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ISOTROPIC VARIETIES IN THE SINGULAR
SYMPLECTIC GEOMETRY

STANISLAW JANECZKO AND ADAM KOWALCZYK

Maximal isotropic varieties of the singular symplectic structure xidxi f\dy\ + ^ dx{ A<£t/;
i=2

on R2n are characterised in terms of generating families. The normal forms of the simplest
singularities (of codimension 1) are obtained with the help of the theory of boundary
singularities.

1. INTRODUCTION

Many of the regular properties of physical systems have been described successfully
in the symplectic geometry framework (see [1, 9, 16]). However the singularities of wave
front, evolution [3], critical regions phenomona [8] and the low-temperature thermody-
namics require another approach. As a first step towards a better modelling of these
peculiar phenomona we investigate the geometry of maximal isotropic submanifolds in
the_phase space endowed with the simplest stable singular symplectic structure

a = xidxi A dyi + 2^ dxi A
i=2

introduced in the theory of singularities of closed 2-forms (see [11]).

In section 2 we give the canonical representations of maximal isotropic submanifolds

(a -germs) in (R2n,<r) by means of generating functions. Then we obtain the a -germs

as pull-backs of Langrangian submanifolds in I H2n,^dxi A dyi I . In section 3 we
V « /

generalise the a -germs to a -varieties. Then we obtain the initial classification list
of normal forms of the a -varieties in terms of generating families. These results are
derived in the standard singularity theory fashion with an essential use of Arnold's
classification of boundary singularities [2].
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2. LOCAL STRUCTURE OF MAXIMAL ISOTROPIC MANIFOLDS

Let us consider R2n with fixed coordinates ( x i , . . . , z n , y i , . . . , y n ) and a 2-form
n

a = x\dx\ At/i + X) dx{ Adyi. A maximal isotropic manifold ( a -manifold) is defined as
i=2

an immersed n-dimensional submanifold M = t(Rn) of R2 n , where L: R" —* R2n is a

smooth immersion such that o*a = 0. In this section we characterise germs at 0 G R2n

of a -manifolds. We denote them by (M, 0) and call them a-germs. A germ ((.,0) of

the immersion t: Rn —• R2n can always be written in one of the following two forms:
(1)

<-• (xi,yi,yj) e R " " (Xi{xi,yi,yj),xi,XJ(xi,y1,yj),y1,Yi(xi,y1,yj),yj) £ R2n

or

(2)
i\ (x1,xI,yJ) £ Rn y-y (xu xr, Xj{Xi ,xi,yj), Yx{xu x/,yj), Y>(a:i, xt,yj),yj) £ R2n

where X: Rn -> RlJl , Yt: R" - • RlJl and Yr, X j : Rn -» R are smooth germs
(IU J = {2,...,n}, In J = 0) . Using the results of [2, 16], we obtain,

PROPOSITION 2.1. A cr-germ, (M,0), can be represented by at ieast one of the

following systems of equations:

-x1 = -^(y1,xi,yj)

dF
(3) yi = •£—{yi,xi,yj)

dF
-xj = -—\yi,xi,yj)

oyj

dF

9F
(4) y/ = -g^{xi,xr,yj)

dF

where F is a. germ of smooth function on R" and / U J = {2, . . . , n } , I C[ J — %.

A cr-gerrn having representation (3) is called regular. A diffeomorphism R2n —> R2n

preserving the 2-form cr and the fibration n: R2" —+ Rn, (x,y) —> a; is called a <r-
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LEMMA 2.2. Any cr-germ is cr-equivalent to a regular cr-germ.

PROOF: If an immersion i: R" —> R2n is not regular, it has representation (1) with

(5) §£<°)=°-
In this case its composition with the cr -equivalence <f>: R2" —+ R2 n, (x,y) —> (x,x +y)

is regular (since it has a representation of the form (1) but not satisfying (5)). |

Let us now consider a symplectic form u> = £) dxi A dyi on R2 n. We recall some
basic notions of the standard theory of Lagrangian singularities [2, 15]. A symplec-
tomorphism of (R2n,w) preserving the fibration TT is called a Lagrangian equivalence
(L-equivalence). An L-equivalence preserving the hyperplane { i j = 0} will be called
restricted (rL-equivalence). An n-dimensional immersed submanifold t: Rn —» R2rt

such that i*u> = 0 is called Lagrangian; in such a case the germ (L,0) , L = <-(Rn),
will be called an L-germ.

The transformation

(6) p: ( X , J ) £ R 2"

preserves the fibration n and satisfies the condition

(7) p*w = <T.

Obviously p is not a unique transformation with these properties. For example its
composition with any Lagrangian equivalence of (R2n,u>) has the same properties.

PROPOSITION 2.3.

(i) For any rL-equivalence $ of (R2n,u>) there exists a <7-equivalence 4>
making the following diagram commutative:

R 2 n — ^ — • R 2 n

(8) | P [P

<t>
R 2 n . Ij2n

(ii) (p(L),0) is an L-germ for any regular cr-germ (L,0).

PROOF:

(i) For any rL-equivalence $ we have $(x,y) = (Xi,{x),Yi(x,y)), where

^ ( a ; ) = x^a + aix)), 0 / o E R a n d a e m 2 . A d i f f e o m o r h p i s m <j>
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satisfying diagram (8) and preserving the fibration TT , can be denned as

follows:

For such 4> we have <fi*cr = (f>*p*u) = p*$*u> = p*u> = a (see 7).
(ii) follows directly from equation (3). |

Example 2.4. For a regular cr-germ (M,0), M — {(t,t)}, the set L d= p(M) is the
parabola x = y2 . Its pre-image is given by the equation x2 — y2 = 0. It contains M

as one of two smooth branches. p~1(L) is a symmetrisation (with respect to reflection
in the j/-axis) of this branch. On the basis of Proposition 2.1 we can easily calculate
the generating function for L: F(y) = jy3 .

3. MODIFIED CLASSIFICATION OF LAGRANGIAN VARIETIES

It is well known [2, 15] that an L-germ (L,0) in (R2n,u>) is generated by the germ
(F, 0) of a Morse family, that is, it is given by the equations

W dF

where F(\,x) £ C°°(Rk x R") and

fd2F d2F
(10) k ^

By dropping requirement (10) we generalise the notion of Morse family to generating
family [9, 7]. By applying equations (9) to the generating family we obtain a Lagrangian
variety (L-variety) which is not necessarily a smooth submanifold of R2n . (Such L-
varieties appeared naturally in Arnold's theory of singularities of systems of rays [3].)
In the generic case, when the generating family F is polynomial, the corresponding
L-variety is stratifiable with all strata isotropic and maximal strata Lagrangian [9,
6]. Two generating families (Fj.O), Fi{X,x) € C°°(Rfc x Rn) , i = 1,2, are called
equivalent if there exists a diffeomorphism

$: (Rfc x Rn,0) -> (Rk x Rn,0), (X,x) i-» {A(X,x),X(x))

and a smooth function / G C°°(Rn) such that

(11) F2(A(X,x),X(x)) = F1(X,x) + f(x)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700027428
Downloaded from https://www.cambridge.org/core. Instytut Matematyczny PAN, on 14 Sep 2017 at 19:24:19, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700027428
https://www.cambridge.org/core
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near 0 £ Rfc x Rn . The equivalence of generating families which preserves the hyperplane
{xi = 0} will be called restricted (r-equivalence). For r-equivalences the first coordinate
of X is divisible by X\ , that is

(12) Xt(x) = xt{a + <f>{x)),

where a = const ^ 0 and <f> £ m ( n ) . By straightforward calculation we obtain:

PROPOSITION 3.1. Two L-varieties generated by r-equivalent generating families

are rL-equivalent.

Remark 3.2. For Morse familes and L-germs the converse is true. From [16, 2] it
follows that any two L-equivalent L-germs have equivalent minimal Mores families (that
is Morse families Fi(X,x) such that d2F1/d\2\0 = 0).

We recall [2, 5] that a generating family (F(X,x),Q), (X,x) £ R* x Rn , is versal if
any other generating family (F'(X,x'), 0) , {X,x') £ R*xR n ' such that F'\x,=0 = F\x=0

is induced from F, that is there exists a mapping

(13) (X,x) € Rfc x Rn' >-> (\(X.x'),X(x')) <= Rfc x Rn

and a function / : Rn —» R such that

F'(X,x') = F(A(X,x'),X(xl)) + f(xl).

(Classifications of versal families can be found in [12, 10].)
For the purposes of this paper it seems natural to consider restricted versality by

imposing on the inducing mappings (13) a requirement of preservation of distinguished
hyperplanes, that is in the case of hyperplanes {xi = 0} and {xj = 0}, by assuming
X({x\ = 0}) C {x\ = 0}. This requirement means that Xi, the first coordinate of
X, is of the form (12). The following result reduces the restricted versality to ordinary
versality.

PROPOSITION 3.3. A family {F(X, x), 0) is restricted versal if and only if the family
(F(X,x)\Xl=0,0) is versal.

PROOF: <;= . Assume (F(X,x)\Xl=0,0), (X,x) G R* x Rn is a versal family
and (F'(X, x'), 0), (A, x') 6 Rfc x Rm is such that F'{X, 0) = F(X, 0). Then (A, x') i->
(A(A, x'), 0, X2(A, x'),..., Xn(A, x')) is the demanded morphism.

=$• . Following the standard lines of versality theory [4, 13] for restricted versality
we obtain the following necessary condition:

dF\ I df dF dF
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Factorising by m , ^ , , we get the following condition of infinitesimal Versality for

F\Xl=0:
IdF \ (dF_. dF^ \

As is well known this condition implies varsality of F\XJ=Q [2, 4, 11]. I

In the case when the vector space ^A/{fx(^5 ^)U=o)eA lias a finite number of
generators, say {ei(A),..., em(A), 1}, we have the decomposition

m

F(\, x) = F(A(\ x), 0) + J2 d ° A(A, x)ui(x) + f(x)
t = i

for some smooth it = (u i , . . . , «TO): R" -> Rm and / : R" -> R [4,14], where A: Rfc x
Rn —> Rfc , A|Rtx roy — idRk . From Proposition 3.3 we find that any other r-equivalent
family (F',0) has the form

m

F'(X, x) = F(A(A, *), 0) + Y, e i (A(A ' *))«'*(*) + / ( x ) '
t=i

where A|Ritxroi is a diffeomorpliism of (R , 0) and u' makes the following diagram
commutative:

(Rre,{a;1 =0},0) " -> (Rm,0)

(Rn,{xi = 0},0) = (Rn,{zi = 0},0)

Here <f> is a diffeomorphism preserving the hyperplane {xi = 0}. It is apparent that r-
equivalence classes of generating families (F(A,x),0) are parametrised by singularities
of -F|i=o and equivalence classes of mappings u in the sense of diagram (14) (we
call them A^-equivalences). In this context it is natural to introduce the following
characteristics of F : (i) codimension of (F,0), codimF = dim (£A/(^X(A, X)\X=0)£X)

and (ii) corank of F = m ~ rank ( f̂  ) U=o , where u: R" —> Rm is assumed to be such

that F is induced via a pull-back f A,wj from a universal unfolding F of F\x=o • It
is easily seen that these two characteristics are invariants of r-equivalences. Now using
Arnold's classification methods [3] we obtain lists of normal forms for some simplest
r-equivalence classes. We consider here the simplest case of codim = 1. The case of
codim = 2 and 3 will be considered subsequently in the forthcoming paper.
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PROPOSITION 3.4. The list of simple normal forms of r-equivalence classes of gen-

erating families F(X,x), (A,x) G R x Rn of codimension 1 is the following:

A2A\

A3

A3

X3

x2A;

(±x2 ± x\ + gjA, « ^ 1,

(X2X3 i i j i i ] + <?)A, fc ^ 4;

A3 + (a;?. ± x| ± xi + g)A;

A3 + (x3 + x2x\ ± X! +g)A;

A3 + (x?, + s ^ ± i ] + g)A;

A -f- (xjX2 i X2 ~f~ qjX-f k ^ 2j

A + (ixj + 2̂ "̂~ ?)A;

wiiere q is a 11011-degenerate quatratic form of the remaining variables.

PROOF: Up to an r-equivalence we have

F{X,x) = X3 + Xu{x),

where-u-:-R"- —> R. Using the list of simple normal forms of singularities of u on the
manifold {xj ^ 0} C R" with boundary {xj = 0} [2, Sec. 17.4] we obtain the above
classification. |

Remark 3.5.

(i) In the above list .A2-<4o is the only restricted versal family,

(ii) Families A2A°k , A2D°k and A2E? are Morse families while A2B\ , A2C\

and A2F\ are not (and provide L-varieties which are not manifolds),

(iii) Generating families (.F(A,x),o) , (A, x) £ Rk x Rn, k > 2 with F\z=0

having singularity A2 have simple normal forms F(Xi, x) +Q(A2,..., Xk),

where F has one of the normal forms in Proposition 3.4 and Q is a

non-degenerate quadratic form. Obviously F and F generate the same

L-variety.

We define a cr-variety as a p pull-back (see [6]) of a L-variety in R2n . Having
a generating family (F(X,x),0), (X,x) £ Rm x R" for the L-variety, we obtain the
following equations for the corresponding cr -variety Vp :

dF(x i ,
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168 S. Janeczko and A. Kowalczyk [8]

Directly from Proposition 2.1 and the existence theorem for Morse familes (for example

[2, 16]) we obtain: *

PROPOSITION 3.6. For an y regular cr-germ, (E,0) , there exists a generating family

(F,0) on Rm x Rn such that

E.»m def { ( ± x i ) ^ ^ ...,Xn,y); (x,y) £ S} = VF near 0 G R2".

From Lemma 3.7 and Proposition 2.3 follows immediately:

PROPOSITION 3.7. Two cr -varieties corresponding to r-equivalent generating fam-

ilies are cr -equivalent.

The above results show that the local classification of cr-germs is subordinate to the

classification of cr-varieties, and subsequently to the classification of generating families

up to r-equivalences (described in Section 3).

THEOREM 3.8. Initial classification of generic a-varieties is provided by the clas-

sification list of generating families in Proposition 3.4.
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