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We analyze the global structure of Lagrangian Grassmannian in the product sym-
plectic space and investigate the local properties of generic symplectic relations.
The cohomological symplectic invariant of discrete dynamical systems is general-
ized to the class of generalized canonical mappings. Lower bounds for the number
of two-point and three-point symplectic invariants for billiard-type dynamical sys-
tems are found and several examples of symplectic correspondences encountered
from physics are presented. ©2000 American Institute of Physics.
@S0022-2488~00!01608-X#

I. INTRODUCTION

Let (M ,v) be a symplectic manifold. We consider the productM3M endowed with the
symplectic structureV5p2* v2p1* v, wherep i are the corresponding projections onto the co
ponents ofM3M . The space of Lagrangian submanifolds of (M3M ,V) is a natural generaliza
tion of the group of symplectic transformations of (M ,v). We notice that if f:(M ,v)
→(M ,v) is a symplectomorphism, then its graph, graphf,M3M is the Lagrangian submani
fold, Vugraphf50. There is an obvious motivation to study the global and local structure of
Lagrangian submanifolds, which are also called symplectic relations or symplectic corre
dences~cf. Ref. 1!. They are coming from various branches of mathematics in which the s
plectic ideas and methods were succesfully applied~cf. Refs. 1–5!.

The very elementary examples of symplectic relations, which are not the graphs of sym
tomorphisms, play an important role in geometrical diffraction theory~Ref. 6!. Consider the setM
of all oriented affine lines inR3. M is a four-dimensional symplectic manifold,M[T* S2, con-
structed by the symplectic reduction from the free particle Hamiltonian hypersurface~cf. Ref. 7!.
This is the space of rays of geometrical optics. One of the most classical systems that prov
nontrivial symplectic relation is a billiard system. IfV is a smooth compact, convex region inRn

andX denotes its boundary hypersurface, then the symplectic relation joining the incoming~going
through the interior of the region! and outgoing rays, by the reflection lawy5x22(xun)n ~where
n is the unit outer normal toX, and (•u•) denotes the scalar product inRn!, is a graph of
symplectomorphism called the billiard map~cf. Ref. 8!. However, ifV is no longer convex, then
the reflection law should be extended by the diffraction role~cf. Ref. 6!, which prescribe to one
incoming ray the family of outgoing rays gliding in the tangential point of an incoming ray.
billiard symplectic relation is no more the graph of a symplectomorphism. In the case of inco
ray, sayx, going through the one-dimensional edge of an aperture inR3, the outgoing raysy form
a cone defined by the equations (x2yug)50, uxu5uyu, whereg is a vector tangent to an edg
oriented according to the incoming ray orientation. Our aim in this paper is to provide the
metric framework for the action of generalized mechanical~like nonconvex billiard! and optical
~like diffraction on apertures! systems.

An important object in investigation of geometry of Lagrangian submanifolds is the man
Ln of linear Lagrangian spaces in 2n-dimensional symplectic space, called the Lagrangian Gr
mannian~cf. Ref. 9!. Its natural stratification, allowing us to indicate the global structure

a!Electronic mail: janeczko@ipe.pw.edu.pl
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Lagrangian submanifolds and their singularities, is constructed as follows.
Let us fix aPLn . By Ln

a , we denote the set of all Lagrangian subspaces inLn that are not
transversal toa. We haveLn

a5øk51
n Ln,k

a ,

Ln,k
a 5$bPLn ;dim~bùa!5k%

and

dimLn,k
a 5

n~n11!

2
2

k~k11!

2
>3, ~1!

if k.1.
Ln

a may be oriented by choosing the vectors fromTL
n
aLn transversal toLn

a , formed by

symmetric bilinear quadratic forms on elementslPLn
a , which are positive definite onaùl. So

Ln
a with this orientation represents a singular cycle that is Poincare´ dual to the universal Maslov

class~cf. Ref. 10!.
Now we pose the following problem:Does there exists a similar (to that of the standa

classification of Lagrangian singularities in a cotangent bundle) classification of Lagran
submanifolds and their singularities in the product symplectic space exploiting the cano
product structure?Approaching the answer for this question we investigate the canonical s
fication ~i.e., a partition into smooth submanifolds as it was done forLn above! of the Lagrangian
GrassmannianL2n in the product symplectic space, induced by the product structure. This s
fication naturally appears in the theory of linear symplectic relations and is especially imp
for searching the geometric structure of the images by symplectic relations~cf. Refs. 7 and 11!. In
Sec. II we prove that any linear symplectic relation in the product space is a compositi
reduction relation and a symplectomorphism. By this decomposition propertyL2n is stratified and
the codimension formulas are calculated. In Sec. III, the first step into the theory of classifi
of germs of nonlinear symplectic relations is done, and the generic appearance of some s
points is proved. In the last section the action ofL2n onto elements ofLn is considered in the
framework of unitary groupU(2n) and homogeneous spaceU(2n)/O(2n) representingL2n ~cf.
Refs. 10 and 9!. In the nonlinear case of symplectic relations the iterational cohomological s
plectic invariant was introduced and its cohomological properties were described. By the
theory approach~cf. Refs. 12 and 13!, the number of two-point and three-point~defined on
two-point and three-point periodic orbit of symplectic relation! symplectic invariants were esti
mated from below for a possibly nonconvex billiard system and systems of equally ch
particles on the surface. To conclude, we note that this paper had its origin in an attempt to fi
possible complete classification of symplectic invariants by action of generalized symplectic
pings ~cf. Ref. 7!. The results here show that there is an open area for such invariants
applications to classical physical problems.

II. LAGRANGIAN GRASSMANNIAN IN THE PRODUCT SYMPLECTIC SPACE

Now we consider the linear product symplectic space,

M5~M3M ,p2* v2p1* v!,

where (M ,v) is a 2n-dimensional symplectic vector space. ByL2n we denote the Lagrangia
Grassmannian of linear subspaces inM. By M1 andM2 we denote the symplectic spaces cano
cally placed inM, M15M3$0%, M25$0%3M . Equivalently, we write

~M13M2 ,p2* v22p1* v1!,

for M, where
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v25p2* v2p1* vu$0%3M , 2v15p2* v2p1* vuM3$0% .

At first, we have the natural decomposition.
Lemma II.1: If LPL2n , then L is transversal to M1 and to M2 simultaneously, or L is not

transversal to M1 and L is not transversal to M2 .
Proof: If L is transversal toM2 then it may be parametrized byM1 so L is a graph of a

maximal rank symplectic mappingM1→M2 and so has to be transversal toM1 ~one can replace
M2 by M1 in this argument!. If L is not transversal toM1 , then assuming thatL is transversal to
M2 on the basis of the previous argument we get the transversality ofL to M1 , which contradicts
to our assumption. h

By the critical subset ofL2n we denote the setCL2n of those Lagrangian subspaces ofM,
which are not transversal simultaneously to both subspacesM1 andM2 :

CL2n5$LPL2n :L is not transversal toM1 and L is not transversal toM2%.

Elements ofCL2n cannot be obtained as the graphs of linear symplectic transformations be
M1 andM2 .

By supercritical set ofL2n we denote the Cartesian product,

SL2n5Ln3Ln .

The elements of this set are Lagrangian subspacesL5(W1 ,W2), whereW1 andW2 are Lagrang-
ian subspaces in (M1 ,v1) and (M2 ,v2), respectively.

By the formula dimLn5n(n11)/2, we find

codimSL2n5n2.

If R1,(M13M2 ,p2* v22p1* v1) is a Lagrangian subspace~linear symplectic relation!, then
we define the corresponding transpose Lagrangian subspaceR1

t in (M23M1 ,p1* v12p2* v2),

R1
t 5$~v2 ,v1!PM23M1 ;~v1 ,v2!PR%.

If we have another Lagrangian subspace, sayR2 in the product space (M23M3 ,p3* v3

2p2* v2), then we define the composition ofR1 and R2 , R2+R1 as the following Lagrangian
subspace:

R2+R15$~v1 ,v3!PM13M3 ;'v2PM2
~v1 ,v2!PR1 ,~v2 ,v3!PR2%,

in the product symplectic space (M13M3 ,p3* v32p1* v1).
Proposition II.1: If LPCL2n then L has the following decomposition:

L5R2
t +L̃+R1 ,

where L̃, R1 , R2 are linear Lagrangian subspaces:

L̃,~M̃13M̃2 ,p2* ṽ22p1* ṽ1!, R1,~M13M̃1 ,p2* ṽ12p1* v!,

R2,~M23M̃2 ,p2* ṽ22p1* v!,

and R1 , R2 are graphs of projectionsr1 and r2 onto M̃1 and M̃2 , respectively,

r1* ṽ15vup1(L) , r2* ṽ25vup2(L) .

The symplectic formsṽ1 , ṽ2 are defined uniquely by the above formulas, and L˜PL2n22k

2CL2n22k , for some kPN.
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Proof: If LPCL2n then, by Lemma II.1 we havep1(L)#V1 , p2(L)#V2 , whereV1 , V2 are
hypersurfaces inM1 and M2 , respectively. If there is an equality above thenV1 and V2 are
coisotropic, so we have the natural projectionsr i along the symplectic polarsV1

/,V1 , V2
/,V2

onto the symplectic reduced spacesM̃15(V1 /V1
/ ,ṽ1), M̃25(V2 /V2

/ ,ṽ2). The symplectic polar
to the subspaceV,(M ,v) is defined to be the subspaceV/5$vPM ;v(v,u)50,;uPV%. So we
representL uniquely by two hyperspacesVi and the Lagrangian subspaceL̃PL2n22 in (M̃1

3M̃2 ,p2* ṽ22p1* ṽ1). If L̃PCL2n22 , then we may proceed in an analogous way and obtain
noncritical representation forL̃. h

Example II.1: If n52 we have only two strata of the singular set CL4 : Elements of the first
maximal stratum C1L4 are determined by the pairs of two coisotropic subspaces, V1 in M1 and
V2 in M2 and the symplectic linear maps between the corresponding reduced symplectic s
It is easy to calculatedimC1L459. The second stratum is the supercritical set SL4 , and its
dimensiondimSL456.

In general, we have the following result concerning the structure of the singular setCL2n .
Theorem II.1: There is the following partition of the singular set CL2n into the smooth

submanifolds,

CL2n5 ø
k51

n

CkL2n ,

where the elements of CkL2n are determined by the pairs of two coisotropic subspaces V1 in M1

and V2 in M2 of codimension k and the symplectic linear automorphism of
2n22k-dimensional symplectic space. In this partition CnL2n5SL2n .

Proof: In fact, it follows from the property that the projection ofLPL2n onto M1 andM2 is
always coisotropic~or Lagrangian!. Thus, starting from the hypersurfaces we see that the co
spondingL̃PL2n22 , in the product of reduced symplectic spaces~as it was proved in the Propo
sition II.1!, projects onto these spaces or onto their hypersurfaces in the more degenerate
Repeating this argument for further representations ofL, we get the natural decomposition b
equally dimensional coisotropic subspaces and linear symplectic maps in, respectively, s
dimensional symplectic space. h

Corollary II.1:

codimCkL2n5k2, k51,...,n.

Proof: We calculate the dimension of the isotropic GrassmannianI k
2n of k-isotropic planes in

2n-dimensional symplectic spaceV ~cf. Ref. 14!,

dim I k
2n52nk2 1

2 k~3k21!.

This is the dimension of the corresponding space of 2n2k-dimensional coisotropic subspaces
V. Since dimL2n52n21n, we get

codimCkL2n5dimL2n22 dimI k
2n2dim~L2n22k!

5n~2n11!22„2nk2 1
2 k~3k21!…2~n2k!~2n22k11!5k2.

h

In comparison to the inequality~1!, we have

codimCkL2n>4,

if k.1.
04 Jan 2007 to 195.187.72.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



e

n

5646 J. Math. Phys., Vol. 41, No. 8, August 2000 S. Janeczko

Downloaded 
III. LOCAL CLASSIFICATION OF SYMPLECTIC RELATIONS

Let (L,p) be germ of a symplectic relation~Lagrangian submanifold! in M. Now we intro-
duce the natural equivalence group acting on the space of such germs.

Definition III.1: We say that the two germs(L1 ,p1), (L2 ,p2) of symplectic relations inM
are equivalent if there exist two symplectomorphism germs B1 :„M1 ,p1(p1)…→„M1 ,p1(p2)… and
B2 :„M2 ,p2(p1)…→„M2 ,p2(p2)… such that the symplectomorphism B13B2 of M sends L1 into
L2 and p1 into p2 .

For the symplectic relationL,M, we define the corresponding symplectic Gauss map,

G:L{p→TpLPL2n .

We call L to be, in general, position@or generic~cf. Ref. 15!# if G is transversal toCL2n

5øk51
n CkL2n . We say thatL has ak-vertical positionat pPL if G(p)PCkL2n . We call k a

rank of k-vertical position. A 0-vertical position corresponds to the case whenL is a graph of a
local symplectomorphism atp, i.e., G(p)PL2n2CL2n . For genericL the isolated points of
vertical position appear only ifn52s2, for somesPN. In this case they are isolated points in th
2s-vertical position. In their neighborhood there arek-vertical positioned points withk<2s.
Following the standard representation of Lagrangian germs~cf. Ref. 16! we have the following
preparatory lemma.

Lemma III.1: For any germ of a Lagrangian submanifold(L,p),M there are local cotan-
gent bundle structures aroundp1(p), say T* X and aroundp2(p), say T* Y, such that(L,p) is
generated in

M>~T* X3T* Y,p2* vY2p1* vX!,

by a germ of a generating function F:(X3Y,pX3Y(p))→R, such that, in local coordinates on
(X3Y,pX3Y(p)) we have

F~x,y!5 (
i j 51

n

xiyjf i j ~x,y!, ~2!

where vX and vY are the corresponding Liouville symplectic structures on T* X and T* Y,
respectively.

Proof: If „(p,q),(p̃,q̃)… are Darboux coordinates onM, then we find the partitionI øJ

5$1,...,n%, I ùJ50” , Ĩ ø J̃5$1,...,n%, Ĩ ù J̃50” , such that there exists a smooth functio
S(pI ,qJ ,p̃Ĩ ,q̃J̃), which is a generating function for (L,p) ~cf. Refs. 5 and 16, Sec. III.19.3!. By
the symplectomorphism

F~p,q; p̃,q̃!5~2qI ,pJ ,pI ,qJ ;2q̃Ĩ ,p̃J̃ ,p̃Ĩ ,q̃J̃!5~j,x;h,y!,

which preserves the product structure ofM, we find the generating functionF(x,y) for (L,p) in
the canonical special symplectic structureT* X3T* Y on M. The coordinates (j,x)PT* X,
(h,y)PT* Y are new coordinates on the cotangent bundles in which (L,p) is generated by the
generating functionF. Then, further on, using the symplectomorphisms ofM1 andM2 preserving
the corresponding cotangent bundle structures, we obtain the reduced form~2! of functionF. We
recall thatL is described by the following equations:

h i5
]F

]yi
~x,y!, j j52

]F

]xj
~x,y!, 1< i , j <n.

h

Theorem III.1: Let pPL and we assume that the Lagrangian submanifold L, around p, is
generated by the generating function in the normal form (2). Then we have the following.
04 Jan 2007 to 195.187.72.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~1! Rank of the vertical position of L at p is equal to the corank of the matrix(f i j

5]2F/]xi ]yj ) at pX3Y(p).
~2! At each pPL, for a generic L, the family of mappings,

F:X3Y→Rn, F~x,y!5S (
j 51

n

yjf1 j~x,y!,...,(
j 51

n

yjfn j~x,y!D ,

wheref i j (x,y) are defined in Eq. (2), has a generic singularity atpX3Y(p).

Proof:

~1! Any linear relationL, by Lemma III.1, is equivalent to one generated by the quadratic f
( i j 51

n xiyjai j . So the dimension of the kernel of the matrix (ai j ) is exactly equal to the rank
of verticality of L. This is a local symplectic invariant of (L,p) that does not depend on th
choice of the corresponding cotangent bundle structures.

~2! By Lemma III.1, any relationL is locally generated by the generating functionF(x,y)
5( i j xiy jf i j (x,y), and by the form of functionF uniquely represented by a smooth family
mappings,

F~x,y!5„f̂1~x,y!,...,f̂n~x,y!…,

such thatF(x,0)[0. We see that the Gauss mapG:L→TpL corresponds exactly to the one-j
extensionj 1F(x,y) of the mappingF, so the transversality ofG is equivalent to the correspond
ing transversality ofF to the canonical stratification of smooth mappings ofRn3Rn into Rn ~cf.
Refs. 15, 16!. h

Corollary III.1: At any point pPL of the 0-vertical position of L, symplectic relation L is
parallelizable, i.e., it is locally symplectically equivalent to its tangent space TpL with the follow-
ing generating function:

F~x,y!5(
i 51

n

xiyi .

Remark III.1: If n52 then the supercritical points appear in generic L as the isolated poi
in fact codim C2L454, and G is transversal to SL45C2L4 (see Example II.1). If pPL is a
supercritical transversal point then on the basis of Lemma III.1, on a neighborhood of p, L is
generated locally by the following generating function:

F~x,y!5 (
i j 51

2

xiyjf i j ~x,y!,

wheref i j (0,0)50, i j 51,2, p50, and the transversality condition is equivalent to

rankDF~0!54,

whereF(x,y)5„f i j (x,y)…PM232 .
If we need to iterate a symplectic relationL we have to use the symplectic equivalence gro

preserving the canonical product structure ofM5(M3M ,p2* v2p1* v). We say that the two
germs (L1 ,p1), (L2 ,p2),M, wherep1(pi)5p2(pi)5 p̃i , i 51,2, are D-equivalent~diagonal
equivalence! if there exists a symplectomorphism germB:(M ,p̃1)→(M ,p̃2) such that (B3B)
3(L1)5L2 . Using the notation of the composition of symplectic relations, we can write

L25B̂+L1+B̂t.

Now slightly extending the proof of Lemma III.1, we have the following result.
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Lemma III.2: For any germ(L,p),M there exists a local cotangent bundle structure T* X
(D equivalence) aroundp1(p), such that(L,p) is generated in

M>~T* X3T* X,p2* vX2p1* vX!,

by a Morse Family germ F:(X3X3Rk,0)→R @we assumedp1(p)50#,

F~x,y,l!5(
i 51

n

xif i~x,y,l!, ~3!

such that k<dimX. If the integer k is minimal then it is an invariant of D-equivalence symple
group action.

We see that the linear symplectic relations inM are classified by the classes of line
mappings,

F5~f1 ,...,fn!:Rn3Rn3Rk→Rn,

extracted from the normal form~3!, with the standard equivalence relation

J:~x,y,l!→„A~x!,Y~y!,L~x,y,l!…,

where the equivalent mapping, sayF8, is given by

F8~x,y,l!5ATF„A~x!,B~y!,L~x,y,l!….

Remark III.2: An important source of the nontrivial symplectic relations is given by the
and MKdV hierarchies of nonlinear differential equations (cf. Ref. 2). The main example i
Darboux relation (correspondence). If we consider the Schro¨dinger operator,

L52D21u52~D1 f !~D2 f !52D21~ f 22 f 8!,

and its isospectral deformation,

L̃52D21v52~D2 f !~D1 f !52~D1g!~D2g!52D21g81g2 S D5
d

dxD ,

then we get the Darboux relation

2 f 81 f 25g81g2,

in the product of two copies of function spaceF of variable x, endowed with the difference of th
Poisson structures,

$F,G%5E dF

d f
D

dG

d f
dx,

where F@ f #,G@ f # are the functionals onF.
For the Schro¨dinger operator2D21u there is an infinite hierarchy of isospectral flows, wi

a corresponding set of integrals Ik@u#5*Lk(u,ux ,uxx ,...)dx. The first integrals expressed b
f -variable can be written in the form

Hk@ f #5E Lk~ f , f x , f xx ,...!dx;

H0@ f #5E ~ f x1 f 2!dx, H1@ f #5
1

2 E ~ f x
212 f xf 21 f 4!dx,
04 Jan 2007 to 195.187.72.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



grands

s of
ctic
-

c,

air

5649J. Math. Phys., Vol. 41, No. 8, August 2000 Lagrangian submanifolds in the product . . .

Downloaded 
H2@ f #5E S 1

2
f xx

2 15 f 2f x
21 f 61S f f x

21
3

5
f 5D

x
D dx.

The Darboux transformation preserves these integrals and gives the difference of the inte
that is the x derivative, i.e.,

Lk@ f #2Lk@g#5
d

dx
F̄k@ f ,g#, ~4!

where F̄k@ f ,g# are differential polynomials. Now we restrict the problem to n jets of function
x, so L5L( f , f x ,...,f x...x

(n) ) and provide the symplectic reduction to finite-dimensional symple
space by reduction of functional parameter; dH/d f 50, which gives the finite-dimensional re
duced space and indicates the symplectic structure from the formula

dL5
dH

d f
d f1

d

dx(
i

pi dqi ,

where q15 f , q25 f x ,...,qn5 f (n21). Thus, after restriction of Darboux transformation f→g to
the ‘‘stationary hypersurface’’dH/d f 50, on the basis of (4), we get the symplectic relation

d

dx S (
i

pi dqi2(
j

Pj dQj D 5
d

dx
dF̄,

generated by the Morse family S:

(
i

pi dqi2(
j

Pj dQj5dS.

As an example one can consider the integrand (cf. Ref. 2),

L5 1
2 ~ f x

21 f 4!1 1
2 a f21b f ,

where a, b are real parameters. In the symplectic variables q5 f , p5 f x , Q5g, P5gx , the
corresponding Darboux relation is generated by the function

S~q,Q!5 1
3 ~q31Q3!1 1

2 a~Q1q!1b log~q1Q!.

IV. ACTION AND ITERATION OF SYMPLECTIC RELATIONS

Let L,M be a symplectic relation andS,(M ,v) be a subset ofM . Then we define the
image ofS by L;

L~S!5$pPM :'p8PS ,~p8,p!PL%.

Obviously this action ofL on subsets ofM preserves all their symplectic properties. Thus, ifS is
Lagrangian, isotropic, or coisotropic, thenL(S) is also Lagrangian, isotropic, or coisotropi
respectively, unless it is singular~cf. Refs. 7, 17, and 18!.

Now we consider the linear case, and assumeS is a Lagrangian subspace. As a canonical p
we define (l ,L), whereLPL2n and l PLn .

Proposition IV.1: There is a natural mapping,

H:Ln3L2n→Ln , H~ l ,L !5L~ l !.
04 Jan 2007 to 195.187.72.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Proof: We have to check thatL( l ) is a Lagrangian subspace of (M ,v). Indeed, we can
choose the cotangent bundle fibration onM and representl and L by generating families, say
(l,q1)→G(l,q1) for l and (m,q1 ,q)→F(m,q1 ,q) for L. Then the generating family for the
imageL( l ) is defined by

H~m,n,l,q!5F~m,n,q!1G~l,n!.

By the standard reduction of~m,n,l!-Morse parameters, we get the generating family forL( l ) in
the form ~cf. Refs. 16 and 5!

H>F̃~r,q!5 f ~q!1(
i 51

k

r igi~q!,

wheref is a quadratic form andg(q)5„g1(q),...,gk(q)… is a linear mapping,g(q)5Aq. Now we
easily see that the space

H ~p,q!PM :'rPRk:p5
]F̃

]q
~r,q!,05

]F̃

]r
~r,q!J

is ann-dimensional Lagrangian subspace of (M ,v) because dim(KerA)1dim(ImA)5n. h

Another view on the imageL( l ) is given through the unitary group reconstruction of Lagran
ian subspaces~cf. Ref. 9!. We write

L5H S A
BD S a1

•

a2n

D , a iPRJ ,

where

S A
BDPU~2n!.

The corresponding projections onto the first and the second component ofM are given in the form

Lt~M !5H AS a1

•

a2n

D ,a iPRJ 5p1~L !,

L~M !5H BS a1

•

a2n

D ,a iPRJ 5p2~L !.

If l is given in the form

l 5H GS b1

•

bn

D ,b iPRJ ,

whereGPU(n). Then, at first, we define the subspaceV(A,G) ,

R2n.V(A,G)5H a:'bPRnAS a1

•

a2n

D 5GS b1

•

bn

D J ,
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and finallyL( l ) is defined in the following way:

L~ l !5H BS a1

:
a2n

D ;aPV(A,G)J ,

where we denotea5(a1 ,...,a2n), andb5(b1 ,...,bn).
The mapping

r:L2n{L→H~ l 0 ,L !5L~ l 0!PLn ,

where l 0 is a fixed element ofLn , is a fiber bundle projection. LetL be represented by (B
A)

PU(2n), where we denote byA5A11 iA2 , B5B11 iB2 the decomposition ofA andB complex
matrices.

Proposition IV.2: The fiber ofr is defined by(B
A)PU(2n), such that we have the following.

~1! rank (B2

A2)<n.

~2! A1 and B1 are surjective on V5Ker(A2

B2).

Proof: It is enough to find suchLPL2n , that L( l 0)5 l 0 . Choosel 05$(q1 ip)PM :p50%,
then we get the condition

S A
BD S a1

:
a2n

D PR2n,

and surjectivity of A1 and B1 on the Kernel of (B2

A2) corresponds to the property thatl 0

5Rn,Cn is mapped byL onto l 0 . h

Now using the Proposition II.1 we investigate the geometric structure of an imageL( l ).
Proposition IV.3: Any image of lPLn by LPL2n is a Lagrangian subspace l8 of a coisotro-

pic space L(M )5p2(L),(M ,v). Thus, it is a counterimage, by a canonical reducti

L(M )→
p

L(M )/L(M )/ of some Lagrangian subspace in the reduced symplectic s
„L(M )/L(M )/,ṽ…, p* ṽ5vuL(M ) .

Proof: We defineLt(M )5p1(L), L(M )5p2(L), which are the coisotropic subspaces of t
same codimension in both components ofM. L(M ) is a coisotropic space, so the Kernel ofp1uL
projected ontoL(M ), by p2 , is a symplectic polar ofL(M ), andvice versathe Kernel ofp2uL

projected ontoLt(M ), by p1 , is a symplectic polar ofLt(M ). Thus, for the pair (l ,L), in any
common position, the imageL( l ) is a Lagrangian subspace of the coisotropic spaceL(M ). h

Remark IV.1:

~1! The mappingr is smooth on all strata ofL2n5GSp2nøøk51
n CkL2n , where GSp2n denotes

the graphs of symplectomorphisms. Only on these strata can we pull back the uni

Maslov class@r* m#, (L2n.GSp2n→
r

Ln →
det2

S1) (cf. Refs. 10 and 9).
~2! In the smooth nonlinear case, L( l ) is always isotropic on his smooth strata. The correspon

ing local generating family is of the form (cf. Ref. 7)
H~l,m,n,q!5G~l,m!1F~n,m,q!,

where G(l,q1) is a generating Morse family for l and F(n,q1 ,q) is a generating Morse
family for L. We notice that H is not necessary Morse family so the corresponding image( l )
may not be smooth.

There is an interesting symplectic invariant prescribed to the symplectic relation and bas
the cohomological properties of the relation~cf. Refs. 19 and 20!. Now we will assume that the
Lagrangian submanifoldL,M is compact~with boundary!, and the first cohomology group
04 Jan 2007 to 195.187.72.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



tic

n

re

to-

ers

5652 J. Math. Phys., Vol. 41, No. 8, August 2000 S. Janeczko

Downloaded 
H1(L,R) is trivial. Instead of (M1 ,v1), (M2 ,v2) we take two copies of the same symplec
manifold (M ,v). For any choice of 1-forma, such thatv5da, the 1-formp2* a2p1* auL is exact
and

p2* a2p1* auL5dH, ~5!

for some smooth generating functionH:L→R.
If a1 is another choice of a 1-form for whichda15v, then d(a12a)50 and a12a

5dG, for some smooth functionG:M→R ~whereM has a boundary or is not compact!. For a
new underlying 1-forma1 , the Lagrangian submanifoldL has another generating functio
H1 :L→R, such that

p2* a12p1* a1uL5dH1 . ~6!

Proposition IV.4: The generating functions H1 and H defined by the formulas (6) and (5) a
joined by the following relation:

H15H1~p2* G2p1* G!uL . ~7!

Proof: Subtracting formula~5! from the formula~6!, by sides, we get

p2* ~a12a!1p2* ~a12a!5d~H12H !,

and becausea12a5dG we get finally

d~p2* G2p2* G!5d~H12H !.

If we normalize the additive constants in the definitions ofH, H1 , andG, we obtain the formula
~7!. h

Now we consider the multiple, iterated images by the relationL. Let s5$(x0 ,x1)
PL,(x1 ,x2)PL,...,(xk21 ,x0)PL,%. We will call s the periodic orbit ofL. We will associate
with s the following number:

N~s!5 (
i 50

k22

H~xi ,xi 11!1H~xk21 ,x0!.

Now using the formula~7! we have a natural property ofN(s) ~cf. Ref. 19!.
Corollary IV.1: N(s) is an invariant with respect to the action of the group of symplec

morphisms operating on(M ,v).
If L5graphF, whereF:(M ,v)→(M ,v) is a symplectomorphism, then the set of numb

$N(s)%, where s is any periodic orbit ofF is called the spectrum ofF. This spectrum is
extensively studied ifF is a billiard mapping associated with the convex region inRn ~cf. Refs. 20
and 8!. In the case of a graph, the formula~7! reduces to the following one:

H15H1F* G2G,

where

F* a2a5dH,

and the iterational invariant to the periodic orbit ofF, s5$x0 ,x1 ,...,xk21% is given in the form

N~s!5 (
i 50

k21

H~xi !.
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As an example, we consider the billiard symplectic map. LetV be a smooth compact conve
region inRn. Let X be the boundary ofV andT* X the cotangent bundle ofX. The symplectic
billiard map B:T* X→T* X is defined on the setU5$(x,j)PT* X:uju,1%. To the point (x,j)
PU we prescribe the point (x8,j8)PU in the following way. Letn(x) be the outward unit norma
vector toX at x. There is a unique, unit elementh̃P(Rn)* such that̂ h̃,n(x)&,0 and ^h̃,v&
5^j,v& for all vPTxX, where we identifyTxX with the corresponding subspace inRn. To a given
(x,j) there existsx8PX, which is the unique point of intersection ofX with the positive line
segment;x85Xù$x1th,t.0%, whereh is a unique vector inRn corresponding toh̃, andj8 is
defined as the unique element ofTx8

* X for which we havê h,v&5^j8,v& for all vPTx8X. Obvi-
ously B(x,j)5(x8,j8) is symplectic and the generating function for graphBP(T* X
3T* X,p2* uX2p1* uX) is defined as the perimeter,

H̃:X3X→R, H̃~x,x8!5ux82xu,

whereuX is the Liouville one-form onT* X. By the projectionpX3X :T* X3T* X→X3X and the
smooth map

r:T* X→T* X3T* X, r~x,j!5~x,2j,x8,j8!,

we get the functionH:T* X→R, H5r* pX3X* H̃ such thatB* uX2uX5dH, which gives the
symplectic invariant

N~s!5 (
i 50

k21

H~xi ,j i !,

for the periodic orbits5$(x0 ,j0),...,(xk21 ,jk21)%, which is the length

ux12x0u1¯1ux02xk21u

of the closed geodesic of the billiard system and defines, for all closed geodesics, the
spectrum ofV ~cf. Ref. 8!.

In general, if we assume that

L,M5~T* X3T* X,p2* vX2p2* vX!

is generated by the smooth generating functionF:(x,y)→F(x,y), then the invariantN(s) defined
on the periodic orbit ofL,

pX3X~s!5$~x0 ,x1!,~x1 ,x2!,...,~xk21 ,x0!%

is the critical value of the function

G:X3...3X→R, G~ x̃0 ,x̃1 ,...,x̃k21!5F~ x̃0 ,x̃1!1F~ x̃1 ,x̃2!1¯1F~ x̃k21 ,x̃0!,

for which pX3X(s) is a critical point.
Definition IV.1: By$N(s)%k we denote the set of symplectic invariants for k-point perio

orbits. We will call them k-point symplectic invariants.
For the general billiard system the Lagrangian submanifoldL may not be the graph of an

symplectomorphism. Letf:X→Rn be an imbedding of a closed orientable surface and we ass
that it is generic, i.e., the function

H̃f~x,y!5uf~x!2f~y!u,

defined onX3X outside of the diagonalD has only nondegenerate critical points onX3X2D.
We easily see that the critical points ofH̃f are, in fact, the two-point orbits or double normals
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the possibly nonconvex billiard system. The corresponding invariants are the critical valu
H̃f . Using the Morse theory methods, Morse inequalities,~cf. Refs. 13, 12, Theorem 1!, we
obtain an estimation for the number of k-point invariants for small k.

Theorem IV.1: If f is a generic imbedding of a surface of genus g, then we have the
following lower bound for the number of two-point symplectic invariants:

#$N~s!%2>2g213g13.

For the generic billiards on the plane we have at least two two-point symplectic invarian
the case of an ellipsoid,g50, with the three unequal axes #$N(s)%253. If this is an imbedding
of the torus we have at least eight two-point symplectic invariants of the toruslike billiard sy
In three-dimensional billiard systems, the lower bound for #$N(s)%2 is expressed by the first Bet
numberd1 of X. In fact, if f:X→Rn is generic, then the lower bound is given by the numbe

2d1
213d114, if d1 is even,

or

2d1
213d115, if d1 is odd.

If X5Sn21 then we have #$N(s)%2>n.
Now we consider an imbeddingf:X→Rn, which is generic with respect to the generati

function

Vf~x,y!5
1

uf~x!2f~y!u
,

defined outside of the diagonalD. The corresponding symplectic relationL̃,M, defined byVf ,
provides the geometric setting for finding the equilibrium positions of equally charged particl
an imbedded surface in Euclidean space. The iterational symplectic invariantsN(s) define the
least potential energy of the number of charged particles in equilibrium onX. The two-point
symplectic invariants forL̃ exactly correspond to the double normals—equilibrium positions
the two equally charged particles—and thus the corresponding lower bounds are analogous
established for the billiard system in Proposition IV.1. The three-point invariants are defin
the critical points of the function,

Vf
(3)~x,y,z!5

1

uf~x!2f~y!u
1

1

uf~y!2f~z!u
1

1

uf~z!2f~x!u
,

defined outside the total diagonalD in X3X3X and generic. Now, following the further Morse
theory estimations obtained in Ref. 12~Theorem 3!, we get the following lower bound for the
number of three-point symplectic invariants ofL̃.

Theorem IV.2: If f:X→Rn is a generic imbedding of a surface of genus g, then we have the
following lower bounds:

#$N~s!%3>~4g318g216g112!/3, for gÞ52~mod 3!,

or

#$N~s!%3>~4g318g216g114!/3, for g52~mod 3!,

if gÞ51 or #$N(s)%3>11 if g51.
04 Jan 2007 to 195.187.72.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



hor
KBN

s.

o-local

Cam-

ora

on

nd

,

o-

5655J. Math. Phys., Vol. 41, No. 8, August 2000 Lagrangian submanifolds in the product . . .

Downloaded 
ACKNOWLEDGMENTS

I would like to thank Horst Kno¨rrer and Donal O’Shea for helpful conversations. The aut
would like to also thank the referee for valuable suggestions. This work was supported by
Grant No. 2P03A 02017.

1A. Weinstein, ‘‘Symplectic geometry,’’ Bull. Am. Math. Soc.5, 1–13~1981!.
2A. P. Fordy, A. B. Shabat, and A. P. Veselov, ‘‘Factorization and Poisson correspondences,’’ Theor. Math. Phy105,
1369–1386~1995!.

3V. W. Guillemin and S. Sternberg, ‘‘Some problems in integral geometry and some related problems in micr
analysis,’’ Am. J. Math.101, 915–955~1979!.

4S. Janeczko, ‘‘Generalized Luneburg canonical varieties and vector fields on quasicaustics,’’ J. Math. Phys.31, 997–
1009 ~1990!.
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