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Abstract. In this paper we take new steps in the theory of symplectic and isotropic bifurca-

tions, by solving the classification problem under a natural equivalence in several typical cases.

Moreover we define the notion of coisotropic varieties and formulate also the coisotropic bifur-

cation problem. We consider several symplectic invariants of isotropic and coisotropic varieties,

providing illustrative examples in the simplest non-trivial cases.

1. Introduction. Let H : M2n → R
n−k, 0 ≤ k ≤ n − 1, be a coisotropic fibration

of the symplectic space (M2n, ω), n ≥ 2. We define H as a momentum map, H =

(H1, . . . , Hn−k) : M2n → R
n−k with {Hi} in involution, i.e. {Hi, Hj} ≡ 0 for all 1 ≤

i, j ≤ n− k, where {Hi, Hj} is defined by the equality {Hi, Hj}ω
n = dHi ∧ dHj ∧ ω

n−1.

If q̄ ∈ R
n−k is a regular value of H then H−1(q̄) is a coisotropic submanifold of

(M2n, ω). By the Jacobi-Liouville theorem, locally there exist relative Darboux coordi-

nates p1, . . . , pn, q1, . . . , qn on M2n such that ω =
∑n

i=1 dpi ∧ dqi and H(p, q) = (q̄) =

(qk+1, . . . , qn). To each coisotropic submanifold H−1(q̄), or equivalently to each q̄ ∈ R
n−k
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we assign the symplectic space, i.e. the reduced symplectic space Mq̄ given by the canon-

ical reduction (Marsden-Weinstein reduction [19]) πq̄;

q̄ 7→ πq̄ : H−1(q̄)→ H−1(q̄)/∼q̄ ≡Mq̄

along each fiber H−1(q̄) endowed with the symplectic structure µq̄ uniquely defined by

the reduction formula

π∗
q̄µq̄ = ω|H−1(q̄).

In Darboux coordinates we assume

πq̄(p1, . . . , pk, q1, . . . , qk, pk+1, . . . , pn) = (p1, . . . , pk, q1, . . . , qk)

and identify (Mq̄, µq̄) with T ∗
R
k endowed with its canonical Liouville form.

Collecting all the reduction projections we get the total projection

π : M2n → T ∗
R
k ×R

n−k =: Nn+k,

π(p, q) = (p1, . . . , pk, q1, . . . , qk, qk+1, . . . , qn)

such that the following diagram commutes:

(M2n, ω)

π

wwooooooooooo

H

��

T ∗
R
k ×R

n−k

Π
''PPPPPPPPPPP

R
n−k

Definition 1.1. Any map germ F : (Rm, 0) → T ∗
R
k ×R

n−k, n − k ≤ m < n + k, is

called a bifurcation in symplectic space T ∗
R
k (or briefly a symplectic bifurcation).

The bifurcation parameters now are regular values (q̄) of the momentum map H.

A bifurcating family of varieties in T ∗
R
k is defined from the above diagram as

R
n−k ∋ q̄ 7→ F (Rm) ∩Π−1(q̄) ⊂ T ∗

R
k × {q̄}.

Let F : (Rm, 0)→ T ∗
R
k ×R

n−k be a symplectic bifurcation. We call it an isotropic

bifurcation if and only if F lifts to a smooth map-germ F̃ : (Rm, 0)→ (M2n, ω) which is

isotropic, i.e. F̃ ∗ω = 0 and the following diagram commutes:

(M2n, ω)

π

��

H

&&MMMMMMMMMMM

(Rm, 0)

F̃

77ppppppppppp
F // T ∗

R
k ×R

n−k Π //
R
n−k

So F = π ◦ F̃ , and F̃ is called an isotropic (coisotropic) lifting of F.

By L = F̃ (Rm) we denote the parametric isotropic variety (Lagrangian if m = n).

Then π(L) is a family of (m−n+k)-dimensional isotropic varieties in T ∗
R
k parametrized

by R
n−k. If m = n then this is a family of Lagrangian varieties in T ∗

R
k. Now we have

the bifurcating family

R
n−k ∋ q̄ 7→ π(H−1(q̄) ∩ L) ⊂ T ∗

R
k × {q̄}.
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In §2, we give a natural equivalence relation, liftable equivalence, for symplectic bi-

furcations. In §3, we study the case m = n − k, of symplectic bifurcations of finite sets.

In particular, the generic classification is provided for the two-parameter isotropic bifur-

cations of corank one (n− k = 2).

The case m = n− k + 1, of bifurcation of curves in symplectic space, was treated in

[8]. In particular, in the case m = n − k + 1, k = 1, of symplectic bifurcations of planar

curves, the classification problem has been solved in a satisfactory manner [8], [10].

A few results are known on symplectic bifurcations of surfaces (m = n − k + 2). In

§4 we provide a result on one-parameter symplectic bifurcations of Lagrange varieties in

T ∗
R

2 (n = 3, k = 2,m = 3).

In §5, we introduce the notion of coisotropic varieties and coisotropic bifurcations. Let

F : (Rm, 0)→ T ∗
R
k×R

n−k be a symplectic bifurcation. Suppose that m ≥ n. We call F

a coisotropic bifurcation if F lifts to a smooth map-germ F̃ : (Rm, 0)→ (M2n, ω) which

is “coisotropic”. Here, in general, we call a map-germ f : (Rm, 0) → T ∗
R
k coisotropic if

f lifts to an isotropic map-germ f̃ : (Rm, 0)→ T ∗
R
m = T ∗

R
k × T ∗

R
m−k characterized

via the symplectic projection T ∗
R
k × T ∗

R
m−k → T ∗

R
k. We give a typical example of

coisotropic map-germs and coisotropic bifurcations.

§6 is devoted to invariants for coisotropic varieties, analogous to those for isotropic

varieties.

In the last section (§7) we observe that coisotropic varieties are obtained from isotropic

(or Lagrangian) bifurcations as loci (unions) of Lagrangian varieties depending on the

bifurcation parameter and coisotropic varieties are characterised by this property under

a certain condition.

2. Liftable equivalence. Let F1, F2 : (Rm, 0) → (T ∗
R
n ×R

n−k, 0) =: (N, 0) be two

bifurcation germs. We say that F1, F2 are liftably equivalent (see [8]) if there are diffeomor-

phism-germs ψ, φ and a symplectomorphism-germ Φ such that the following diagram

commutes:

(Rm, 0)
F1 //

ψ

��

(N, 0)

φ

��

((M2n, 0), ω)
πoo

Φ

��
(Rm, 0)

F2 // (N, 0) ((M2n, 0), ω)
πoo

The diffeomorphism-germ φ in such a diagram is called symplectically liftable. Thus we

consider the classification of bifurcation-germ singularities according to the group Gsymp
of symplectically liftable diffeomorphisms of (N, 0) which is a subgroup of the group G of

diffeomorphism-germs. The group Gsymp was explicitly described in [8].

Proposition 2.1 ([8]). A diffeomorphism-germ φ : (N, 0) → (N, 0) is symplectically

liftable if and only if φ is a family of symplectic diffeomorphisms of T ∗
R
k parametrized by

q̄ = (qk+1, . . . , qn). Moreover φ has a symplectic lifting Φ : ((M2n, 0), ω)→ ((M2n, 0), ω)

preserving fibers of H, i.e. there exists a diffeomorphism-germ σ : (Rn−k, 0)→ (Rn−k, 0)

such that the following diagram commutes:
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(N, 0)

φ

��

((M2n, 0), ω)

Φ

��

πoo H // (Rn−k, 0)

σ

��
(N, 0) ((M2n, 0), ω)

πoo H // (Rn−k, 0)

Any vector field X over N generating a liftable equivalence is given by

X(q1, p1, . . . , qk, pk; q̄) = Xhq̄
(q1, p1, . . . , qk, pk) +

n−k∑

i=1

ai(q̄)
∂

∂qk+i

for some functions ai(q̄), i=1, . . . , n−k, and the Hamiltonian function hq̄(q1, p1, . . . , qk, pk)

= h(q1, p1, . . . , qk, pk; q̄) of the Hamiltonian vector-field Xhq̄
over T ∗

R
k for each q̄ ∈

R
n−k. We easily see that the lifted Hamiltonian vector-field X̃ over (M2n, ω) generating

the lifted symplectic equivalence is defined by the Hamiltonian

h̃(p, q) = h(q1, p1, . . . , qk, pk; q̄) +
n−k∑

i=1

pk+iai(q̄).

Let F̃1, F̃2 : (Rm, 0)→ (M2n, 0) be two map-germs into a symplectic space (M2n, ω).

Definition 2.1. F̃1, F̃2 are called H-symplectically equivalent if there exist a symplecto-

morphism Φ : ((M2n, 0), ω)→ ((M2n, 0), ω) and diffeomorphisms ψ : (Rm, 0)→ (Rm, 0),

σ : (Rn−k, 0)→ (Rn−k, 0) such that the following diagram commutes:

(Rm, 0)
F̃1 //

ψ

��

((M2n, 0), ω)

Φ

��

H // (Rn−k, 0)

σ

��
(Rm, 0)

F̃2 // ((M2n, 0), ω)
H // (Rn−k, 0)

Now we have immediately

Corollary 2.1. If F1, F2 : (Rm, 0) → (T ∗
R
n × R

n−k, 0) are liftably equivalent and

have isotropic liftings, then their isotropic liftings F̃1, F̃2 : (Rm, 0) → (M2n, 0) are H-

symplectically equivalent.

3. Bifurcations of finite sets of points. If m = n − k then any map-germ F :

(Rn−k, 0) → T ∗
R
k × R

n−k will be called a finite point set symplectic bifurcation in

(T ∗
R
k, ωk) provided f = Π ◦ F is a finite-to-one map-germ. In this case the symplectic

bifurcations are classified by singularities of map-germs f : (Rn−k, 0) → (Rn−k, 0). In

local coordinates

f(x1, . . . , xn−k) = (qk+1(x), . . . , qn(x))

and we have a bifurcating family of collections of points

q̄ 7→ {F ({f−1(q̄)})}

all staying in the image of F projected into T ∗
R
k. It will be an isotropic bifurcation if

F lifts to an isotropic map-germ F̃ : (Rn−k, 0)→ (R2n, ω), F̃ ∗ω = 0.
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If n − k = 1 then all one-parameter symplectic bifurcations of finite sets of points

in T ∗
R
k are obviously isotropic and classified by critical values of a smooth function

f(x) = qk+1(x).

Singularities of F are classified by the symplectic singularities of divergent mapping

diagrams

T ∗
R
k ρ
←− R

n−k f
−→ R

n−k,

where F = (ρ, f). They are initially classified by singularities of mappings f. It is natural

to ask if generic singularities of map-germs F can be lifted to isotropic map-germs F̃ .

For the case n− k = 2 we have

Proposition 3.1. All smooth map-germs F : (R2, 0) → (T ∗
R
k ×R

2, 0) such that f :

(R2, 0)→ (R2, 0) is a singularity of corank one are regular isotropic bifurcations, i.e. F

is liftable to an immersive isotropic map-germ F̃ : (R2, 0)→ (R2(k+2), ω), F̃ ∗ω = 0.

Proof. In Darboux coordinates we have

F (x) = (ρ(x), f(x)) = (p̄(x), q̄(x); qk+1(x), qk+2(x)),

where q̄ = (q1, . . . , qk), p̄ = (p1, . . . , pk),

ω = ωk + dpk+1 ∧ dqk+1 + dpk+2 ∧ dqk+2, ωk =

k∑

i=1

dpi ∧ dqi.

An isotropic lifting F̃ is given by a solution of the equation F̃ ∗ω = 0 such that π ◦ F̃ = F.

We write

ρ∗ωk + f̃∗(dpk+1 ∧ dqk+1 + dpk+2 ∧ dqk+2) = 0, (1)

where f̃(x) = (pk+1(x), pk+2(x), f(x)) and pk+1(x), pk+2(x) are smooth function-germs

on (R2, 0).

Since f is a map-germ of corank one, by right equivalence we reduce it to the form

f(x) = (x1, qk+2(x)) and from equation (1) we have

∂pk+1

∂x2
(x) = g(x)−

(
∂qk+2

∂x1
(x)

∂pk+2

∂x2
(x)−

∂qk+2

∂x2
(x)

∂pk+2

∂x1
(x)

)
.

Taking pk+2(x) such that ∂pk+2

∂x2
(0) 6= 0 we may represent pk+1(x) as the integral

pk+1(x) =

∫ (
g(x)−

(
∂qk+2

∂x1
(x)

∂pk+2

∂x2
(x)−

∂qk+2

∂x2
(x)

∂pk+2

∂x1
(x)

))
dx2.

Proposition 3.2. Normal forms of corank one generic isotropic bifurcations F = (ρ, f) :

(R2, 0)→ (T ∗
R×R

2, 0) of fold and cusp type are liftable equivalent to

1. (fold) f(x) = (x1, x
2
2):

ρ(x) = (x1φ(x1, x2), x1 + x2);

2. (cusp) f(x) = (x1, x2x1 + x3
2):

ρ(x) = (x1φ1(x1, x2), x2 + φ2(x1, x1x2 + x3
2).

Proof. We prove the representative case of “fold”. By right-left equivalence of f we write

ρ(x1, x2)→ (P1(x1, x2), Q1(x1, x2)), f(x1, x2) = (x1, x
2
2).



116 G. ISHIKAWA AND S. JANECZKO

The group of lowerable diffeomorphism-germs acting on the source space of f consists of

diffeomorphisms of the form

(x1, x2)→ (α(x1, x
2
2), x2β(x1, x

2
2)).

Let us write Q1 in the form

Q1(x1, x2) = u(x1, x
2
2) + x2w(x1, x

2
2)

with a generic assumption
∂u

∂x1
(0) 6= 0, w(0) 6= 0.

Then by the lowerable diffeomorphism

(x1, x2)→ (X1(x1, x2), X2(x1, x2)) = (u(x1, x
2
2), x2w(x1, x

2
2))

we get the normal form

Q1(x1, x2) = x1 + x2.

Using the symplectomorphism of T ∗
R

1 preserving this normal form we reduce P1 to

P1(x1, x2) = x1φ(x1, x2) for some smooth function φ. The proof of the “cusp” case is

analogous, using the lowerable vector fields on the source space of the map-germ with

cusp singularity.

4. Symplectic bifurcations of Lagrangian surfaces. Let f : (Rm, 0)→ T ∗
R
n be an

isotropic map-germ (f∗ω = 0). Recall that, if m = 1, then any map-germ f is isotropic.

We consider isotropic surfaces and their symplectic bifurcations. First we recall the basic

terminology:

Definition 4.1. Two map-germs f, f ′ : (Rm, 0)→ (R2n, ω) are called symplectomorphic

(resp. diffeomorphic) if f ′ is transformed to f by a symplectomorphism (resp. diffeomor-

phism) on R
2n up to re-parametrization on R

m.

Note that the term “diffeomorphic” is a replacement of “right-left equivalent”. Then

we have:

Proposition 4.1 ([6]). Let f : (R2, 0) → T ∗
R

2 be isotropic. Suppose that f is diffeo-

morphic to fou(t, u) = (ut, t2, 2
3 t

3, u) = (p1, q1, p2, q2). Then f is symplectomorphic to fou
(Darboux-type theorem). Moreover, for any n there exists a class of open umbrellas char-

acterised by the symplectic structural stability, and for them, the Darboux type theorem

holds.

For submanifolds of a symplectic space, the symplectic classification is reduced to

the diffeomorphic classification of restrictions of the symplectic form to submanifolds

(Darboux-Givental theorem [3]). We refer to a generalisation of the Darboux-Givental

theorem to the singular case.

Proposition 4.2 (Domitrz, Janeczko, Zhitomirskii, [4]). For any N,N ′ ⊂ R
2n quasi-

homogeneous, for any symplectic forms ω, ω′ on R
2n, (N,ω) and (N ′, ω′) are symplecto-

morphic if and only if the algebraic restrictions [ω]N and [ω′]N ′ are diffeomorphic.

Thus we have:
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Corollary 4.1. Algebraic restrictions of symplectic forms to an open umbrella are dif-

feomorphic to each other.

There is the notion of symplectic codimension sp-codim(f) for an isotropic map-germ

f . The number sp-codim(f) is characterised as the minimal number of parameters of a

symplectically versal unfolding of f ([9]).

Proposition 4.3 ([9]). sp-codim(f) is a diffeomorphism invariant for isotropic normal-

isations f : (Rn, 0) → T ∗
R
n. If isotropic map-germs f and f ′ are diffeomorphic, then

sp-codim(f) = sp-codim(f ′).

In the complex analytic case, if codimΣ(f) ≥ 2, then

sp-codim(f) = dimCRf/f
∗O2n,

where
Rf := {h ∈ On | dh ∈ On · df}.

In the case n = 1, we have

sp-codim(f) = dimCO1/f
∗O2.

Moreover the difference of differential/symplectic classification is given by

gh(f) := dimC Gf/f
∗O2n,

the symplectic defect or ghost number, where

Gf := {h ∈ On | dh ∈ f
∗Ω1

2n} = {h ∈ On | dh ∈ f
∗O2n · df}.

Note that

Rf ⊇ Gf ⊇ f
∗O2n, f∗ : On ← O2n.

Example 4.1. Recall the open umbrella fou = (ut, t2, 2
3 t

3, u) : (R2, 0) → (R4, 0).

Then we have dh(t, u) ∈ 〈d(ut), d(t2), d( 2
3 t

3), du〉O2
= 〈tdt, udt, du〉O2

. This condition

is equivalent to h = a(t2, t3, ut, u) for some smooth function a. Therefore we have

Rf = Gf = f∗O4, thus sp-codim(f) = 0 in this case.

As examples of unstable isotropic mappings, we refer to:

Example 4.2. The multiple open umbrella f±mou : (R2, 0)→ T ∗
R

2, where

f±mou(t, u) =

(
t3 ± u2t, t2,±

4

3
ut3, u

)
,

is an isotropic map-germ of corank ≤ 1 with sp-codim(f) = 1. f+
mou is not symplectomor-

phic to f−mou. In fact f+
mou and f−mou are not diffeomorphic.

For the multiple open umbrella, Rf ) Gf = f∗O2n: There is no ghost in this case.

Now we define the symplectic bifurcation F : (R3, 0)→ T ∗
R

2 ×R by

F (t, u, v) =

(
t2, u, t3 ± (u2 + v)t,±

4

3
ut3; v

)
.

The symplectic bifurcation F lifts to F̃ : (R3, 0)→ T ∗
R

3,

F̃ (t, u, v) =

(
t3 ± (u2 + v)t, t2,±

4

3
ut3, u;±

2

3
t3, v

)
= (p1, q1, p2, q2; p3, q3),

which is isotropic. Therefore F is an isotropic bifurcation.
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Example 4.3. Let fλ(u, t) := (t5 + ut3 + λu2t, t2, 2
5 t

5 + 4
3λut

3, u) = (p1, q1, p2, q2), λ 6=

0, 21
100 . Then the family fλ of isotropic map-germs is trivialised by diffeomorphisms, but

λ gives the “symplectic moduli”. We have sp-codim(fλ) = 2, and Rfλ
) Gfλ

) fλ
∗O2n.

5. Coisotropic varieties and bifurcations. Let (R2n, ω) and (R2k, µ) be two sym-

plectic spaces (with Darboux forms ω and µ). Actually ω =
∑n
i=1 dpi ∧ dqi for the coor-

dinates (p1, . . . , pn, q1, . . . , qn) of R
2n. Similarly µ =

∑n+k
i=k+1 dpi∧dqi for the coordinates

(pn+1, . . . , pk+n, qn+1, . . . , qk+n) of R
2k. Suppose 0 < k < n.

Definition 5.1. A smooth map-germ f : (Rn+k, 0) → (R2n, ω) is called coisotropic if

there exists a smooth map germ g : (Rn+k, 0)→ (R2k, µ) such that f∗ω = g∗µ. Moreover,

if we can choose g to be of maximal rank, then we call f a coisotropic map-germ with

regular reduction.

We can interpret the condition f∗ω = g∗µ as the condition that the map-germ f̃ =

(f, g) : (Rn+k, 0)→ (R2n ×R
2k, ω ⊖ µ) is isotropic, i.e.

(∗) f̃∗(ω ⊖ µ) = 0,

where ω ⊖ µ = π∗
1ω − π

∗
2µ, for the projections π1 : R

2(n+k) = R
2n × R

2k → R
2n and

π2 : R
2(n+k) = R

2n × R
2k → R

2k. Thus a coisotropic map-germ f is the image of a

parametric Lagrangian variety f̃ under the symplectic projection π1. Then we call f̃ a

Lagrangian lifting of the coisotropic map-germ f .

Then naturally we introduce the following notion:

Definition 5.2. Let F : (Rm, 0)→ T ∗
R
k ×R

n−k be a symplectic bifurcation. We call

F a coisotropic bifurcation if there exists a coisotropic map-germ F̃ : (Rm, 0)→ T ∗
R
n =

T ∗
R
k × T ∗

R
n−k such that π ◦ F̃ = F . Here π : T ∗

R
k × T ∗

R
n−k → T ∗

R
k ×R

n−k is the

product of the identity of T ∗
R
k and the canonical bundle projection T ∗

R
n−k → R

n−k.

Conversely suppose f : (Rm, 0) → T ∗
R
n = T ∗

R
k × T ∗

R
n−k is a coisotropic map-

germ. Then π ◦ f is a coisotropic bifurcation. Note that we can choose any Lagrangian

projection π : T ∗
R
n−k = R

2(n−k) → R
n−k to produce a coisotropic projection H :

T ∗
R
n → R

n−k, provided π ◦ f is a submersion. The liftable equivalence of bifurcations

is finer than the symplectic equivalence.

Now we study the coisotropic varieties, in particular, those with regular reduction.

Lemma 5.1. Let g and g′ : (Rn+k, 0)→ R
2k be submersion-germs satisfying g∗µ = g′∗µ.

Then there exists a unique symplectomorphism ϕ : (R2k, g(0)) → (R2k, g′(0)) such that

g′ = ϕ ◦ g.

Proof. The fibers of g are characterized as the characteristic foliation defined by the

distribution

D := {v ∈ TR
n+k | iv(g

∗µ) = 0}.

Thus there exists a unique diffeomorphism ϕ : (R2k, g(0)) → (R2k, g′(0)) satisfying

g′ = ϕ ◦ g. Since g∗(ϕ∗µ) = g′∗µ = g∗µ, we see ϕ∗µ = µ.

In particular the Lagrangian lifting f̃ : (Rn+k, 0) → R
2(n+k) of a coisotropic map-

germ f : (Rn+k, 0)→ R
2n with regular reduction is uniquely determined up to symplec-
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tomorphisms preserving the symplectic projection π1 : R2(n+k) → R
2n. Thus we are able

to define the notion of symplectic codimension of f by means of its Lagrangian lifting f̃ .

Recall that a Lagrangian submanifold in R
2n ×R

2n = R
4n (k = n) can be regarded

as (the graph of) a symplectic relation via both symplectic projections π1 : R2n×R
2n →

R
2n and π2 : R2n ×R

2n → R
2n ([19]). Moreover a Lagrangian variety with singularities

in R
2n ×R

2n has an important role as a singular symplectic relation ([12]).

Also in our case, 0 < k < n, we can consider both projections π1 : R2n ×R
2k → R

2n

and π2 : R
2n × R

2k → R
2k. For a Lagrangian variety F : (Rn+k, 0) → R

2n × R
2k,

f = π1 ◦ F is, by definition, a coisotropic map-germ, while g = π2 ◦ F .

Let (Rn+k, 0) →֒ (R2n, ω) be a coisotropic submanifold-germ. This means that its

tangent spaces are coisotropic subspaces of the whole tangent spaces. Thus there exists

a unique submersion g : (Rn+k, 0)→ (R2k, µ) onto the symplectic space up to symplec-

tomorphisms such that

ω|Rn+k = π∗µ.

This procedure appears as the essential part of a regular symplectic reduction (Marsden-

Weinstein reduction). Thus we have generalized it to non-immersive map-germs f .

A coisotropic map-germ f : Rn+k → R
2n is a coisotropic immersion (in the ordinary

sense) in a neighborhood of a point where f is an immersion and g is a submersion. In

fact, at least outside the singular locus of f and g, the map-germ g : Rn+k → R
2k defines

the symplectic reduction of f on the image f(Rn+k) ⊂ R
2n, and fibers of g are pullbacks

of characteristic leaves of f(Rn+k).

The condition that g is a submersion means that the reduction of f has no singularities

while f itself may have singularities.

For the generalities on singular symplectic reduction, see [17].

We consider the classification of coisotropic map-germs f : R
n+k → R

2n. If f is a

coisotropic immersion, then the symplectomorphism class is uniquely determined. Thus

we suppose f is not an immersion. Then, together with non-immersive points, f may

have self-intersections. Therefore the classification problem of coisotropic map-germs un-

der symplectomorphisms is related, for instance, to the classification problem of pairs of

submanifolds in a symplectic space (cf. [14], [15], [2]). In this paper, we give a typical

example of coisotropic map-germs, in the case n = 2, k = 1. As the classification problem

of glancing hypersurfaces induces interesting results, the classification problem of generic

map-germs, say, Whitney umbrellas R
3 → R

4 by symplectomorphisms induces mean-

ingful results, which we are going to show. Note that, in [18], Voronin considered the

symplectic classification of the product of a swallowtail and a line in R
4. However the

symplectic classification of Whitney umbrellas in R
4 has never been considered so far.

Consider a parametric hypersurface f : (R3, 0)→ R
4 defined by

f(u, v, w) = (p1, q1, p2, q2) = (uv, u2, w, v).

Then f is coisotropic with g : (R3, 0)→ R
2,

g(u, v, w) = (p3, q3) =

(
w −

2

3
u3, v

)
.

Since g is a submersion, f is coisotropic with regular reduction. The germ f is the so-called
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a Whitney umbrella in 4-space and it has singular locus {u = v = 0}. Moreover f has

self-intersection locus {v = 0} ⊂ R
3 which is mapped as (u, 0, w) 7→ (u2, 0, w) by f .

It is well known that Whitney umbrella is a generic and stable singularity among

smooth mappings R
3 → R

4: Any smooth mapping R
3 → R

4 can be approximated

by a smooth mapping with only Whitney umbrellas as singularities and any small per-

turbations of a Whitney umbrella are equivalent to the original Whitney umbrella via

local diffeomorphisms of R
4 and R

3. Nevertheless the above germ f is not generic and

not stable via symplectic equivalence: In fact, the characteristic foliation is defined by

{v = const, w− 2
3u

3 = const}, and so the self-intersection locus is a union of characteristic

curves. Such situation is clearly non-generic symplectically.

We remark that the symplectomorphism class of the Lagrange lifting

f̃ = (f, g) =

(
uv, u2, w, v;w −

2

3
u3, v

)
: (R3, 0)→ R

6

is the 3-dimensional open Whitney umbrella of type 1.

Recall that the generic singularities of parametric Lagrange varieties (Rm, 0) →

(R2m, 0) of corank ≤ 1 are given by the m-dimensional open Whitney umbrella fm,r
of type r (0 ≤ 2r ≤ m), defined as follows: Define the Whitney umbrella (Rm, 0) →

(Rm+1, 0),

q1 =ur+1 + v1u
r−1 + · · ·+ vr−1u,

p1 = vru
r + vr+1u

r−1 + · · ·+ v2r−1u,

q2 = v1, . . . , qm = vm−1,

parametrized by (u, v1, . . . , vm−1) ∈ R
m. Then other components of fm,r are defined by

pj =

∫ (
∂p1

∂vj−1

∂q1
∂u
−
∂p1

∂u

∂q1
∂vj−1

)
du

(j = 2, . . . ,m).

Now consider another example of coisotropic map-germ f : (R3, 0)→ R
4 defined by

f(u, v, w) = (p1, q1, p2, q2) = (uv + u3, u2, w, v).

(the u3-term added), with the same reduction

g(u, v, w) = (p3, q3) =

(
w −

2

3
u3, v

)

as above. Then the self-intersection locus is in general position with the characteristic

foliation (fibers of g). Actually characteristic curves are transverse to the self-intersection

locus outside of singular locus, while, along the singular locus, characteristic curves are

simply tangent to the self-intersection locus. Below we show that the latter f is of sym-

plectic codimension zero, and is symplectically stable, while the former’s symplectic codi-

mension is infinite.

6. Symplectic codimension of coisotropic varieties. In this section we define the

notion of symplectic codimension of coisotropic map-germs with regular reductions.

We define the symplectic codimension of f : (Rn+k, 0)→ (R2n, 0) by

sp-cod(f) = dimR

V Cf
tf(Vn+k) + wf(V H2n)

.
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The space V Cf consists of infinitesimal deformations of f which lift to isotropic defor-

mations of f̃ . The subspace tf(Vn+k) +wf(V H2n) consists of deformations coming from

diffeomorphisms of R
n+k and symplectomorphisms of R

2n. Since f̃ is uniquely deter-

mined (Lemma 5.1), the symplectic codimension of f is well-defined.

A detailed formulation goes as follows: Recall that the space of infinitesimal isotropic

deformations of f̃ is defined by

V If̃ := {v : (Rn+k, 0)→ TR
2(n+k) | π ◦ v = f̃ , v∗(Ω̇) = 0},

as a subspace of the total space

Vf̃ := {v : (Rn+k, 0)→ TR
2(n+k) | π ◦ v = f̃}

of infinitesimal deformations of f̃ (cf. [6]). Here π : TR
2(n+k) → R

n+k is the bundle pro-

jection and Ω̇ is the induced symplectic form on TR
2(n+k) from the standard symplectic

form dθ on T ∗(R2(n+k)) via the isomorphism TR
2(n+k) ∼= T ∗(R2(n+k)) induced by the

symplectic form Ω := ω ⊖ µ on R
2(n+k). The symplectic form Ω̇ can be regarded also as

the natural lifting of Ω ([7]).

The differential π1∗ : TR
2(n+k) → TR

2n of π1 : R2(n+k) = R
2n×R

2k → R
2n induces

the projection Π : Vf̃ → Vf , where

Vf := {w : (Rn+k, 0)→ TR
2n | π′ ◦ w = f},

for the projection π′ : TR
2n → R

2n. Then we set

V Cf := Π(V If̃ ).

The pushforward tf : Vn+k → Vf from the space of vector fields over (Rn+k, 0) is defined

by tf(ξ) = f∗(ξ), (ξ ∈ Vn+k). Then tf(Vn+k) ⊆ V Cf . On the other hand the pullback

wf : V2n → Vf from the space of vector fields over (R2n, 0) is defined by wf(η) =

η ◦ f, (η ∈ V2n). Among V2n, we denote by V H2n the space of Hamiltonian vector fields

over (R2n, 0). Then we see wf(V H2n) ⊆ V Cf .

Now we show that the symplectic codimension is a diffeomorphism invariant in an

appropriate sense:

Proposition 6.1. Let f, f ′ : (Rn+k, 0) → R
2n be coisotropic map-germs with regular

reductions. Suppose f and f ′ are C∞ normalizations ([9]). Then

sp-cod(f) = dimR

Rf̃
f∗E2n + g∗E2n

.

In particular, if (f̃ , π1, π2) and (f̃ ′, π1, π2) are diffeomorphic as divergent diagrams of

mappings, then sp-cod(f) = sp-cod(f ′).

Here we set

Rf̃ := {h ∈ En+k | dh ∈ En+kdf̃}.

Recall that the diffeomorphism type of the Lagrangian lifting (f̃ , π1, π2) is uniquely

determined by f .

Proof of Proposition 6.1. If f and f ′ are right equivalent, then clearly sp-cod(f) =

sp-cod(f ′). So we suppose f ′=ϕ◦f and f̃ ′=Φ◦f̃ for a diffeomorphism Φ : (R2(n+k), f̃(0))
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→ (R2(n+k), f̃ ′(0)) inducing a diffeomorphism ϕ : (R2n, f(0))→ (R2n, f ′(0)) via π1. We

write down the exact sequence:

0→
V C ′

f

tf(Vn+k) + wf(V H ′
2n)
→

V Cf
tf(Vn+k) + wf(V H2n)

→
R̃f

f∗E2n
→ 0.

Since f is a C∞ normalization, we see that wf(V H ′
2n) ⊆ V C ′

f . Thus we have the exact

sequence

0→
V C ′

f

tf(Vn+k)
→

V Cf
tf(Vn+k) + wf(V H2n)

→
R̃f

f∗E2n
→ 0.

Since dimR V C
′
f/tf(Vn+k) = dimR V C ′

f ′/tf ′(Vn+k), and moreover Φ∗ induces an isomor-

phism between R̃f = Rf̃/g
∗E2k and R̃f ′ = Rf̃/g

′∗E2k, we see the required invariance.

Remark 6.1. We have the inequality sp-cod(f̃) ≤ sp-cod(f). Note that, for a parametric

Lagrange variety (Rm, 0) → (R2m, 0) of corank ≤ 1, sp-cod(f̃) = 0 is equivalent to the

fact that f̃ is symplectomorphic to an open Whitney umbrella.

Definition 6.1. We call f infinitesimally symplectically stable if

V Cf = tf(Vn+k) + wf(V H2n).

Corollary 6.1. Let f : (Rn+k, 0)→ R
2n be a coisotropic map-germ with regular reduc-

tion. Suppose f is a C∞ normalization. Then f is infinitesimally symplectically stable if

and only if Rf̃ = f∗E2n + g∗E2k.

Corollary 6.2. If the Lagrange lifting f̃ is an open Whitney umbrella, then Rf̃ =

f̃∗E2(n+k). Therefore

sp-cod(f) = dimR

f̃∗E2(n+k)

f∗E2n + g∗E2n
.

Example 6.1. Let f : (R3, 0)→ R
4 be defined by

f(u, v, w) = (p1, q1, p2, q2) = (uv + u3, u2, w, v)

and

g(u, v, w) = (p3, q3) =

(
w −

2

3
u3, v

)
.

Then we have Rf,g(= Rf ) = f∗E4 + g∗E2. Therefore f is infinitesimally symplectically

stable.

Moreover let us consider the coisotropic fibrationH :R4→R defined byH(p1, q1, p2, q2)

= p2. Then we have the induced coisotropic bifurcation from f , F : (R2, 0)→ R
2 ×R,

F (u, v) = (uv + u3, u2; v).

The bifurcation is actually A1-type symplectic bifurcation of planar curves [8].

7. Parametric Lagrangian foliations. Now assume that f is coisotropic and that

we can take g of rank ≥ k. If f is coisotropic with regular reduction, then f satisfies

the assumption. Then there exists a Lagrangian projection π : R
2k → R

k such that

π ◦ f̃ is a submersion. Then (π ◦ f̃)−1(a) is a smooth submanifold-germ of (Rn+k, 0) of



BIFURCATIONS IN SYMPLECTIC SPACE 123

dimension n, and f |(π◦f̃)−1(a) is an isotropic map-germ into (R2n, ω), (a ∈ (Rk, 0)). In

local coordinates: f∗aω = 0, fa(x) = f(x, a). Conversely we have:

Proposition 7.1. Let fa : (Rn, 0) → R
2n be a family of isotropic map-germs (a ∈

(Rk, 0)). Then f : (Rn+k, 0) → R
2n defined by f(x, a) = fa(x) is coisotropic with g :

(Rn+k, 0)→ R
2k satisfying f∗ω = g∗µ and rank(g) ≥ k.

Proof. By the assumption we see f∗ω is zero when restricted to each R
n × a ⊂ R

n+k.

Therefore f∗ω = g1(x, a)da1 + · · ·+ gk(x, a)dak for some functions g1, . . . , gk : (Rn+k, 0)

→ R, where a1, . . . , ak are coordinate functions on (Rk, 0) (regarded as functions on

(Rn+k, 0) via the projection R
n+k = R

n ×R
k → R

k). Set g = (g1, . . . , gk, a1, . . . , ak).

Then we have f∗ω = g∗µ.

Example 7.1. Let us consider the map-germ f : (R3, 0)→ R
4 defined by

f(u, v, w) = (p1, p2, q1, q2) = (uw2, vw2, u, v).

Then

f∗ω = 2vwdw ∧ du+ 2vwdw ∧ dv = g∗µ,

with the singular reduction

g = (p3, q3) =

(
1

2
(u2 + v2 + w2),

1

2
(u2 + v2 − w2)

)
,

of rank zero. Therefore f is coisotropic with singular reduction. In this case f is foli-

ated by singular Lagrangian varieties which are not necessarily parametrized by smooth

manifolds.
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