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Polynomial symplectomorphisms

Stanis�law Janeczko and Zbigniew Jelonek

Abstract

Let K be the field of real or complex numbers. Let (X ∼= K
2n, ω) be a symplectic affine space.

We study the group of polynomial symplectomorphisms of X. We show that for an arbitrary
k ∈ N the group of polynomial symplectomorphisms acts k-transitively on X. Moreover, if
2 � l � 2n − 2 then elements of this group can be characterized by polynomial automorphisms
which preserve the symplectic type of all algebraic l-dimensional subvarieties of X.

1. Introduction

Throughout, (X, ω) will be a symplectic affine space over K (the field of real or complex
numbers) of dimension 2n, that is, X ∼= K

2n (unless mentioned otherwise) and ω =
∑

i dxi ∧
dyi is the standard non-degenerate skew-symmetric form on X. Linear symplectomorphisms
of (X, ω) are characterized (cf., for example, [5]) as linear automorphisms of X preserving
some minimal, complete data defined by ω on systems of linear subspaces. In this way the
linear symplectic group Sp(X) may be characterized geometrically together with its natural
conformal and anti-symplectic extensions.

The purpose of this paper is to put the linear considerations of symplectic invariants into the
more general context of polynomial automorphisms. We say that a polynomial automorphism
F : X → X is a symplectomorphism (or is symplectic on X) if F ∗ω = ω, that is,

ω(u, v) = ω(dxF (u), dxF (v))

for every x ∈ X and every u, v ∈ TxX. The group PlSp(X) of polynomial symplectomorphisms
is an important tool in affine algebraic geometry (see [2, 3, 9, 10]). In particular the group
of polynomial symplectomorphisms of C

2n is conjectured to be isomorphic to the group of
automorphisms of Weyl algebra An(C) (see [3]).

The first property of PlSp(X) we prove is its transitivity (k-transitivity) on finite collections
of points of X. Fix an arbitrary k ∈ N; then we prove the following theorem.

Theorem 1. For any two sets {a1, . . . , ak}, {b1, . . . , bk} of points of (X, ω) there is
an element g ∈ PlSp(X) such that g(ai) = bi, i = 1, . . . , k. In other words PlSp(X) acts
k-transitively on X.

Let Al,2r be the subset of the Grassmannian G(l, 2n) of all l-dimensional linear subspaces
of X on which the form ω has rank at most 2r. In [5] it was proved that in the linear case the
conformal symplectic group coincides with the set of all linear automorphisms preserving the
non-empty stratum Al,2r for fixed 0 < l < 2n and 2r + 2 � l.

We say that an l-dimensional subspace of X, 2 � l � 2n − 2, has type σ if it is isotropic (if
2 � l � n), symplectic or pseudo-symplectic (if l is odd). As a preparatory result used later in
the polynomial case we prove the following theorem.
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Theorem 2. Let (X, ω) be a symplectic vector space of dimension 2n > 2, and let F : X →
X be a linear automorphism. Let 2 � l � 2n − 2, and assume that F transforms l-dimensional
subspaces of type σ onto subspaces of the same type. Then there is a non-zero constant c such
that F ∗ω = cω.

The very first step of the algebraic (polynomial) symplectic geometry starts with the analog
of Theorem 2 in the case of polynomial automorphisms reconstructing the group of polynomial
symplectomorphisms (conformal symplectomorphisms [11]).

Let Y ⊂ X be a smooth k-dimensional (2 � k � 2n − 2) algebraic variety in an affine
symplectic space X. We prove that there are even numbers r1 > . . . > rs (s � 1) and disjoint
algebraic locally closed subvarieties Yr1 , . . . , Yrs covering Y and such that the form ω has rank
ri on Yri . The sequence {r1, . . . , rs} is a symplectic invariant which we will call the symplectic
type of the variety. Fix an arbitrary number 2 � k � 2n − 2; then we prove the following
theorem.

Theorem 3. Let X be an affine symplectic space of dimension 2n > 2. A polynomial
automorphism Φ : X → X is a conformal symplectomorphism if and only if it preserves the
symplectic types of all algebraic k-dimensional subvarieties of X.

2. Linear symplectomorphisms

Here we recall some basic notions about the linear symplectic group. Let (X, ω) be as before.
The symplectic complement of a linear subspace L ⊂ X is defined as the subspace

Lω = {x ∈ X : ω(x, y) = 0 ∀y ∈ L}.

This space may not be transversal to L. A subspace L ⊂ X is called: isotropic if L ⊂ Lω,
coisotropic if Lω ⊂ L, symplectic if L ∩ Lω = {0} and Lagrangian if Lω = L. The subspace L
is symplectic if and only if ω |L is a non-degenerate form. Moreover, L is pseudo-symplectic if
dim L = 2k + 1 is an odd number and rank ω|L = 2k. For any subspace L we have

dim L + dimLω = dimX and (Lω)ω = L.

There exists a basis of X, called a symplectic basis, u1, . . . , un, v1, . . . , vn such that

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij .

If L ⊂ X is a subspace, then there is a basis u1, . . . , uk, v1, . . . , vk, w1, . . . , wl of L such that
ω |L (uj , vk) = δjk and the values of ω |L on all other pairs vanish. This basis extends to a
symplectic basis for (X, ω), and the integer 2k is the rank of ω |L (cf. [12]).

We say that a linear automorphism F : X → X is a symplectomorphism (or is symplectic
on X) if F ∗ω = ω, that is, ω(x, y) = ω(F (x), F (y)) for every x, y ∈ X. If L ⊂ X is a linear
subspace, then we say that F is symplectic on L if ω(x, y) = ω(F (x), F (y)) for every x, y ∈
L. The group of automorphisms of (X, ω) is called the symplectic group and is denoted by
Sp(X, ω). Via a symplectic basis, Sp(X, ω) can be identified with the group of 2n × 2n matrices
A which satisfy AT J0A = J0, where J0 is the 2n × 2n matrix of ω (in a symplectic basis). In
the following we identify such matrices with linear symplectomorphisms. It can be proved (see,
for example, [8]) that for n × n matrices X and Y the matrix[

X −Y
Y X

]
,
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where XT Y = Y T X and XXT + Y Y T = 1, is symplectic. In particular if X is a real orthogonal
matrix then the matrices [

X 0
0 X

]
(2.1)

and [
0 −X
X 0

]
(2.2)

are symplectic. We will need the following result (we give a proof here because of lack of a
direct reference).

Theorem 2.1. The group Sp(X) is an irreducible variety.

Proof. Let (X, ω) be an affine symplectic space of dimension 2n. We argue by induction on
n. If n = 1 then Sp(X) is a non-singular quadric in K

4, and hence it is an irreducible variety.
Let n > 1 and let H ⊂ X be a symplectic plane in X. The group Sp(X) acts on the

Grassmannian G = G(2, 2n) and the orbit of H is a Zariski dense open subset of G. In particular
this orbit is an irreducible variety. Moreover, the isotropy group of H is isomorphic to the
product Sp(K2)×Sp(K2n−2), and hence it is irreducible by the induction hypothesis. This
implies that the group Sp(X) is also irreducible.

Definition 2.1. Let Al,2r ⊂ G(l, 2n) denote the set of all l-dimensional linear subspaces
of X on which the form ω has rank at most 2r.

Of course Al,2r ⊂ Al,2r+2 if 2r + 2 � l. We have the following proposition (see [5, Corollar-
ies 6.3 and 6.4]).

Proposition 2.1. Let (X, ω) be a symplectic vector space of dimension 2n, and let F :
X → X be a linear automorphism. Let 0 < l < 2n and let 2r + 2 � l. Assume that the set
Al,2r is non-empty and F transforms Al,2r into Al,2r. Then there is a non-zero constant c such
that F ∗ω = cω.

Proposition 2.2. Let (X, ω) be a symplectic vector space of dimension 2n, and let F :
X → X be a linear automorphism. Let 2 � l � n, and assume that F transforms l-dimensional
isotropic (for example, Lagrangian) subspaces onto subspaces of the same type. Then there is
a non-zero constant c such that F ∗ω = cω.

Definition 2.2. Let H be a linear subspace of an odd dimension l. We say that H is
pseudo-symplectic if rank ω|H = l − 1.

From Proposition 2.1 we can deduce the following interesting fact (which is not contained
in [5]).

Proposition 2.3. Let (X, ω) be a symplectic vector space of dimension 2n, and let
F : X → X be a linear automorphism. Let 2 � l � 2n − 2, and assume that F transforms
l-dimensional symplectic (or pseudo-symplectic if the number l is odd) subspaces onto
subspaces of the same type. Then there is a non-zero constant c such that F ∗ω = cω.
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Proof. Let l = 2r if the number l is even, otherwise let l = 2r + 1. By assumption the set
Al,2r−2 is non-empty and the mapping F ∗ induced by F transforms the set A = Al,2r\Al,2r−2
into the same set A. Of course F ∗ : A → A is an injection. Since A is a smooth algebraic variety
and the mapping F ∗ is regular, it is a bijection by the Ax theorem (see [1] if K = C and [4] if
K = R). This means that F transforms Al,2r−2 into the same set, and we conclude the proof
by Proposition 2.1.

3. Transitivity of the group PlSp(2n)

First we show that the group PlSp(X) is quite large. We start with the following lemma.

Lemma 3.1. Let ai = (αi,1, . . . , αi,2n) ∈ K
2n, and let A = {a1, . . . , am} be a finite family

of points. Let πk : K
2n 	 (α1, . . . , α2n) → αk ∈ K be the projection. There is a linear symplec-

tomorphism L such that if A′ = L(A), then all projections πk, k = 1, . . . , 2n, restricted to A′

are one-to-one, that is, if

L(ai) = (α′
i,1, . . . , α

′
i,2n)

then for every {i, j} ⊂ {1, . . . , m}, α′
i,s = α′

j,s for some s implies that α′
i,s = α′

j,s for all s.

Proof. For i 
= j consider the vectors vij = ai − aj . Let the desired symplectomorphism L
have matrix [lij ], and let li = [li1, . . . , li2n] be the ith row. Let (·, ·) denote the scalar product.
For given i, j consider the set A(1, i, j) ⊂ Sp(K2n) of all symplectomorphisms L such that
(l1, vij) = 0. It is a proper algebraic subset of Sp(K2n). Indeed, it is an algebraic subset of
Sp(K2n). Moreover, it is a proper subset of Sp(K2n), because we can easily find a matrix of type
(2.1) or (2.2) which is not contained in A(1, i, j). Indeed, every unit vector es = (0, . . . , 1s, . . . , 0)
can be realized as a row of some matrix Qs of type (2.1) or (2.2). In particular if vijs 
= 0, then
(es, vij) 
= 0 and the matrix Qs does not belong to the set A(1, i, j).

In the same way for every s ∈ {1, . . . , 2n} the set A(s, i, j) of symplectomorphisms L which
satisfy (ls, vij) = 0 is a nowhere dense algebraic subset of Sp(K2n). However, if

L ∈ Sp(K2n) \
⋃
s,i,j

A(s, i, j),

then for every i, j we have L(aj) = L(ai) if and only if for some s ∈ {1, . . . , n} we have
α′

i,s = α′
j,s.

Let us recall the following definition.

Definition 3.1. Let G be a group which acts on a set X. We say that G acts k-transitively
on X if for any two k-element subsets {a1, . . . , ak}, {b1, . . . , bk} of X, there is a g ∈ G such
that g(ai) = bi for i = 1, . . . , k.

We have the following basic result.

Theorem 3.1. Let (X, ω) be an affine symplectic space of dimension 2n. For every m ∈ N

the group PlSp(X) acts m-transitively on X.
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Proof. Let ai = (αi, βi) ∈ K
2n and let bi = (γi, δi) ∈ K

2n, i = 1, . . . , m, be finite families of
distinct points. By Lemma 3.1 there are linear symplectomorphisms L and T such that

L(ai) = (α′
i, β

′
i) and T (bi) = (γ′

i, δ
′
i),

where for every i, j, s we have L(aj) = L(ai) if and only if α′
is = α′

js for some s ∈ {1, . . . , n},
and T (bj) = T (bi) if and only if δ′

is = δ′
js for some s ∈ {1, . . . , n}.

Let φi(t) be a polynomial of one variable such that

φi(α′
is) = β′

is for s = 1, . . . , n.

Consider the polynomial symplectomorphism

Φ(x, y) = (x, y1 − φ1(x1), y2 − φ2(x2), . . . , yn − φn(xn)).

By construction we have

Φ ◦ L(ai) = (α′
i, 0) for i = 1, . . . , m.

In a similar way we can construct a polynomial symplectomorphism

Ψ(x, y) = (x, y1 + ψ1(x1), y2 + ψ2(x2), . . . , yn + ψn(xn))

such that

Ψ(α′
i, 0) = (α′

i, δ
′
i) for i = 1, . . . , m.

Further there exists a polynomial symplectomorphism

Λ(x, y) = (x1 − λ1(y1), x2 − λ2(y2), . . . , xn − λn(yn), y)

such that

Λ(α′
i, δ

′
i) = (0, δ′

i) for i = 1, . . . , m.

Finally, we can construct a polynomial symplectomorphism

Σ(x, y) = (x1 + σ1(y1), x2 + σ2(y2), . . . , xn + σn(yn), y)

such that

Σ(0, δ′
i) = (γ′

i, δ
′
i) for i = 1, . . . , m.

Set

P = T−1 ◦ Σ ◦ Λ ◦ Ψ ◦ Φ ◦ L.

Then

P (ai) = bi for i = 1, . . . , m.

Example 3.1. Theorem 3.1 does not hold for an arbitrary symplectic algebraic variety. We
construct a smooth rational algebraic symplectic manifold Y with trivial automorphism group,
in particular PlSp(Y ) = {id}. Let G ⊂ C

2n be a sufficiently generic hypersurface of degree
d > 2n. Set Y = C

2n\G and equip Y with the symplectic structure induced by the inclusion
i : Y → C

2n.
We show that Aut(Y ) = {id}. Let F : Y → Y be a polynomial automorphism of Y. Since the

hypersurface G is not uniruled (for details see, for example [6, 7]), F has a unique extension
to a polynomial automorphism F : C

2n → C
2n. Moreover, by [6] we have Aut(G) = {id}, and

we know that the hypersurface G is the identity set for automorphisms, that is, if F |G = {id},
then F = id. Altogether this implies that Aut(Y ) = {id}.
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4. Geometric characterization

Definition 4.1. Let (X, ω) be an affine symplectic space, and let Y ⊂ X be a smooth
algebraic subvariety. We say that Y is a Lagrangian variety if for every y ∈ Y the linear
space TyY is a Lagrangian subspace of TyX. In an analogous way we define a symplectic,
pseudo-symplectic and isotropic variety.

Of course in X there are affine linear isotropic (or symplectic) subvarieties — these are
varieties of the form a + H, where H is a linear isotropic (or symplectic) linear subspace of X.
We show that there are also quite a lot of non-linear ones. The measure of non-linearity is the
degree of a variety. Let us recall the following definition.

Definition 4.2. Let Y ⊂ C
n be a complex variety of dimension k. By the degree of Y

(deg Y ) we mean the number
#(Ln−k ∩ Y ),

where Ln−k is an (n − k)-dimensional sufficiently general affine-linear subspace of C
n. If

Y ⊂ R
n is a real variety, then by deg Y we mean deg YC, where YC denotes the Zariski closure

of Y in C
n.

It is not difficult to prove the following proposition.

Proposition 4.1. Let Y ⊂ K
n be an algebraic variety. Assume that there is an affine line

l which intersects Y in precisely D points. Then

deg Y � D.

Proof. We use induction on n. If n = 1 or n = 2 then Y is a set of points or a curve and
the result is clear. Now let n > 2 and assume that our result holds for n − 1. Take a general
hyperplane H which contains l. Then by the Bézout theorem deg Y ∩ H � deg Y , and by the
induction hypothesis we have degY ∩ H � D.

Now we can prove the following proposition.

Proposition 4.2. Let (X, ω) be a symplectic 2n-dimensional affine space. For any positive
integers s � n and D there is an algebraic isotropic s-dimensional subvariety Y ⊂ X such that

deg Y � D.

Proof. Fix a linear isotropic s-dimensional subvariety H ⊂ X. Choose D points a1, . . . , aD

on H and additionally a point a0 
∈ H.
Now take a line l ⊂ X and choose distinct points b1, . . . , bD, b0 on it. By Theorem 3.1

there is a polynomial symplectomorphism Φ of X such that

Φ(aj) = bj for j = 0, 1, . . . , D.

Now set Y = Φ(H). By construction the line l intersects Y in at least D points and it is not
contained in Y. This implies that deg Y � D.

In the same way we can prove the following proposition.
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Proposition 4.3. For any even integer 0 < s < 2n and any positive integer D there is an
algebraic symplectic s-dimensional subvariety Y ⊂ X such that

deg Y � D.

Similarly for any odd integer 0 < s < 2n and any positive integer D there is an algebraic
pseudo-symplectic s-dimensional subvariety Y ⊂ X such that

deg Y � D.

Finally, we show that a polynomial symplectomorphism can be described as one which
preserves symplectic, pseudo-symplectic or isotropic algebraic subvarieties of X.

Proposition 4.4. Let (X, ω) be an affine symplectic space of dimension 2n > 2. Fix
an integer 2 � s � n. Assume that Φ : X → X is a polynomial automorphism which pre-
serves the family of all s-dimensional isotropic subvarieties of X. Then Φ is a conformal
symplectomorphism, that is, there exists a non-zero number c ∈ K such that

Φ∗(ω) = cω.

Proof. Fix x ∈ H ⊂ X, where H is an affine-linear s-dimensional isotropic subvariety of X.
Let x′ = Φ(x) and let H ′ = Φ(H). By assumption the variety H ′ is isotropic. This means that
the space dx Φ(TxH) = Tx′H ′ is also isotropic. Hence dxΦ transforms all linear l-dimensional
isotropic subspaces of TxX onto subspaces of the same type. By Proposition 2.2 this implies
that dx Φ is a conformal symplectomorphism, that is,

(dxΦ)∗ω = λ(x)ω,

where λ(x) 
= 0. This means that there is a smooth (even polynomial) function λ : X → K
∗

(=K\{0}) such that
Φ∗(ω) = λω.

since the form ω is closed, so is Φ∗(ω). Since n > 1 this implies that the derivative dλ vanishes,
that is, the function λ is constant.

In a similar way (we now use Proposition 2.3) we can prove the following theorem.

Proposition 4.5. Let (X, ω) be an affine symplectic space of dimension 2n > 2. Fix an
integer 0 < s < n. Assume that Φ : X → X is a polynomial automorphism which preserves
the family of all 2s-dimensional symplectic subvarieties of X or (if 1 < s < n − 1) the family
of all (2s + 1)-dimensional pseudo-symplectic subvarieties of X. Then Φ is a conformal
symplectomorphism, that is, there exists a non-zero c ∈ K such that

Φ∗(ω) = cω.

To end this section, we introduce the notion of symplectic type of an algebraic variety.

Proposition 4.6. Let (X, ω) be an affine symplectic space of dimension 2n. Let Y ⊂ X
be a smooth k-dimensional algebraic variety. Then there are even integers r1 > . . . > rs (where
s � 1) and disjoint algebraic locally closed subvarieties Yr1 , . . . , Yrs which cover Y such that the
form ω has rank ri on Yi. Moreover Yri+1 ⊂ cl(Yri). The sequence {r1, . . . , rs} is a symplectic
invariant, we call it the symplectic type of the variety Y.
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Proof. Consider the Gauss mapping

G : Y 	 y −→ TyY ∈ G(k, 2n).

This is a regular (locally polynomial) mapping. By [5] the linear spaces in Grassmannian
G(k, 2n) on which the rank of ω is equal to r form a smooth locally closed (in the Zariski
topology) subset Sr, and Sr−2 ⊂ cl(Sr). Now it is enough to take Yr = G−1(Sr) if this set is
not empty.

Example 4.1. (a) A 2k-dimensional subvariety Y ⊂ X is a symplectic subvariety if and
only if the symplectic type of Y is {2k}.

(b) A (2k + 1)-dimensional subvariety Y ⊂ X is a pseudo-symplectic subvariety if and only
if the symplectic type of Y is {2k}.

(c) A subvariety Y ⊂ X is an isotropic subvariety if and only if the symplectic type of
Y is {0}.

Now the following statement is obvious.

Theorem 4.1. Let (X, ω) be an affine symplectic space of dimension 2n > 2. Fix an integer
2 � k � 2n − 2. A polynomial automorphism Φ : X → X is a conformal symplectomorphism
if and only if it preserves the symplectic types of all algebraic k-dimensional subvarieties of X.

It seems that a complex symplectic geometry has a special flavor. To see this we conclude
this paper by the following theorem.

Theorem 4.2. Let X = (C2n, ω) be a complex affine symplectic vector space. Let Y ⊂ X
be algebraic submanifold of dimension 0 < 2s < 2n. Let

S = {y ∈ Y : TyY is not a symplectic space}.

Then only the following three cases are possible:
(1) S = Y ;
(2) S is a hypersurface;
(3) S = ∅.

Proof. Assume that S 
= Y and S 
= ∅. Consider the Gauss mapping

G : Y 	 y −→ TyY ∈ G(2s, 2n).

This is a regular (locally polynomial) mapping. By [5] the linear spaces in Grassmannian
G(2s, 2n) on which the rank of ω is less than 2s form a divisor, let us denote it by D. Now
S = G−1(D), consequently the set S is a divisor in Y.

Corollary 4.1. Let X and Y be as above. If Y is symplectic at every point outside a
subset of codimension at least two, then Y is a symplectic submanifold of X.
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Św. Tomasza 30
31-027 Kraków

and

Instytut Matematki
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