, that is a reduction of
the open Whitney umbrell&.

8. Symplectic defect
Set, for a map-gerni = (f1, o) : (R, 0) — (R?, 0),

Gt :={he & |dhe (dfy,df2) e} = (h e & | dh e F5(Qd)),

where&; (resp. &) is theR-algebra ofC® map-germs orR, 0) (resp. (R?, 0)), SZ% is the space
of differential 1-forms onR?, 0) and the homomorphisrh* : £ — &; (resp. f* : Q% — Q%) is
defined by the pull-back by. Moreover we set

Ri :={h e & | dh e (dfy, df2)g, }
(cf. [15]). Thus we have defined intrinsically the sequence of vector spaces
E12 Rt 2Gf 2 f*&

for the right-left equivalence class 6f

For each elementh € G+, the exterior differentiatih is written as(b o f)df; — (ao f)dfs =
f*(bdgs — adpy) for some functiong, b € £. Through the symplectic structudp; A dg; on
the (g1, py)-planeR?, the 1-formbdg; — adp; on (RZ, 0) corresponds to the vector fielgl =
ad/dqy + ba/dpy over (R2,0). The vector fieldwf () along f is regarded as an infinitesimal
isotropic deformation off . In this case we say thatis a generating function abf ().
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In general, any functioh(t) is calleda generating function of a vector field
= vy(t) 9o + vp(t) 9 5t): (R,0) - TR?
V=1 39 o V2 ap o LR,

along f : (R,0) — (R? 0) if dh = vpdfy — v1dfa(= v*6), the pull-back by the isotropic map
v: (R, 0) »> TR2 = T*R? of the Louville 1-form onT R2.

Thus, G+ is the space of generating functions of infinitesimal deformationf wfduced from
diffeomorphisms on the plarig?. Then we see thaB ¢ is anR-vector subspace df; and that
G+ containsf *&,. Similarly, f*&5 is regarded as the space of generating functions of infinitesimal
deformations off induced from symplectomorphisms on the pl&fe Moreover,Rs is the space
of generating functions of all infinitesimal deformationsfof

Then the following is clear.

LEMMA 8.1 Let f : (R,0) — (R? 0) be a map-germ. For a diffeomorphism r : (R?,0) —
(R?,0), wehave R;ot = Rt and G, = G . Morover, for a diffeomorphismo : (R, 0) — (R, 0),
o*: & — & maps R 10 Rior and G to G, respectively.

The next lemma is the main lemma of this paper.
LEMMA 8.2 There exists a vector-space isomor phism

tf (V1) + wf (Vo) ~ Gt
tf (V) +wf(VHy) ~ f*&°

Proof. Taking generating functions (moti*&,) we define a linear ma@ : tf (V1) + wf (Vo) —
£1/1*&>. Note that, for eachf (§) = (a(t) f], a(t) f)) € tf (V1), we havea(t) f,df; —a(t) f{df> =

0, andtf (V1) maps to 0 mod *&,; see also15]. The image ofb coincides withG ¢ /f *£2. Wewill
show that the kernel ob is equal tat f (V1) + wf (V Hp). Using a symplectic equivalence, we may
assume or@f1) < ord(fz) ¢ Z(ord(f1)). Now suppose, for, = a(q, p)d/aq + b(qg, p)a/ap €
V>, agenerating function ofvf (n) belongs tof *£>. This meand( f1, f2)dfy — a(fq, fo)dfo =
dH(fy, f2) for someH e &. Thenb(fy, f2) f; —a(fy, f2) f) = Hq(f1, f2) f{ + Hp(fy, f2) ).
So

/!

f
b(f1, f2) = (a(f1, f2) + Hp(f1, f2)) f—z + Hq(f1, f2).
1

Since ord f/ f]) = ord(fo) — ord(f1) # ord(f1), we see thag(0, 0) + Hy(0,0) = 0. So the
quotientc(t) := (a( f1, f2) + Hp(f1, f2))/ f] belongs taf1. Then

a(fy, f2) '\ _ f —Hp
< b(fy. f2) >_c(t)< & + Hg e tf (V1) + wf(VHy).
It is clear thattf (V1) + wf(VHy) is included in the kernel ofb. Thus we have the required

isomorphism.

Note that the dimension @ ; / f *£> depends only on the right-left equivalence clas$ of hus
we have the following theorem.
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THEOREMS8.3 Let f : (R, 0) — (R?, 0) be an A-finite map-germ. Then the symplectic defect
sd( f) := sp-codim( f) — codim( f)

is equal to dim(G/f*&2), and depends only on the right—left equivalence class of f, that is, the
symplectic defect is an A-invariant. Hence sp-codin{ f) isan A-invariant.

REMARK 8.4 If f is A-finite, then, by the Mather—Gaffney theorem, we de&s L-finite [21,
p. 494]. Then we have that the vector sp&egf *£, is of finite dimension. So, iff is A-finite,
namely, if coding f) is finite, then sp-codirf ) is necessarily finite.

REMARK 8.5 The symplectic codimension is not a@ninvariant (a diffeomorphism invariant) for
map-germ®R — R*. For example, consider map-germs

Aoo: (=12 p1=130=0p,=0)
and

Aor:(=t%pr=1t°q=t3pp=0),

from Arnold’s classification3]. Then Az o and Az 1 are clearly.4A-equivalent. However we have
sp-codim{A,0) = 3, and sp-coditA 1) = 4. In fact, whenf = Ay : (R.0) — (R% 0), wecan
take'(0, t, 0,0), (0, 0,t,0), (0,0, 0,t) as a basis of the vector spade/(tf (V1) + wf(V Hy)).
For f = Az1 we need (0, t2, 0, 0) in addition.

From the definition of the symplectic defect, we have the following.

PROPCSITION 8.6 Let F : (R x RY, 0) — (R? x R, 0) bean A-versal unfolding of f : (R, 0) —
(R?, 0) with sd( f) = 0. Then F isa symplectically versal unfolding of f.

Finally we show that the symplectic codimension of.4#inite map-germ is, actually, equal to
the classicab-invariant.
Let f : (R, 0) — (R?, 0) be anA-finite map-germ. Then we sétf) := dimg &1/ *Eo.

THEOREM8.7 For an A-finite map-germ f : (R, 0) — (R?, 0),
sp-codin(f) = §(f).

Proof. We have an exact sequence of vector spaces:

Vi Vs Rt
— — — —
tf (Vo) tf (V) + wf(VH)) f*&

0 O’

where V; is the space of vector fields alonfy having zero generating functions. Note that
wf(VH2) NVi C tf(V1). Now wehave
/! ((:1

dimR —_—.

dimp —— =
Btrov) Ry

To see this, we may assunig = t and ord f2) > k, for some positive integer. TheRy = R-+mk.
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So dimg (€1/R¢) = k — 1. On the other hand, if we sett) = f,/f;], the vector spac¥; /tf (V1)

has basis
1 t tk—2
@ s t(p g ey tk_z(p .

Therefore we see that also dinv; /tf (V1) is equal tok — 1.
Thus

Vs
tf (V1) + wf(VH)

/

sp-codim( f) = dimg

Rt
f*&E
Ry
f*&o

=dimp

f .
——— +dim
tfovp MR

. & .
=dimgp el + dimg
Rt

& — 5(f).

MR Fr X

REMARK 8.8 The vector spac¥; /tf (V1) has a clear geometric meaning: The spe¢econsists
of vector fieldsv € V¢ along f such that, for any regular poibte R of f, v(t) € f.(TiR). Such
a vector field may not come from a vector field oewia f.. ThenV; /tf (V1) measures its gap.
Also it has the clear algebraic meaning as the cohomology of a complex ¢y — Vi — 0
defined by the Jacobi matrix df.

REMARK 8.9 For anA-finite map-germf : (R, 0) — (R2, 0) the Milnor numbern is equal to 2
(cf. [20]). So we have sp-codiff) = .

9. Symplectic defects and symplectically ver sal unfoldings of simple plane curves

In this section, we calculate the symplectic defects, defined in the previous section, in several cases.
First we give examples of plane-curves without symplectic defect

PROPCSITION 9.1 If a plane curve is right-left equivalent to f : (R,0) — (R2,0), f(t) =
(t™, t™K) for some positive integers m, k, then its symplectic defect is equal to zero.

Proof. Itis sufficientto see gd) = 0. Leth € G¢. Then
dh = a@™, t™*d™) + b™, t™ydmk)

for somea, b € &. Note that there is a positive integésuch thatf *£, contains functions with
order at least. Now it is easy to see thdt is a function oft™, t™k up to functions with order at
least¢. Therefore we havh € f*&,. ThusG¢/f*E2 =0and sdf) = 0.

Bruce and Gaffneyq] classified simple plane curves. Th&equivalence class of simple (0-
modal) plane curves are given in the following list:

Az it > (2,121,

Eee it > (3,31 £ 360PH2) 0 < p< e —2it > (83,1301,

Egeqn it > (13,132 £ 3P+ 0 < p < € — 2;t > (13, 13042,

Wio st (4 t5£t7):t > (14, t5);
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Wig:t> 4t £t9:t > 4 t7 £t19)t > t4t7),

Wi oy g it (1418 +129%9), g > 1.

Note that, in the above list, the gerrts, t* + t°) and(t3, t*) of type Eg (resp.(t3, t° £ t7) and
(t3, t°) of type Eg) are actually4-equivalent; see als@]pp. 57-59].

Then we have the following.

THEOREM9.2 (1)If f isequivalent to Ay, Eg, Eg or Egp : (t3, t3¢+1); Egepn @ (13, t3¢+2); Wy,
(t4, t9); Wig : (t4,t7) then sd(f) = 0.
(2) If f is equivalent to Eg, : (13,31 £ t3¢+P+2) 0 < p < € —2,¢ > 2, then

t3¢tpth+2 t6-1 form a basis of Gt/f*E and sd(f) ¢ — p— 1. The family
(t3, (£1)EH1g3e+1 Zf;i)\jt3(l+j)_l) contains all symplectic classes of type Eg. If f is
equivalent to Egp o : (t3, 32 £ t3E+P+4) thent3(+p+D+4  160+1 formabasisof G /f*E

andsd(f) = £ — p — 1. The family (t3, (£1)(t3¢+2 + ijkjta‘fﬂ)*l) contains all symplectic
classes of type Egg2.

(3) If f isequivalent to Wis : (t4,t°> £t7), then t!! formsa basisof G¢/f*& and sd(f) = 1.
The family (t4, t° 4 At”) contains all symplectic classes of type Wi».

(4)If f isequivalentto Wig : (t4,t7 £1°), thent!3 t1" formabasisof G /f*E; and sd( f) = 2.
If fisequivalentto Wyg: (t% t7 £ t13), thentl’ formsabasisof G¢/f*E and sd(f) = 1. The
family (t4,t7 + At® + ut13) contains all symplectic classes of type Wisg.

(5) If f isequivalent to W]qufl : (t4,t6 £ t29+5), then t20+9 t20+13 form a basis of G+ /f*E>
and sd(f) = 2. Thefamily (t4, £t8 4+ At2+5 4 ;4,t29+9) ) £ 0, contains all symplectic classes of
type szqil.

To examine the symplectic equivalence classes, we first note the following results.

LEMMA 93 Let f : (R,0) — (_Rz, 0) be A-finite. If ord(f) = m, then f is symplectically
equivalent to (t™M, t™+) 4 ot™+))) for some ¢ > 1and j with1 < j < m— 1. In particular,
if ord(f) = 2, then f is symplectically equivalent to (t2, t**1 4+ o(t?*+1)) for some ¢ > 1. If
ord(f) = 3, then f issymplectically equivalent to (t3, t3¢+1 4 o(t3¢+1)) or (13, 13642 4 o(t3¢+2))
for some ¢ > 1.

Iford(f) = 4and f is.A-simple, then f issymplectically equivalent to (t4, t° + o(t®)), (t4, t +
o(t%) or (t%,t7 + o(t?)).

REMARK 9.4 If f is symplectically equivalent t@t*, t¢ + o(t¢)), ¢ > 9, thenf is not.A-simple.
Moreover if ord f) > 5, thenf is not.A-simple; seej].

Proof of Theorem 9.2 We give the calculation fokV;g in detail. Other cases can be treated in a
similar way, so we omit the detail for them.

Let f : (R, 0) — (RZ, 0) be the map-germ defined Hy(t) = (q1, p1) = (t*, t7 +113) (the most
degenerate case of tyfpg). We examine the quotient spafe/f*E,. The implicit equation of
the curve is

y* = x7 + 4x5y? — 2x10 1 x13,

Then examining monomials yj ,i > 0,0 < j < 3pulled back byf, we see
£ = (L t4 18, 112,116, 14 115 ¢7 1 13 {11 | 1y, 4 mi®,
So the projections df, t2, t3,t5,t6, t9, t10, t13 t17 form a basis ofy/f *&, overR. Further, we see

Gt = (1L ttg + &
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In fact, note that a functioh e & with dh = (t7 + t'3)d(t*) belongs toG . Thush = £t +

Lt e Gr. Sncet!! +t17 € £*& C G, we see botit!! andt? belong toG ;. Morever we

easily see that any polynomial with just monomial&?, t3, t, 16, t°, t10 belonging toG  must be

zero. Therefore we seé’ forms a basis 06 ¢ /f*£,. Sodimg G /f*E> = 1, and sdf) = 1.
Similarly, for f = (t*,t7 + %), we have

f*gz = (1, t4,t8,t12,t16,t14, t7+t9,t11+t13,t15+t17)R—i—mis

and
Gt = ™ 13,115t + &

Here we remark, in this casg(t” +t%)d(t%) = £t + 5t1% € G, and alsof t4(t7 +t%)d(t*) =
1et15+ Lt € G¢. Thus we see®3, t17 form a basis oG /f*£,, and sd f) = 2.

For the casef = (t4,t7), wesee sdf) = 0 by Proposition 9.1.

Now consider the two-parameter famify ,, (t) = (t4, t7 4 At°® + ut13).

We show that, if a gernf is of typeWig, namely, if f is A-equivalent tat?, t7), (t*, t7 +t°) or
(t* t7 +113), then f is symplectically equivalent td; , = (t*, t7 4 at° 4 ut'3) for some(x, ) €
R2. First assume is of typeWigs. Then f is symplectically equivalent td’ = (t*,t” + o(t”)) by
Lemma 9.3. We write

f/t) = ¢4 t7 + at% + utB 4+ o (b)),

0 . .
whered e (t8 119 t11 t12)p + ml4 Setv = @ (1) 35 ° f’) € V. Consider the generating

functione € my of v so thatde = ®(t)d(t%. Thene e (t2,t14,t1% t16)r + ml8 Wwe remark
that (t12, t24,t15,t16)p + ml8 c f"*m3. Therefore,e = f"*H, for someH e m3. Consider
the Hamiltonian vector fielcKy with HamiltonianH. Note thatXy € VH> N myV,. Then the
generating function of the vector field— Xy o f’ along f’ is zero. Soy — Xy o f/ € Vi,.

Moreover ordv — Xy o f') > 4. By Lemma 9.5 below, we see that there exists m1V; such
thatv — Xy o f/ = tf’(£). Thus we havey € tf (m1Vy) + wf(VH2 N myVe). Then, using the
homotopy method we sekis symplectically equivalent td, .

LEMMA 9.5 Let w € V¢. If ord(w) > ord(f) — 1, then w € tf(Vq). If ord(w) > ord(f), then
w e tf(mVy).

Proof. Let w = ad/dq + bd/dp. Sincew € Vi, we e thatbdfy/dt — adf/dt = 0. Set
c(t) = a/ (dfy/dt). Then we seé(a, b) = c(t) t(dfy/dt, dfy/dt).

In Theorem 9.2, each symplectic normal form (family) may have finite redundancy. In fact,
we know, by the infinitesimal method, that the intersection of the family and an orbit under the
symplectic equivalence forms, in a jet space, a zero-dimensional algebraic set, so a finite set.

Actually, by direct and formal calculations, we have the exact description of the symplectic
moduli spaces afi-simple plane curves. Indeed the exact determination of symplectic normal form
turns out to be a surprisingly simple task, after the infinitesimal consideration stated in Theorem
9.2.

THEOREM9.6 (1)Let ¢ > 2. Then any plane curve germ of type Eg, is symplectically equivalent
to

=1
j=1
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for some A = (A1,...,A¢e—1) € Rf=1 Moreover f, and f,s are symplectically equivalent if and
onlyif A/ = (£1)¢1.
(2) Let ¢ > 2. Then any plane curve germ of type Eg2 is symplectically equivalent to

-1
=1

for some A = (A1,..., e—1) € R Moreover f, and f,, are symplectically equivalent if and

onlyif A’ = (£1)%x.
(3) Any plane curve germ of type Wy is symplectically equivalent to

f, =4 2+ ath

for some 1 € R. Moreover f, and f; are symplectically equivalent if and only if A" = 4.
(4) Any plane curve germ of type Wi g is symplectically equivalent to

frp = 4 t7 +at® + puttd)

for some (1, ) € R Moreover fi,. and fy o are symplectically equivalent if and only if

W1y =@, .
(5) Let g > 1. Then any plane curve germ of type Wf 2q-1 is symplectically equivalent to

f)\.)M — (t4, itﬁ +)\t2q+5 + Mt2q+9)

for some (&, u) € (R —{0}) x R. Moreover f, , and f,/ ,» are symplectically equivalent if and
onlyif (A, ') = (&, w).

For the proof of Therem 9.6, we need the following lemma.

LEMMA 9.7 Let Q = q+bp+h1g?+hogp+hap®+- - -, P = p+kig?+keqp+ksp?+- - - indicate
the 2-jet of a symplectomorphism-germ (R2, 0) — (R?, 0). Then we have 2h; — 2bk; + ko, = O and
hy — bk + 2k3 = 0.

Proof. Since we havelP AdQ = (14 2h1q+ hap — 2bkig + koq — bkop+ 2kzp+...)dp Ada,
the result is straightforward.

Proof of Therem 9.6. We give the proof just in the cad#ig. The remaining cases, more or less, can
be treated similarly.

Suppose(t®, t” + at® + ut®) and 4 t7 + 1't° + p't13) are symplectic equivalent by
a difeomorphism-germs : (R,0) — (R,0),0(t) = ait + apt? + agt3 + ---, and a
symplectomorphism-germ: (R2, 0) — (R2, 0), 7(p, q) = (P, Q) with Q = aq + bp + h1g2 +
hoqp 4+ hap? + ..., P = cq + ep + k1g® + koqp + kap? + . ... Namely we suppose that

at* + b(t” + At + ut'®) 4+ hot® + hot*(t” + At + ut?d + - = (@t + apt? + agt> 4+ - )*
and

ct? + et” + a2 + ut®®) + kat® + kot + At 4wt + .-
=(at+at’ +agt®+ ) + 1V (at + apt® 4 agt3 4 - )
1/ (@t + agt? + agt® + - )13,

9
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Table1l The symplectic classification of simple plane curves

Diff. normal form Defect Sym. normal form
AZK (1:27 t2£+1) 0 (tz’ t2£+l)
Ee 3,14 0 3,14

(@3 3L L 3P o< p< -2 €—p-1
EG[(E =2 (t3, (i1)2+1t3€+1 + Ef;%*jtswﬂ)_l)

Esg 3,15 0 (3, £t5

(3, 130+2 £ 3¢+P+h o< pg<e—2 —p—1

Eee2(t > 2) (3, (ED 32 4 3T 3D,
(t3’ t3€+2) 0
SASER L 1
Wy t*, 3+ at?)
t*,t2) 0
417 £ t9) 2
Wig 4,17 £13) 1 7 + a9 4 put1d)
t*,t7) 0
WY o1 (4,16 412915 g>1 2 (t4, 5 + At20+5 4 t20+9)

Then we havea = af,c = 0,e = a/. Thus we have I= ae = aj’, so we havea; = 1 and
a=1.c=0,e=1. In particular, the 2-jet of has the form as in Lemma 9.7. Then, from the
first equation, we sea> = 0, a3 = 0, b = 4ay4, hy = 4as, bA = 4ag. Moreover, from the second
equation, we havk; = 0,1 = A, a4 = 0. Then we havé, = 7a5 andu + koA = u’ + 9asA/,
besided = 0. By Lemma 9.7, we see € 2h; — 2bk; + ko = 8as + 7as = 15a5, henceas = 0,
as well ak; = 0. Therefore we have = A’ andu = u/.

We summarize the result in Table 1. We have the following corollary.
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COROLLARY 9.8 The symplectically simple (0-modal) plane curves are symplectically classified
into A, £ =1,2,3,...; Eg:t > (t3,t%); Ex it (3, £t5).

Proof. By Theorem 9.2, the germs of tyf&s, (¢ > 2), Eeer2 (£ > 2), Wip, Wig, OF szq_l are
never symplectically simple. Sincgy, is adjacent to jusfym with m < ¢, Eg is adjacent to just
Es, A4, Ao, Ag, and E8jE is adjacent to jusEgt, Ee, A4, A2, Ap. SO they have nearby just finitely
many symplectic equivalence classes.

For the symplectically versal unfoldings we have the following results.

PROPGCSITION 9.9 The symplectically versal unfolding with the minimal number of parameters for
each A-simple plane curveis given by

Ay (spcodim= ¢):
¢
<t2 {20+ 4 ijt”zj“)

=1

(M1, ..., A € (R, 0).

Eg¢ (spcodim= 3¢) :

t3 + At,
(ﬂ:l)£+lt3l+l + Z?:lujt3f—3]+l + Z?l:_ll vthZ—SJ—l ’

W1, .. ve-1) € RETY (M s oy e, ves - ooy ve—1) € (RZHL)0).

Eg¢+2 (spcodim= 3¢+ 1) :

( t3 4+ At, )
(i1)€t3ﬁ+2 4 Z?:l th3€—3j+2 4 Zfil vjt6€—3j+l ’

1, .., v-1) € RETY (0 pas oy e, ves -, v20) € (RPF2)0).

W2 (sp-codim= 6) :
t4 + Aqt2 + Aot,
t5 4+ pat” + pot® + pust? + puat )’

n1 € R, (A1, A2, 2, 13, pa) € (RS, 0).
Wig (sp-codim=9) :

t4 + Aqt2 + Aot,
7+ puat?® + pot® + pat® + puat® + pst + pet? + st )

(111, 112) € R?, (A1, A2, U3, pa, 145, 116, 117) € (R, 0).
szqfl (spcodim=q+7):

t* + At2 + pt,
:l:t6+t2q+5+’ut2q+9+2?ig vit2q+5—2j +9t2+ptZQ+2 )

(UO, IJ’) € RZ’ VO # _19 ()\'7 Vi, ..., qurZa 97 10) € (Rq+5’ 0)
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Remarkably the symplectic versal unfolding can be taken uniformly for each class of simple
plane curves; this is not the case for tHeversal unfoldings. This is natural because -
W-W*-classification is based on the constancy of the Milnor numbemd theu-constant strata
coincide with the sp-codim constant strata (cf. Theorem 8.7).

PROPGCSITION 9.10 Let F : (R",0) — (R2 x R"1) be a symplectically versal unfolding of
Ao : (12,1241 ¢ < n— 1. Then F isliftable equivalent to
(X1, X2, ..., Xn) = (t, A1, ..., An—1) >
(Q1. P1. G2, - .- On) = (02, 1270 b2 oot =8 o gt A, A ).

ExampPLE 9.11 (The opening of Whitney umbrella) Any symplectically versal unfolding\of:
(t2,13) is liftable equivalent to

(X1, X2, . Xn) = (t, A1, ..o An1) B> (O, PL G2, - .. On) = (2,13 + Aat, Ag, .o, Ansa).
The Lagrangian lifting is symplectically equivalent to

(ql’ p17 q2, L) qna p29 L) pn) = (tza t3 + )"lta )"1’ %tga 05 sy 0)'

10. I sotopy and symplectic classifications
We show that if the symplectic defect vanishes, then the classifications by isotopy and by
symplectomorphism coincide.

LEMMA 10.1 There are isomor phisms of the vector spaces

~ ~

thmVvo) +wfmV) o G Gy
tf(mVy) + wf(MmVanVH) f*m% gy

where mz (resp. my) isthe maximal ideal of &1 (resp. £2) consisting of functions H with H (0) = O,
and G = {h e my | dh e (dfy, df2) fm,}.

Proof. In the proof of Lemma 8.2, assuna&0, 0) = b(0,0) = 0. Then, froma(0, 0) = 0, we
have thatH(0, 0) = 0, and fromb(0, 0) = 0, we have that4(0, 0) = 0. So we have(0) = 0.
Therefore we have the first isomorphism.

To get the second isomorphism, first we remark that if we Have f)df; + (B o f)df, = 0,
then we haveA(0, 0) = B(0,0) = 0. (This is proved by comparing orders of terms easily.) Then
we showG/; N f*€ = f*m2. In fact, the inclusios; N f*€ 2 f*m3is clear. Leth = a(fy, fp) €
G n f*£. Thendh = (C o f)dfy + (D o f)dfz with C(0,0) = 0, D(0, 0) = 0. Besides we have

dh = %of dfy + %of df,. So we have
aq ap

G5-c)- o)t fones

Therefore we havéa(0, 0)/dq = da(0, 0)/dp = 0, namelya € m3. Soh = ao f € f*ma.

Lastly we show for anyh € G, there existy, 8, y € Rwith h — (a4 f1 4+ y f2) € G. Infact,
dh = (Ro f)dfy + (So f)dfy, forsomeR, Se &. Thend(h — h(0) — R(0, 0) f1 — S(0, 0) fo) €
(dfy, df2) femy.
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COROLLARY 10.2 The symplectic defect of a plane curve-germ measures the codimension of the
symplectic equivalence orbit in the A-equivalence orbit of the germ (in the jet space of sufficiently
high order).

REMARK 10.3 Letf : (R, 0) — (R?, 0) be amap-germ. Then, for diffeomorphisms (R?, 0) —
(R2,0) ando : (R, 0) > (R, 0), we haveG’ ; = G; ando*(G}) = G, .
THEOREM10.4 Let f : (R, 0) — (R2, 0) bean A-finite map-germwith sd( f) = 0. If a map-germ
f/: (R,0) — (R?,0) isisotopicto f, then f’issymplectically equivalent to f.

Proof. Using a right equivalence, we may assuifife= 11 o f, for a family of diffeomorphisms
15 : (R2,0) — (R2,0) starting fromzp = idg. Setfs = zso f : (R,0) — (R2, 0). Then

sd(fs) = 0. Thustfs(m1Vi) + wfs(MaVo) C tfs(mi1Vi) + wfs(m2Ve NV Hy). By the homotopy
method, we have the required result.

ExampLE 10.5 The plane curves of tyfdeg are classified up to isotopy imﬁg St (13,19)
andEg : t — (t3, —t2), because they are chiral. Then, since the symplectic defect vanishes in this
case, this gives also the symplectic classification.

11. Lagrangian liftings of the swallowtails
Let M be the space of polynomials of degrde21 of the form (cf. R, 11,13, 18])

x2k+1 x2k—1 xK xk—1

C o O — P

2k _
“laxry T Caxk—g T Gl Pa— D

+o (=D*p

endowed with the symplectic Darboux for@j!‘zldpi A dg; (reduction of the stinvariant
symplectic form on the space of binary forms of degree-23).

The canonical projection inth is given by the derivative
dkfl

k=1 _
D - dxk*l’

which projectsM 2 into the space of polynomials

xk+2 xK

N = m‘i‘%@‘i‘“"i‘qw—pk ~

The standard (generalized) swallowtailNhis defined as the spaéa c N of polynomials having
at least one root of multiplicity at least 2.

The derivatived/dx of the polynomial decreases the multiplicities of its roots, however, the
difference of the degree of polynomial and the multiplicity of the root, called the comultiplicity, is
not affected by the derivative. So the polynomialSifhave roots of comultiplicity at most

The canonical Lagrangian variety, which is a Lagrangian liftin@gfis defined by V. I. Arnold
as the spac&y of polynomials inM% having a root of multiplicity at least + 1. This lifting is
most regular (stabilization in the sense of Arnold) because the multiplicity is atdeagtand the
degree of the polynomial isk2+ 1 and finally the polynomials oEy have only one unique root of
this multiplicity. So the intersection points &l are avoided.
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A parametrization ok is given in the form

F:(R¥ 0)— (N,0),

X § X
(k+ 1! (k=i

k+1 k—1 k—i

F(S)Z Sl"ﬂ?S(fla_
i=1
k+2 k—1

k—i+1
& _ S
(kK + 2)k! _;S‘" K—i+1k—i— 1)!) '

Its Lagrangian liftingSy, F : (R¥, 0) > (M2, w) is generated by the following generating family
(cf. [16, p. 106]):

. 2
L K2 g e xE
P(d, A) = 5/0 (mx + ;Ch PR dx.

Thus the associated symplectic bifurcating family of curves (swallowtail bifurcation family) in
(R2, dpk A dgy) is defined by

k-1
k+2 S 1 ki

= - ——F—Qi X s
=" F 2=y
C lae & 1 ki
=% ;(k—i+1)(k—i—l)!q'x :
wherex is the curve parameter arig, . . ., gk—1) are the bifurcation parameters of the family. We

see that this is an unfolding of the curve

(k2 ki1 Lok
Ok, Px) = ( T 1)!X T .
In a more general setting, this result may be formulated in the following way.

PROPCSITION11.1 Let G : (R x NKt1 0) — R be a function family germ with Ax;1-type
singularity. Let Xk be the discriminant set of G,

Tk = {u e N¥1 | G(x,u) = 0, G (x, u) = 0, for somex € (R, 0)}.
Then there exist a symplectic space (R%, ») and an isotropic fibration
7 (R*, ), 0) > (N, 0); (p.g) — (01, ... k. P

and a Lagrangian lifting & of . Moreover & is uniquely defined by the conditions

- k=i
P Y A ) g =
Y={0eR¥|D G(X,U)"';( D pI“'(k_i—l)!

where DG (x, u) = G(x,u) and G = (u, py, ..., Pk—1)-
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12. Frontal-symplectic ver sality and open swallowtails

In the cas&k = 2, we interpret Givental’s construction from the versality viewpoint of ‘frontal-
symplectic’ category, based on the fact that the swallowtail surface provides the versal unfolding of
plane curve of typ&s : t — (t3, t%), among wave-front curves.
Here we give a direct method to construct a versal unfolding in the frontal-symplectic category.
Let f : (R,0) — (R? 0) be a non-flat map-germ. After using a symplectomorphisrigf
we assume orfi < ordf,. Let (f,¢) : (R,0) — (R3,0) be the Legendrian liftings of for
the contact forme = dy — pdx. In facty = (dfy/dt)/(df1/dt), and thendf, — pdf; = O.
Note that or¢p = ordf, — ordfy. Letw = (f,¢; &, 1, ¥) : (R, 0) — TRS be an infinitesimal
deformation of( f, ¢) among Legendrian (integral) mappings. Thbn— vdf; — ¢d& = 0, that is,
d(n—¢&) = —&dp+ydfi. Setk = n—¢&. Thenk—Kk(0) has order at least mjardf,, ordp}. For
the induced infinitesimal deformatian= (f; &, 7) : (R, 0) — TR? of f, take a functiorh with
dh = ndf1—&df,, agenerating function of v. Thendh = ndfi—&edf; = (n—£&¢)df; = kdfy. So
h —h(0) is a sum of a monomial of order ofdand a function of order at least mizordf,, ordfs}.
Setm = ordfq, k = min{2ordfy, ordf,} and set

S=R+Rt™+mk.
ThenSis a vector subspace 6i containingf *&,.

LEMMA 12.1 Let F : (R1xR?, 0) — (R®xR¢, 0), F(t, 1) = (F(t, 1), ») beafrontal unfolding of
oF oF
M lgeo T Bk
generate S/ f *&, via generating functions over R, and also generate vector fields

anon-flat map-germ f : (R, 0) — (R?, 0). Assumeord( f1) < ord( f2). If

Rx0
ti%of—}—(pti%of
1 1

(2ord( f1) —ord(fp) <i < ord(f1) — 2) over R, then F isa frontal-symplectically versal unfolding
of f. Frontal-symplectically versal unfoldings are unique up to liftable equivalence.

EXAMPLE 12.2 (The open swallowtail) Let : (R, 0) — (R?, 0), f(t) = (t3,t*) be a map-germ
of type Eg. Then the one-parameter unfoldifig: (R2,0) — (R3,0), F(t,A) = (qi, p1, O2) =
(t3 + 31t, t% + 24t2, 1) of f is a frontal-symplectic versal unfolding df. The image ofF is the
swallowtail surface and has the double point locus. The Lagrangian lifting

F(t,2) = (Qu. P1. G2, P2) = (13 + 3k, t4 4+ 2082, 2, 85 4 2at3)
of F coincides with the open swallowtail surface, which has no self-intersections.

EXAMPLE 12.3 (The open folded umbrella) Let : (R,0) — (R2,0), f(t) = (t2 t% be a
map-germ of typeAs. Then the one-parameter unfoldifg : (R%,0) — (R3,0), F(t,1) =
(q1, p1, O2) = (t2,t° 4+ at3 1) of f is a frontal-symplectic versal unfolding df. The image
of F is the folded umbrella and has the double point locus. The Lagrangian lifting

F(t,A) = (1, p1, 92, P2) = (1%, t° + at3, 2, 2t5)

of F has no selfintersections and may be called ‘the open folded umbrella’.
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