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We construct a new framework for the study of multiplane gravitational lensing
from the view point of symplectic geometry. Symplectic relations are used to com-
pose the systems and weaker Lagrangian equivalence is applied for classifying the
caustics of multiplane gravitational lensing. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1563042#

I. INTRODUCTION

Recently there appeared several articles considering gravitational lensing systems as a
tions of the theory of singularities for smooth mappings. The gravitational lensing is the defle
of light from a distant source~e.g., quasar! by an intervening matter distribution~e.g., a galaxy or
a cluster of galaxies!. The first gravitational lensed quasar was detected only in 1979. By
gravitational lensing is quite an active field in astrophysics.1–3

On the other hand, singularity theory of Lagrangian varieties4,5 is the best natural setting fo
discussing optical systems. In fact, Petters and his collaborators6,1 pointed out that a single gravi
tational lensing can be described in the framework of symplectic geometry. Especially the ca
in a single gravitational lensing system coincide with caustics in the theory of Lagrangian s
larities. Moreover, they also investigate multiplane gravitational lensing as an application o
gularity theory.7,1 The standard treatment of gravitational lensing uses a notion of equivalenc
yields either folds or cusps as the locally stable caustics for ak-plane lensing map~e.g., in Ref. 1!.
On the other hand, Levine and Petters8 speculated that under a weaker notion of equivalence, s
caustics other than folds and cusps would appear stable for lens systems exposed to
restricted family of perturbations. However, in their framework for multiplane gravitation len
generic caustics are the same as those for the single gravitational lensing. Current observe
systems fit with the standard notion of equivalence used in the lensing literature~where only folds
or cusps appear!. However, as instruments discover more and more lens systems, it ma
possible to find a system that is exposed to more limited family of perturbations and for w
caustics like handkerchief, etc., appear stable possibly for a ‘‘short’’ time period. Note th
cosmic time scales~i.e., of the order billions of years! events that last months or a few years a
quite short, though such time periods are long enough on human time scales for us to ca
observations.

In this paper we propose the symplectic framework for multiplane gravitational lensing b
on the notion of symplectic relation, which is a natural generalization of the notion of symp
transformation~cf. Ref. 9!. The original motivation for the paper was an attempt to desc
expected nonstandard caustics in gravitational lensing using the weaker versions of Lagr
equivalence acting on composite symplectic relations. These composites correspond to im

a!Electronic mail: izumiya@math.sci.hokudai.ac.jp
20770022-2488/2003/44(5)/2077/17/$20.00 © 2003 American Institute of Physics
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systems of gravitational rays by the subsequent gravitational lens, and their generic form
scribed in the paper, reflect the complexity of composition.

In Sec. II we introduce the gravitational lensing problem and in Sec. III the proble
formulated in the language of Lagrangian stability and versality adapted to the product symp
space of incoming and outgoing rays. The precise meaning of the composition of systems an
actions on the subsequent wave fronts represented by generating functions was introduced
IV. In Sec. V the local stability of double lensing systems was investigated and it is continu
Sec. VI by classification of the normal forms of generating pairs with respect to the natural g
of equivalences.

All manifolds and maps considered here are of classC` unless stated otherwise.

II. GRAVITATIONAL LENSING

In this section we give a quick review of the basic concepts from the theory of gravitat
lensing discussed already in Refs. 8, 7, 6, 10, 1, and 3.

(1) Single lensing~cf., Refs. 6, 1, and 3!. Consider the typical single lens plane gravitation
lensing as follows: We assume that the deflector is thin and apply the small angle approxim
~cf., Ref. 6!. The extra time with respect to the unperturbed ray is givingthe time-delay map;
Ts:R2.U→R defined by

Ts~r !5~11zL!FdOLdOS

2dLS
I s

dOS
2

r

dOL
I 2

2C~r !G .
Here,zL is the redshift of the lens plane,dOL ,dOS,dLS are angular diameter distances,r is the
position on the lens plane where the ray hits,s is the position of the source, andC~r ! is the
two-dimensional potential of the deflector on the lens plane.The deflector potentialsC occurring
in the time-delay map are given by

C~r !54E
Rn

s~r 8!lnI r 82r

dOL
I .

They are solutions of two-dimensional Poisson equationDC(r )58ps(r ), where s~r ! is the
surface mass density~cf., Fig. 1!.

FIG. 1. A single lensing diagram. Angles are exaggerated. The distances are significantly larger than the diamet
lens.
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By suitable coordinate transformations, we can express the time-delay map in the conv
form:

Ty~x!5QLF ix2yi2

2
2c~x!G ~x,yPR2!.

Herey corresponds to the point on the sources plane andx corresponds to the point on the len
planer .

Fermat’s principle yields the critical points of the time delay mapTy(x) with respect to
variations inx determining those rays that are real light rays~cf., Ref. 6!. For this reason, a critica
point of Ty(x) relative tox is calledan imageof the point source aty. The magnificationof an
imagex of a source aty is defined by

Ay~x!5
1

idetTxx~x;y!i ,

whereT(x;y)5Ty(x) and Txx(x;y) is the Hessian matrix with respect tox. A caustic pointin
gravitational lensing is a positionyPR2 for which a source aty will have at least one image o
infinite magnification. In other words, caustics are source positionsyPR2 for which the time-
delay mapTy(x) has at least one degenerate critical point~i.e., detTxx(x;y)50). So, we may
consider that the time-delay map isthe generating familyof a certain Lagrangian submanifold i
T* R2 ~cf., Sec. III!.

(2) Multiplane gravitational lensing (cf., Refs. 8, 10, 1, and 3). Although we can consider a
generalk-planes gravitational lensing, we now only consider the case whenk52 ~i.e, a double
plane gravitational lensing! for convenience.

The typical double lens plane gravitational lensing situation is given as follows: There ar
lens planes with ‘‘thin’’ deflectors in each plane. The deflectors are assumed to be indepe
that is, the lens planes are sufficiently spaced so that they do not interact. Furthermore, th
angle approximation is assumed. We also parametrize all rays originating from the point so
s, deflected by two gravitational lens, using the four-dimensional vectors (r1 ,r2). Relative to these
approximations the extra timeTs to reach the indicated observer froms is given by thetime-delay
map. It is the functionTs:U13U2,R4→R with each domainUi,R2 being an open subse
defined by

Ts~r1 ,r2!5(
i 51

2

~11zi !F didi 11

2di ,i 11
I r i 11

di 11
2

r i

di
I 2

2C i~r i !G .
Here,zi is the redshift of thei th lens plane,di j is the angular diameter distance separating thei th
and j th lens planes,di is the angular diameter distance from the observer to thei th lens plane with
dk11[dS the distance to the source plane,r i is the position on thei th plane where the ray hits
r k11[s, andC i(r i) is the two-dimensional potential of the deflector on thei th lens plane~cf.,
Fig. 2!.

FIG. 2. A ray diagram for double plane gravitational lensing.
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By suitable coordinate transformations, the double plane time-delay map can be expresse
veniently as follows:

Ty~x1 ,x2!5Q1F ix22x1i2

2
2b1,2c1~x1!G1Q2F ix22yi2

2
2b2,3c2~x2!G , ~x1 ,x2 ,yPR2!.

In Ref. 10, Fermat’s principle has been adapted exactly in the same way as it was used
for the single lens plane case, so that theimageof a gravitational lensed point like light source
positiony are identified to the critical points ofTy , e.g., the set of images is given as follows

$~x1 ,x2!ugradxi
Ty~x1 ,x2!50, i 51,2%.

If we adapt this principle, then the classification of caustics for single and multiple lens p
is the same, namely, folds and cusps. It is, however, pointed out in Ref. 8 that double fo
handkerchiefs might appear as the stable caustics for double plane lensing under a more re
family of perturbations. These singularities do not appear as generic caustics under the
mentioned construction. Therefore, our opinion is that we need to have another interpreta
Fermat’s principle.

III. A SYMPLECTIC FRAMEWORK FOR SINGLE GRAVITATIONAL LENSING

In Ref. 6 Petters pointed out that single gravitational lensing can be described in the f
work of symplectic geometry~i.e, Lagrangian singularity theory!. In the first place we briefly
review the Lagrangian singularity theory.4 Let p:T* Rn→Rn be the cotangent bundle overRn. We
may consider that T* Rn5R2n and p(q1 , . . . ,qn ;p1 , . . . ,pn)5(q1 , . . . ,qn), where
(q1 , . . . ,qn ;p1 , . . . ,pn) are the canonical coordinates onT* Rn. There exitsthe Liouville one-
form a5( i 51

n pidqi on T* Rn. We call the two-formv5da5( i 51
n dpi∧dqi the canonical sym-

plectic structureon T* Rn. A Lagrangian submanifoldi:L,T* Rn is a submanifold withL5n
and i* v50. We call a mapp+i:L→Rn a Lagrangian map.

There is the notion of generating families for Lagrangian immersion germs as follows: D
an n-parameter family of function germsF:(Rk3Rn,0)→(R,0) to be aMorse familyif the map
germ

]F

]l
:~Rk3Rn,0!→~Rk,0!

is nonsingular, where]F/]l(l,q)5(]F/]l1(l,q), . . . ,]F/]lk(l,q)). It follows that S(F)
5(]F/]l)21(0) is a smooth submanifold germ in (Rk3Rn,0). For a Morse familyF, we define
a map germ

FF :S~F !→T* Rn, FF~l,q!5S q,
]F

]q
~l,q! D .

Then it is easy to see thatFF is a Lagrangian immersion germ. We also have the follow
well-known result:4

Proposition 3.1: All Lagrangian immersion germs are constructed by the above-pres
method.

We call F a generating family ofthe Lagrangian submanifold germFF(S(F)). By Proposi-
tion 3.1, we can interpret the local property of Lagrangian immersions by using the noti
generating family, so that the singularity theory of function germs has been applied.4

There is a natural equivalence among Lagrangian map germs. Letp+i i :(Li ,zi)
→(Rn,p(zi)) ( i 51,2) be Lagrangian map germs. We say thatp+i1 :(L1 ,z1)→(Rn,p(z1)) and
p+i2 :(L2 ,z2)→(Rn,p(z2)) are Lagrangian equivalentif there exists a symplectic diffeomor
phism germF:(T* Rn,z1)→(T* Rn,z2) with the form F(q,p)5(f2(q),f1(q,p)) and a diffeo-
morphism germf:(L1 ,z1)→(L2 ,z2) such thatF+i15i2+f.

We also have natural corresponding equivalences among the Morse families. LetFi :(Rk

3Rn,0)→(R,0) (i 51,2) be two Morse families. We say thatF1 and F2 are R1-equivalent
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~respectively,R-equivalent! if there exists a diffeomorphism germC:(Rk3Rn,0)→(Rk3Rn,0)
with the formC(l,q)5(c1(l,q),c2(q)) and a function germa:(Rn,0)→R such thatF1(l,q)
5F2+C(l,q)1a(q) ~respectively,F1(l,q)5F2+C(l,q), i.e., a is constantly equal to 0!. We
also need the following generalized equivalence relation: For two Morse familiesFi :(Rki

3Rn,0)→(R,0) (i 51,2), we say thatF1 andF2 arestably R1-equivalentif there exist nonde-
generate quadratic formsQ1(l̄),Q2(l̃), (l̄PRk3,l̃PRk4) with k11k35k21k4 such thatF1

1Q1 andF21Q2 areR1-equivalent.
The following theorem is the principal result of the Lagrangian singularity theory:4,5

Theorem 3.2:Let Fi :(Rk3Rn,0)→(R,0) (i 51,2) be two Morse families.

(1) If F1 and F2 induce the same Lagrangian submanifold germ, then F1 and F2 are
R-equivalent.

(2) Lagrangian manifold germsFF1
(S(F1)) and FF2

(S(F2)) are Lagrangian equivalent if and

only if F1 and F2 are stably R1-equivalent.

We define the notion of stability of Lagrangian map germs as follows: A Lagrangian
germ is said to beLagrangian stableif for every map representing the given map-germ there
neighborhoodV in the space of Lagrangian maps~in the C`-topology! and a neighborhoodU of
the source point of the germ, such that for each Lagrangian map belonging toV there is a point in
U at which the germ of Lagrangian map-germ is Lagrangian equivalent to the original germ
corresponding infinitesimal notion for generating family is given as follows: LetF:(Rk3Rn,0)
→(R,0) be a Morse family. We say thatF is infinitesimally R1-versal if

El5 K ] f

]l1
, . . . ,

] f

]lk
L

El

1 K ]F

]q1
URk3$0%, . . . ,

]F

]qn
uRk3$0%,1L

R

,

where f (q)5F(q,0) andEl is the local ring of function germs (Rk,0)→R. Then we have the
following theorem~cf. Ref. 4!.

Theorem 3.3:Let F:(Rk3Rn,0)→(R,0) be a Morse family. Then the Lagrangian map ge
p+FF is Lagrangian stable if and only if F is infinitesimally R1-versal.

Now let us recall the time-delay mapTy(x). If we consider the family of functionsF:R2

3R2→R given by

F~l1 ,l2 ,q1 ,q2!5QF i~l1 ,l2!2~q1 ,q2!i2

2
2c~l1 ,l2!G5Tq~l!,

we can easily verify thatF is a Morse family, soFF :S(F)→T* R2 is a Lagrangian immersion
Here, we have

S~F !5$~x,y!ugradx T50%,

so that the Lagrangian immersion is corresponding to those rays that are actual light rays. T
of critical values of the Lagrangian mapp+FF is the caustic.

On the other hand, we present another symplectic framework for single gravitational le
which is essentially the same as the above-mentioned framework. Our framework will be,
ever, very useful when we try to generalize this framework to the case of multiple planes
tational lensing~cf., Sec. IV!.

We consider theproduct symplectic space

M(x,y)5~T* Mx3T* M y ,vMy
*vMx

!,

wherevMy
and vMx

are the corresponding canonical symplectic forms, andV (x,y)5vMy
*vMx

5pMy
* vMy

2pMx
* vMx

, where pMx
,pMy

are the canonical projections of the produ
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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T* Mx3T* M y . The corresponding phase spaces (T* Mx ,vMx
) and (T* M y ,vMy

) are called the
observer spaceand thesource space, respectively. In our two-dimensional caseMx5R2 and
M y5R2. The concrete realized single lensing system is represented~following Ref. 6! by the
Lagrangian submanifold

Lc5$~~x,gradx T!,~y,grady T!! u~x,y!PMx3M y %.

This means that the generating function ofLc is the time-delay map

T~x;y!5QLF ix2yi2

2
2c~x!G ~x,yPR2!.

By the previous arguments, light rays are given by$(x,y)ugradx T50% and the set of point source
for light rays is the Lagrangian submanifold

LS5$~y,grady T!PT* M y u~x,y!PMx3M y ,gradx T50%

of T* M y . Then we have

pMy
~Lcù~~Mx3$0%!3T* M y!!)5LS .

Let us recall the basic notions of the theory of symplectic relations~Ref. 11!. Let X1 ,X2 be
smooth manifolds with the same dimension. We consider the product symplectic manifold

~T* X13T* X2 ,vX2
*vX1

!,

wherevX2
*vX1

5p2* vX2
2p1* vX1

. We define a symplectic relation fromT* X1 to T* X2 as a
Lagrangian submanifoldR of (T* X13T* X2 ,vX2

*vX1
). If the restriction of the projection

pX1
3pX2

:T* X13T* X2→X13X2

to R is always nonsingular, we callR the elementary symplectic relation. Let R be a symplectic
relation in (T* X13T* X2 ,vX2

*vX1
) andS be a subset ofT* X1 , then the symplectic image ofS

by R is defined as

R~S!5$p2PT* X2 :'p1PS~p1 ,p2!PR%.

If S is Lagrangian submanifold in (T* X1 ,vX1
), thenR(S) is a Lagrangian subset in (T* X2 ,vX2

).
Since bothS andR are Lagrangian submanifolds, we have their generating families at

locally. We only consider the local situation here, so that we assume thatX15X25Rn. Let
F1 :(Rk13X1,0)→R be a generating family of a Lagrangian submanifold germS,T* X1 and
F2 :(Rk23(X13X2),0)→R be a generating family of a symplectic relationR,T* X13T* X2 .
Then we have a function germ

F:~~Rk13X13Rk2!3X2,0!→R

defined by

F~~l1 ,q1 ,l2!,q2!5F1~l1 ,q1!1F2~l2 ,q1 ,q2!.

Hence we have the following lemma:
Lemma 3.4: If F is a Morse family, then F is a generating family of the Lagrangian subm

fold R(S),T* X2 .
Proof: By definition, we have
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S5H S q1 ,
]F1

]q1
(l1 ,q1) D U]F1

]l1
50J ,

R5H S q1 ,q2 ,2
]F2

]q1
~l2 ,q1!,

]F2

]q2
~l2 ,q2! D U]F2

]l2
50J .

Therefore we have

R~S!5H S q2 ,
]F2

]q2
~l2 ,q1 ,q2! D U ]F1

]l1
5

]F2

]l2
50

]F1

]q1
52

]F2

]q1
J .

Since ]F/]l15]F1 /]l1 , ]F/]l25]F2 /]l2 , ]F/]q15]F1 /]q11]F2 /]q2 and ]F/]q2

5]F2 /]q2 , we have

R~S!5H S q2 ,
]F

]q2
~~l1 ,q1 ,l2!,q2! D U ]F

]l1
5

]F

]l2
5

]F

]q1
50J ,

so thatF is a generating family ofR(S). Q.E.D.
In the case of single gravitational lensing, ifS0 denotes the observer Lagrangian submanif

of system of gravitational rays then the source Lagrangian submanifold of rays is an imag

Lc~S0!,T* M y .

In the standard setting~cf. Ref. 6 and the previous arguments! S0 is the zero section of the
cotangent bundleT* Mx . Therefore we have

Lc~S0!5$~y,grady T!ugradx T50%,

so that the generating family forLc(S0) is given by

F~l1 ,l2 ,q1 ,q2!5QF i~l1 ,l2!2~q1 ,q2!i2

2
2c~l1 ,l2!G ,

which is the same generating family as that of the source Lagrangian submanifold in the pr
framework in Ref. 6. We call the pair (S,R) a ~single! lensing systemif S is a Lagrangian
submanifold ofT* X1 and R is a symplectic relation fromT* X1 to T* X2 . If the projection
p1uR :R→T* X1 is nonsingular,R is the graph of a symplectomorphismH:T* Mx→T* M y . In this
case we say that (S,R) is regular. Moreover, ifS is the zero section ofT* X1 , we call (S,R) a
special lensing system. Therefore, the single gravitational lensing is a regular special len
system.

IV. A SYMPLECTIC FRAMEWORK FOR MULTIPLANE GRAVITATIONAL LENSING

In this section we will construct the intrinsic framework for the study of gravitational lens
We can summarize the main problem in this paper as follows:
Problem: How can we construct the intrinsic framework for the study of double pla

gravitational lensing?
In order to tackle this problem, we now interpret the Fermat’s principle from another

point. We define

Tb23
~x2 ;y!5Q2F iy2x2i2

2
2b23~x2!G ,
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Tb12
~x1 ;x2!5Q1F ix22x1i2

2
2b12~x1!G .

Then T2(x1 ,x2 ,y)5Tb12
(x1 ,x2)1Tb23

(x2 ,y). We may consider thatTb23
(x1 ,x2) and

Tb12
(x1 ;y) are, respectively, single time-delay maps. It is clear that

gradx1
T2~x1 ,x2 ,y!5gradx1

Tb12
~x1 ;x2!,

gradx2
T2~x1 ,x2 ,y!5gradx2

Tb12
~x1 ;x2!1gradx2

Tb23
~x2 ;y!.

These formulas suggest to us that the Fermat’s principle can be interpreted as

H gradx1
Tb23

(x1 ,x2)50,

gradx2
T2(x1 ,x2 ,y)50.

It follows that we consider the following families of functions:F1(x1 ,x2)5Tb12
(x1 ,x2),

F2(x2 ,y)5Tb23
(x2 ,y) and F(x1 ,x2 ,y)5F1(x1 ,x2)1F2(x2 ,y). By Fermat’s principle, we have

two submanifolds:

S~F1!5$~x1 ,x2!PR4 ugradx1
F1~x1 ,x2!50%,

S~F !5$~x1 ,x2 ,y!PR6ugradx1
F1~x1 ;x2!5gradx2

F~x1 ,x2 ,y!50%.

Dimensions of both submanifolds are two. Moreover, we define the following mappings

FF1
:S~F1!→T* R2

by FF1
(x1 ,x2)5(x2 ,gradx2

F1(x1 ,x2)) and

FF :S~F !→T* R2

by FF(x1 ,x2 ,y)5(y,grady F(x1 ,x2 ,y)). By the previous arguments, images of both mappings
Lagrangian submanifolds. The later Lagrangian submanifold corresponds to the light sourc
first Lagrangian submanifold corresponds to the light ray image on the second lens, sin
distance between the first lens and the second lens is so long that there might be no inter
between these lenses. So we have to consider the stability of light ray under the indep
perturbations of each lens planes.

On the other hand, we might consider thatF2(x2 ,y) is a generating function of the graph o
a certain symplectomorphismH:T* R2→T* R2 ~cf., Ref. 11!. In this case, the Lagrangian sub
manifold FF(S(F)) can be considered as the imageH(FF1

(S(F1))).
Since the single lensing system can be described under the framework of symplectic rel

we might construct the framework for the double gravitation lensing by using the compositi
two symplectic relations.

The composition R2+R1,(T* X13T* X3 ,vX3
*vX1

) of two symplectic relations
R1,(T* X13T* X2 ,vX2

*vX1
), R2,(T* X23T* X3 ,vX3

*vX2
) is defined as follows:

R2+R15$~p1 ,p3!PT* X13T* X3 ;'p2PT* X2
~p1 ,p2!PR1and ~p2 ,p3!PR2%.

If S is Lagrangian submanifold inT* X1 , then we have two symplectic images

R1~S! andR2+R1~S!.
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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By the previous arguments, a double gravitational lensing is represented by the pair o
plectic relations (Lb12

,Lb23
),

Lb12
,~T* Mx1

3T* Mx2
,vMr 2

*vMx1
!,

Lb23
,~T* Mx2

3T* M y ,vMy
*vMx2

!.

Now the source Lagrangian subspace of the system is the image by the compositionLb23

+Lb12
(S0), whereS0 is the zero section ofT* Mx1

. SinceTb12
(x1 ,x2) and Tb23

(x2 ,y) are the
corresponding generating functions for the symplectic relations~the graphs of symplectomor
phism! Lb12

andLb23
, then the configurational positions of rays emitted from the source at a p

y are the points ((x1 ,x2),(x2 ,y))PLb12
3Lb23

given by the solutions (x1 ,x2) of the system of
equations

gradx1
T2~x1 ,x2 ,y!50, ~1!

gradx2
T2~x1 ,x2 ,y!50. ~2!

If we now consider a family of functionsF:R23R23M y→R defined by

F~q,l,m!5T2~q,l,m!5Tb12
~q,l!1Tb23

~l,m!,

thenF is a generating family for the image Lagrangian subspace

Lb23
+Lb12

~S0!,T* M y .

According to the above-given arguments, we say that (S,R1 ,R2) is adouble lensing systemif
S is a Lagrangian submanifold ofT* X1 andRi is a symplectic relation fromT* Xi to T* Xi 11 ,
where i 51,2. We also say that the double lensing system (S,R1 ,R2) is regular if both of Ri ( i
51,2) are graphs of symplectomorphisms. Moreover, we say that a double lensing s
(S,R1 ,R2) is specialif S is the zero section ofT* X1 . Therefore, a double gravitation lensing
a regular special double lensing system.

We now define a natural equivalence relation among double lensing system germ
(S,R1 ,R2),(S8,R18 ,R28) be double lensing system germs. We say that (S,R1 ,R2), (S8,R18 ,R28) are
Lagrangian equivalentif there exist a symplectic diffeomorphism germ and

F1 :~T* X1 ,z1!→~T* X1 ,z18!,

Lagrangian equivalence germs~symplectic diffeomorphisms preserving the cotangent bundle
bration!

F2 :~T* X2 ,z2!→~T* X2 ,z28!, F3 :~T* X3 ,z3!→~T* X3 ,z38!

such thatF1(S)5S8, (F13F2)(R1)5R18 and (F23F3)(R2)5R28 .
Since there always exists a symplectic diffeomorphism germF1 :(T* X1 ,z1)→(T* X1 ,z18)

such thatF1(S)5S8, we may assume thatS5S8 are equal to the zero section ofT* X1 . There-
fore, without the loss of generality, we stick to special double lensing. In this case we sa
(S,R1 ,R2), (S,R18 ,R28) are strictly Lagrangian equivalentif there exist Lagrangian equivalenc
germs

F2 :~T* X2 ,z2!→~T* X2 ,z28!, F3 :~T* X3 ,z3!→~T* X3 ,z38!

such that (idT* X1
3F2)(R1)5R18 and (F23F3)(R2)5R28 . This equivalence relation might be

however, too strong to give a classification of double lensing system germs. Therefore, we n
appropriate equivalence relation among special double lensing system germs.
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Now we give a candidate of such a natural equivalence. We say that the special double
system germs (S,R1 ,R2), (S,R18 ,R28) areweakly Lagrangian equivalentif there exist Lagrangian
equivalence germs

F̃3 :~T* X3 ,z3!→~T* X3 ,z38!, F̃:~~T* X23T* X3 ,~z2 ,z3!!→~T* X23T* X3 ,~z28 ,z38!!

such thatpX3
+F̃5F̃3+pX3

andF̃(R1(S)3R2+R1(S))5R18(S)3R28+R18(S).
We have the following proposition.
Proposition 4.1: Suppose that(S,R1 ,R2), (S,R18 ,R28) are weakly Lagrangian equivalent, the

both of the Lagrangian submanifolds R1(S), R18(S) and R2+R1(S), R28+R28(S) are Lagrangian
equivalent.

Proof: By definition we have a diffeomorphism germF:(X23X3 ,(p2(z2),p3(z3)))→(X2

3X3 ,(p2(z28),p3(z38))) of the formF(x2 ,x3)5(f2(x2 ,x3),f3(x3)) and a symplectic diffeomor-

phismF̃:((T* X23T* X3 ,(z2 ,z3))→(T* X23T* X3 ,(z28 ,z38)) of the form

F̃~~x2 ,p2!,~x3 ,p3!!5~~f2~x2 ,x3!,c2~x2 ,x3 ,p2 ,p3!!,f3~x3!,c3~x3 ,p3!!

such that F̃(R1(S)3R2+R3(S))5R18(S)3R28+R18(S). Therefore we haveF̃(R1(S)3$z3%)
5(R18(S)3$z38%). We identify symplectic manifolds:T* X25T* X23$z3%5T* X23$z38%. Under
this identification, the above-mentioned equality means thatR1(S) and R18(S) are Lagrangian
equivalent.

By definition, we haveF̃3(R2+R1(S))5R28+R18(S). This fact means thatR2+R1(S), R28
+R28(S) are Lagrangian equivalent. Q.E.D

By the above-given proposition, the weak Lagrangian equivalence among double le
system germs preserve both caustics of the first and the second deflectors. It is the caustic
lence already introduced in the classification of coisotropic varieties in Ref. 12.

V. GENERATING PAIRS FOR DOUBLE LENSING SYSTEMS

In this section we consider the problem how to construct a kind of the notion of gener
families for double lensing systems. We already have a solution because a double plane g
tional lensing is described by the pair of time-delay maps. We only consider local properti
that we assume thatX15X25X35Rn.

For any double lensing system germ (S,R1 ,R2), we have generating familiesF0 :(Rk0

3X1,0)→R of S, F1 :(Rk13(X13X2),0)→R of R1 andF2 :(Rk23(X23X3),0)→R of R2 .
On the other hand, there always exists a symplectomorphism germF1 :(T* X1 ,z1)

→(T* X1,0) such thatF1(S) is a zero section germ ofT* X1 , so that we might assume thatS is
a zero section germ ofT* X1 under the Lagrangian equivalence among double lensing sy
germs. In other words, it is enough to investigate special double lensing system germs. In th
F0 can be chosen as a constant function. We call (F1 ,F2) a generating pairof the special lensing
system germ (S,R1 ,R2) if Fi is a generating family ofRi ( i 51,2). ThenF1 can be regarded as
generating family ofR1(S),T* X2 and F5F11F2 is a generating family ofR2+R1(S),T* X3

~cf., Ref. 11!.
Since a double gravitation lensing is a regular double lensing system, we now pay atten

regular special double lensing systems here. In this caseF1 :(X13X2,0)→R is a generating
function of R1 andF2 :(X23X3,0)→R is a generating function ofR2 . By the arguments in the
previous paragraph,F1 is a generating family of the Lagrangian submanifold germR1(S),T* X2

and a map germF:((X13X2)3X3,0)→R defined by

F~~x1 ,x2!,x3!5F1~x1 ,x2!1F2~x2 ,x3!
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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is a generating family of the Lagrangian submanifold germR2+R1(S),T* X3 . In other words,
(F1 ,F2) is a generating pairof a regular special double lensing system germ (S,R1 ,R2) if
(dF1(X13X2),(z1 ,z2))5(R1 ,(z1 ,z2)) and (dF2(X23X3),(z2 ,z3))5(R2 ,(z2 ,z3)).

Since any elementary symplectic relation has a generating function at least locally, we
the following fundamental proposition:

Proposition 5.1: All regular special double lensing system germs are constructed b
above-mentioned method.

We can translate equivalence relations among double lensing systems into those of
sponding generating pairs. We consider the ambiguity of the choice for generating pair
double lensing system.

Proposition 5.2: Let(F1 ,F2) and (G1 ,G2) be generating pairs of a common regular spec
double lensing system germ. Then F15G11constantand F25G21constant.

For our purpose, we introduce equivalence relations among generating pairs for doubl
ing system germs. LetF1 ,G1 ,(X13X2 ,0)→R andF2 ,G2 ,(X23X3,0)→R be function germs. We
say that (F1 ,F2) and (G1 ,G2) are (R,L)1-equivalent if there exist diffeomorphism germ
F1 :(X13X2,0)→(X13X2,0) of the form F1(x1 ,x2)5(f1(x1 ,x2),f2(x2)), and F2 :(X2

3X3,0)→(X23X3,0) of the formF2(x2 ,x3)5(f2(x2),f3(x3)) and function germsa:(X2,0)
→R, b:(X3,0)→R such that

HF1~x1 ,x2!5G1+F1~x1 ,x2!1a~x2!,
F2~x2 ,x3!5G2+F2~x2 ,x3!1b~x3!.

Proposition 5.3: Let(F1 ,F2) and (G1 ,G2) be, respectively, generating pairs of special reg
lar double lensing system germs(S0 ,R1 ,R2) and (S0 ,R18 ,R28)). Then (S0 ,R1 ,R2) and
(S0 ,R18 ,R28)) are strictly Lagrangian equivalent if and only if(F1 ,F2) and (G1 ,G2) are
(R,L)1-equivalent.

We also say that (F1 ,F2) and (G1 ,G2) are R3L1-equivalentif there exists a diffeomor-
phism germ

F:~X13X23X3,0!→~X13X23X3,0!

of the formF(x1 ,x2 ,x3)5(f1(x1 ,x2 ,x3),f2(x2 ,x3),f(x3)) and a function germa:(X3,0)→R
such that

F1~x1 ,x2!1F2~x2 ,x3!5G1~f1~x1 ,x2 ,x3!,f2~x2 ,x3!!1G2~f2~x2 ,x3!,f~x3!!1a~x3!.

Suppose that (F1 ,F2) and (G1 ,G2) are R3L1-equivalent. If we substitutex350 into the
both sides of the above-given equality, then we have

F1~x1 ,x2!1F2~x2,0!5G1~f1~x1 ,x2,0!,f2~x2,0!!1G2~f2~x2,0!,0!1a~0!.

Therefore,F1 andG1 areR1-equivalent.
By the general theory for Lagrangian singularities~cf., Ref. 4!, we can show the following

proposition:
Proposition 5.4: Let(F1 ,F2) and (G1 ,G2) be, respectively, generating pairs of special reg

lar double lensing system germs(S0 ,R1 ,R2) and (S0 ,R18 ,R28)). Then (S0 ,R1 ,R2) and
(S0 ,R18 ,R28)) are weakly Lagrangian equivalent if and only if(F1 ,F2) and (G1 ,G2) are R
3L1-equivalent.

We say that (F1 ,F2) is infinitesimally R3L1-stableif

E(x1 ,x2)1E(x2 ,x3), K ]F1

]x1
L

E(x1 ,x2 ,x3)

1 K ]~F11F2!

]x2
L

E(x2 ,x3)

1 K ]F2

]x3
,1L

Ex3

.

In this case, forF1 we have
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Ex1
5 K ] f 1

]x1
L

Ex1

1K ]F1

]x2
U

x250

,1L
R

,

where f 1(x1)5F1(x1,0).
Now we have the following proposition:
Proposition 5.5: Let(F1 ,F2) be a generating pair of a special regular double lensing syst

germ (S0 ,R1 ,R2). Then the following are equivalent:
(1) (F1 ,F2) is infinitesimally R3L1-stable.
(2) (F1 ,F2) satisfies the following condition:

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

,

where f2(x2)5F2(x2,0).
(3) (F1 ,F2) satisfies the following condition:

E(x1 ,x2)1E(x2 ,x3)5 K ]F1

]x1
L

E(x1 ,x2 ,x3)

1 K ]~F11F2!

]x2
L

E(x2 ,x3)

1 K ]F2

]x3
,1L

Ex3

.

(4) F1 is infinitesimally R1-versal and

Ex2
, K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

.

Proof: We assume that the condition~4! holds. SinceF1 is infinitesimally R1-versal defor-
mation of f 1 , we can show that

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]F1

]x2
,1L

Ex2

.

We remark that

]F1

]x2
5

]~F11 f 2!

]x2
2

] f 2

]x2
,

so that we have

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

1Ex2
.

It follows from the assumption that

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

.

This means that the condition~2! holds. The converse assertion is trivial by definition.
By the Malgrange preparation theorem~cf., Ref. 13!, we can easily show that the condition~3!

is equivalent to the condition~2!. SinceE(x1 ,x2)1Ex2
5E(x1 ,x2) , condition ~1! implies condition

~2!. It follows from the inclusionE(x1 ,x2)1E(x2 ,x3),E(x1 ,x2 ,x3) that condition~3! implies condition
~1!. This completes the proof.14
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VI. CLASSIFICATION OF LENSING SYSTEMS AND CAUSTICS

We recall that the family of functions

F~x1 ,x2 ,x3!5F1~x1 ,x2!1F2~x2 ,x3!

is a generating family for the Lagrangian submanifold-germR2+R1(S),T* X3 with (x1 ,x2) being
the Morse parameters auxiliary in the reduction process~cf. Ref. 15!. A causticof the time-delay
map in the case of the double lensing system is defined to be the set of source positix3

PR2, which are critical values of the projection

T* X3{R2+R1~S!→X3 ,

or the function (x1 ,x2)→F(x1 ,x2 ,x3) has at least one degenerate critical point.
Using theR3L1 equivalency group and infinitesimal stability conditions obtained in Pro

sitions 5.4 and 5.5 we can construct normal and prenormal forms of infinitesimally stable g
ating pairs (F1 ,F2), or equivalently the functionsF(x1 ,x2 ,x3)5F1(x1 ,x2)1F2(x2 ,x3), which
belong to the space of additively composed functions onD5$(x1 ,x2 ,x̃2 ,x3)PX13X23X2

3X3 :x25 x̃2%, i.e.,

F~x1 ,x2 ,x3!5p12* F1~x1 ,x2!1p23* F2~ x̃2 ,x3!uD ,

wherep12,p23 are the canonical projections

p i j :X13X23X23X3→Xi3Xj , ~ i j !5~12!,~23!.

If ( F1 ,F2) is an infinitesimallyR3L1-stable generating pair, then by Proposition 5.5~4! F1

is infinitesimally versal. Now we define the subgroup ofR3L1-equivalency group prescribed t
F1 and acting onF2 . We say thatF2 and G2 are (R3L1)F1

equivalent if there exists
F(x1 ,x2 ,x3)5(f1(x1 ,x2 ,x3),f2(x2 ,x3),f(x3)) and a function-germa:(X3,0)→R such thatF1

is preserved,F1+(f1 ,f2)5F1 and (F1 ,F2) and (F1 ,G2) areR3L1-equivalent byF. Now we
can formulate the following result.

Proposition 6.1: Any infinitesimally R3L1-stable pair is R3L1-equivalent to the pair
(F1 ,F2), where F1 is a versal unfolding of F1(x1,0) and F2 belongs to an open orbit of(R
3L1)F1

-action.
In the two-dimensional case we simplify the notation and write

F~x,u,v !5F1~x,u!1F2~u,v !, x,u,vPR2.

Proposition 6.2: Let us assume that F1 is an infinitesimally R1-versal Morse family. Then the
generic generating pair-germs(F1 ,F2) are R3L1-equivalent to one of the following norma
forms:

~A1A1!: ~F1~x,u!,F2~u,v !!5~6x1
26x2

2 ,6u1
26u2

2!,

~A1A2!: ~F1~x,u!,F2~u,v !!5~6x1
26x2

2 ,u1
36u2

21v1u1!,

~A1A3!: ~F1~x,u!,F2~u,v !!5~6x1
26x2

2 ,6u1
46u2

21v1u1
21v2u1!,

~A2B2!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,6u1
26u2

21v1u1!,

~A2B3!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,u1
36u2

21v1u11v2u1
2!,

~A2C2!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,u1u26u2
21v1u2!,
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~A2C3!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,u1u21u2
31v1u21v2u2

2!,

~A3X!: ~F1~x,u!,F2~u,v !!5~6x1
46x2

21x1
2u11x1u2 ,j~u,v !!,

wherej is a smooth function-germ.
The first three cases (AA) give the standard plane caustics~i.e., nonsingular, folds and cusps!.
The four cases (AB), (AC) are the composedA, B, andC boundary type caustics. Howeve

only the case (A2C3) has the caustics at the origin as a composition. In this case we can cal
that ~Fig. 3!

R2+R1~s!5$~22xy,y,x,x2! u ~x,y!P~R2,0! %,T* X3 .

Therefore the projection ontoX3 is locally represented byf :(R2,0)→(R2,0); f (x,y)5
(22xy,y) This map-germ is called thepinch map~cf., Fig. 4!. This is a famous example whic
does not admit a Thom stratification~Ref. 16, p. 24!.

The last case gives other possibilities of compositions withA3-caustic. There might appea
several complicated singularities.

An equivalenceR3L1-group acting onX13X23X3 is a subgroup of the (r ,s)-equivalences
introduced in Ref. 17, wherer 5dimX2 ands5dimX3 . We recall that (r ,s)-infinitesimal stability
condition

E(x,u)5 K ]F0

]x L
E(x,u)

1 K ]~F0!

]u L
E(u)

1K ]F

]v U
v50

,1L
R

1F̃0* E(l,m) ,

whereF̃05(F0 ,u), F0(x,u)5F(x,u,0), (l,m)PR3R2, is weaker than theR3L1-infinitesimal
stability condition.

FIG. 3. The standard plane gravitational lensing.

FIG. 4. The vertical lines are mapped onto the lines through the origin by the pinch map.
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If h(x,u,v) is an (r ,s)-infinitesimally stable unfolding off 0(x)5F(x,0,0) then the prenorma
form for infinitesimallyR3L1-stable unfolding off 0 is given in the form

F~x,u,v !5h~x,u,v !1(
i 51

2

uigi~u,v !,

wheregiPE(u,v) .
By (r ,s)-stability theory ~cf. Ref. 17!, if gPE(x,u,v) is an (r ,s)-stable unfolding ofh(x)

5g(x,0,0), theng is (r ,s)-equivalent to the function-germ

F~x,Ts~u,v !!,

whereF is an (r 1s)-stable unfolding ofh andTs(u,v)5T+Ws is a composition of the polyno
mial mappingT:(R23R2,0)→(R23R2,0) and permutation of the variablesWs . Here we have

T~u,v !5S u,v1p~u!1(
i 51

s

v ij i~u!D ,

wherep(u) is a polynomial mappingRr→Rs with zero constant term and degree at mosts11 and
j(u) are polynomial mappingsRr→Rs with zero constant terms and degree at mosts21. The
permutationWs acting onu,v-variables,Ws(w1 ,...,wr 1s)5(ws(1) ,...,ws(r 1s)) is defined as one
of the following permutations; Takingk<min$r,s% and integers 1< i 1,¯, i k<r , 1< j 1,¯

, j k<s we define s as the product of the following transpositions:s5( i 1 ,r 1 j 1)( i 2 ,r
1 j 2)¯( i k ,r 1 j k).

In our ~2,2!-case all stable unfoldings are related to the corresponding strata of the fam
mappings:

T~u,v !5S u1 ,u2 ,v11 (
1< i 1 j <3

ai j u1
i u2

j 1 (
i , j 51

2

bi j v iuj , v21 (
1< i 1 j <3

ci j u1
i u2

j 1 (
i , j 51

2

di j v iuj D .

These unfoldings were classified in Refs. 18 and 19 and we may use them in our classifica
gravitational caustics.

Remark 6.3: By the straightforward application of the classification theorem from Ref. 1
find that the generic perturbations of the composed function-germs F(x,u,v)5F1(x,u)
1F2(u,v), are ~2,2!-equivalent to the following normal forms:

F~x,u,v !5x1
36x2

21x1u1 ,

F~x,u,v !5x1
36x2

21x1~v11u1
216u2

2!,

F~x,u,v !5x1
36x2

21x1~v12u1
22u2

2!,

F~x,u,v !5x1
36x2

21x1~v11u1
316u2

21u1v2!,

F~x,u,v !56x1
46x2

21x1
2u11u2x1 ,

F~x,u,v !56x1
46x2

21x1
2~6u1

21u2!1x1~u21v1!,

F~x,u,v !56x1
46x2

21x1
2~u1

31u1v21u2!1x1~u21v1!,

F~x,u,v !56x1
46x2

21x1
2~6u1

21u2v21v1!1x1u2 ,

F~x,u,v !56x1
46x2

21x1
2u11x1~u1

26u2
21u1v11v2!,
8 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



stics.
st, we

n germ

e, this

. S.J.

contact

2092 J. Math. Phys., Vol. 44, No. 5, May 2003 S. Izumiya and S. Janeczko

Downloaded 0
F~x,u,v !5x1
56x2

21x1
3u11x1

2~u2v21cu21u11v1!1x1u2 ,~cÞ2 2
3!,

F~x,u,v !5x1
31x2

31x1x2u11x1u21x2~u2v21u11cu21v1!,~cÞ0!,

F~x,u,v !5x1
32x1x2

21x1
2~u1v21cu11u21v1!1x1u21x2u1 ,~cPR!,

F~x,u,v !5x1
32x1x2

21x1
2~u2v21u11v1!1x1u21x2u1 .

By definition, ~2,2!-equivalence destroys the exact structure of the composition of cau
However the structure of generic perturbation of the caustics still remained. By the above li
can calculate the discriminant set

DF5H ~v1 ,v2!PX3U ]F

]x1
5

]F

]x2
5

]F

]u1
5

]F

]u2
50J .

Such sets are the perturbed caustics of the original double lensing systems. For the functio
F(x,u,v)56x1

46x2
21x1

2u11x1(u1
26u2

21u1v11v2) we have DF5$(t,0)%ø$(6s262s,
620s3)% which is depicted in Fig. 5. We can observe that two regular curves~i.e., folds! have
order 3 contact at the origin. These two regular curves are the locus of fold points. Therefor
is a double fold at the origin.
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