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We analyze the global structure of Lagrangian Grassmannian in the product sym-
plectic space and investigate the local properties of generic symplectic relations.
The cohomological symplectic invariant of discrete dynamical systems is general-
ized to the class of generalized canonical mappings. Lower bounds for the number
of two-point and three-point symplectic invariants for billiard-type dynamical sys-
tems are found and several examples of symplectic correspondences encountered
from physics are presented. @000 American Institute of Physics.
[S0022-248800)01608-X

I. INTRODUCTION

Let (M,w) be a symplectic manifold. We consider the prodx M endowed with the
symplectic structuré) =75 o — 7} o, Wherer; are the corresponding projections onto the com-
ponents ofM X M. The space of Lagrangian submanifolds bf X M,(}) is a natural generaliza-
tion of the group of symplectic transformations oM (w). We notice that if ¢:(M,w)
—(M,w) is a symplectomorphism, then its graph, grgghM XM is the Lagrangian submani-
fold, Q|graph¢=0. There is an obvious motivation to study the global and local structure of such
Lagrangian submanifolds, which are also called symplectic relations or symplectic correspon-
dences(cf. Ref. 1). They are coming from various branches of mathematics in which the sym-
plectic ideas and methods were succesfully applefdRefs. 1-5.

The very elementary examples of symplectic relations, which are not the graphs of symplec-
tomorphisms, play an important role in geometrical diffraction theBwf. 6. Consider the setl
of all oriented affine lines i3, M is a four-dimensional symplectic manifolt]=T* S?, con-
structed by the symplectic reduction from the free particle Hamiltonian hypersudadeef. 7).

This is the space of rays of geometrical optics. One of the most classical systems that provide the
nontrivial symplectic relation is a billiard system.\ffis a smooth compact, convex regionRA

andX denotes its boundary hypersurface, then the symplectic relation joining the inc@yoing
through the interior of the regigrand outgoing rays, by the reflection law=x— 2(x|n)n (where

n is the unit outer normal tX, and (4+) denotes the scalar product i), is a graph of
symplectomorphism called the billiard mégf. Ref. 8. However, ifV is no longer convex, then

the reflection law should be extended by the diffraction (ofe Ref. 6, which prescribe to one
incoming ray the family of outgoing rays gliding in the tangential point of an incoming ray. The
billiard symplectic relation is no more the graph of a symplectomorphism. In the case of incoming
ray, sayx, going through the one-dimensional edge of an apertufé jthe outgoing rayy form

a cone defined by the equations—(y|y)=0, |x|=]y|, wherey is a vector tangent to an edge
oriented according to the incoming ray orientation. Our aim in this paper is to provide the geo-
metric framework for the action of generalized mechanitiké nonconvex billiargl and optical

(like diffraction on aperturgssystems.

An important object in investigation of geometry of Lagrangian submanifolds is the manifold
A, of linear Lagrangian spaces imalimensional symplectic space, called the Lagrangian Grass-
mannian(cf. Ref. 9. Its natural stratification, allowing us to indicate the global structure of
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Lagrangian submanifolds and their singularities, is constructed as follows.
Let us fixae A,. By A], we denote the set of all Lagrangian subspaces jrthat are not
transversal tar. We haveAy=Up_ A,

Af={Be A, dim(BNa)=k}
and

) n(n+1) k(k+1)
dimAf=——F—-——5—=3, (o

if k>1.
A; may be oriented by choosing the vectors frd’ry@g/\n transversal toA;, formed by

symmetric bilinear quadratic forms on elemekts A7, which are positive definite oaN\. So
A with this orientation represents a singular cycle that is Poindaeg to the universal Maslov
class(cf. Ref. 10.

Now we pose the following problenDoes there exists a similar (to that of the standard
classification of Lagrangian singularities in a cotangent bundle) classification of Lagrangian
submanifolds and their singularities in the product symplectic space exploiting the canonical
product structure?Approaching the answer for this question we investigate the canonical strati-
fication (i.e., a partition into smooth submanifolds as it was done\fpabove of the Lagrangian
Grassmannian ,, in the product symplectic space, induced by the product structure. This strati-
fication naturally appears in the theory of linear symplectic relations and is especially important
for searching the geometric structure of the images by symplectic reldtbrigefs. 7 and 1)1 In
Sec. Il we prove that any linear symplectic relation in the product space is a composition of
reduction relation and a symplectomorphism. By this decomposition propegytis stratified and
the codimension formulas are calculated. In Sec. lll, the first step into the theory of classification
of germs of nonlinear symplectic relations is done, and the generic appearance of some singular
points is proved. In the last section the action/of, onto elements of\, is considered in the
framework of unitary groupJ (2n) and homogeneous spadg2n)/O(2n) representing\ ,, (cf.

Refs. 10 and P In the nonlinear case of symplectic relations the iterational cohomological sym-
plectic invariant was introduced and its cohomological properties were described. By the Morse
theory approachcf. Refs. 12 and 13 the number of two-point and three-poifdefined on
two-point and three-point periodic orbit of symplectic relajimymplectic invariants were esti-
mated from below for a possibly nonconvex billiard system and systems of equally charged
particles on the surface. To conclude, we note that this paper had its origin in an attempt to find the
possible complete classification of symplectic invariants by action of generalized symplectic map-
pings (cf. Ref. 7. The results here show that there is an open area for such invariants with
applications to classical physical problems.

II. LAGRANGIAN GRASSMANNIAN IN THE PRODUCT SYMPLECTIC SPACE

Now we consider the linear product symplectic space,
M=(MXM, 75 0— 77 w),

where M,w) is a 2n-dimensional symplectic vector space. Ry, we denote the Lagrangian
Grassmannian of linear subspaces\ih By M; andM, we denote the symplectic spaces canoni-
cally placed inM, M;=M x{0}, M,={0} X M. Equivalently, we write

(M1X My, 75 wy— 71 w1),

for M, where
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— % % | _ P % |
Wor= Ty W 7T1w{0}><M, W1=TorW— T W M X {0} -

At first, we have the natural decomposition.

Lemma Il.1: If Le A,,, then L is transversal to Mand to M, simultaneously, or L is not
transversal to M and L is not transversal to M

Proof: If L is transversal tdM, then it may be parametrized byi; soL is a graph of a
maximal rank symplectic mapping ;— M, and so has to be transversalNb (one can replace
M, by M1 in this argument If L is not transversal tdM,, then assuming that is transversal to
M, on the basis of the previous argument we get the transversalityy@M ;, which contradicts
to our assumption. O

By the critical subset ofA ,, we denote the sef A ,, of those Lagrangian subspaces.of,
which are not transversal simultaneously to both subsplsigeand M, :

CA,,={LeA,,:L is not transversal toVM; and L is not transversal toV,}.
Elements ofCA ,, cannot be obtained as the graphs of linear symplectic transformations between
M, andM,.
By supercritical set of\,,, we denote the Cartesian product,

SAp=A XA,

The elements of this set are Lagrangian subsphee@N;,W,), whereW, andW, are Lagrang-
ian subspaces inM ;,w7) and (M,,w,), respectively.
By the formula dimA ,=n(n+1)/2, we find
codimSA ,,=n?.

If R,C(M1XM,, 75 w,— 7] wq) is @ Lagrangian subspaéknear symplectic relation then
we define the corresponding transpose Lagrangian sub&jaice(M,X M, 7} w1 — 75 w5),

Ri={(v2,v1) eMXMy;(vq,0,) €R}.
If we have another Lagrangian subspace, $dy in the product space M,XMg;, 75 w3

— 5 w,), then we define the composition &; and R,, R,°R; as the following Lagrangian
subspace:

ReRi={(v1,03) eM1XM3;3, cm,(v1,02) €R1,(v2,03) Ry},

in the product symplectic spac®1g X M3, 73 wz— 77 w1).
Proposition I1.1: If Le CA,, then L has the following decomposition:

L=R5LoR,,
where'|, R;, R, are linear Lagrangian subspaces:
LC(M{ XMy, m50,— 75 @), RIC(M XMy, m30,—7F 0),
R,C (M, X MZ,W;Z)Z—’ITILU),
and R, R, are graphs of projectiong; and p, onto M; and M,, respectively
P’IZ’l: wlwl(L) ) P;azz w|w2(L) .

The symplectic form,, @, are defined uniquely by the above formulas, and A,,_ 5
—CAyy_o, for some ke N.
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Proof: If Le CA,, then, by Lemma Il.1 we have,(L)CV,, m(L)CV,, whereV,, V, are
hypersurfaces irM; and M, respectively. If there is an equality above thép and V, are
coisotropic, so we have the natural projectignsalong the symplectic polaré; CV,, V5 CV,
onto the symplectic reduced spadés= (V1/IVE,®y), M,= (V,/V5 ,@,). The symplectic polar
to the subspac¥ C (M, w) is defined to be the subspadé ={v e M;w(v,u)=0¥,.v}. So we
representL uniquely by two hyperspace¢; and the Lagrangian subspates A,,_» in (M,

X IT/IZ,w’Z‘Z)Z— my @4). If LeCA,,_», then we may proceed in an analogous way and obtain the

noncritical representation fdr. O
Example II.1: If =2 we have only two strata of the singular seA¢: Elements of the first
maximal stratum GA, are determined by the pairs of two coisotropic subspa®gsn M; and
V, in M, and the symplectic linear maps between the corresponding reduced symplectic spaces.
It is easy to calculatedimC;A,=9. The second stratum is the supercritical sef,$ and its
dimensiondim SA ,=6.
In general, we have the following result concerning the structure of the singul@Asgt.
Theorem II1.1: There is the following partition of the singular setAG, into the smooth
submanifolds

n
CAZn: U CkAZr'I!
k=1

where the elements of @ ,,, are determined by the pairs of two coisotropic subspaces\M ;
and \, in M, of codimension k and the symplectic linear automorphism of the
2n— 2k-dimensional symplectic space. In this partition/G,,=SA,,.

Proof: In fact, it follows from the property that the projection o A5, ontoM; andM, is
always coisotropi¢or Lagrangian Thus, starting from the hypersurfaces we see that the corre-

spondingL € A ,,_», in the product of reduced symplectic spaces it was proved in the Propo-
sition 11.1), projects onto these spaces or onto their hypersurfaces in the more degenerated case.
Repeating this argument for further representation& ,ofve get the natural decomposition by
equally dimensional coisotropic subspaces and linear symplectic maps in, respectively, smaller
dimensional symplectic space. O
Corollary 11.1:
codimCA,,=k? k=1,...n.

Proof: We calculate the dimension of the isotropic Grassmantﬁ&rmf k-isotropic planes in
2n-dimensional symplectic spa&é (cf. Ref. 19,

dim12"=2nk— 1k(3k—1).

This is the dimension of the corresponding space rof-R-dimensional coisotropic subspaces in
V. Since dimA,,=2n+n, we get

codimCyA 5n=dim A 5, — 2 dim 12" — dim( A 5n_ )

=n(2n+1)—2(2nk— 3k(3k—1))— (n—k)(2n—2k+1)=Kk>2.

In comparison to the inequalityl), we have
codimCyA,,=4,

if k>1.
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lll. LOCAL CLASSIFICATION OF SYMPLECTIC RELATIONS

Let (L,p) be germ of a symplectic relatiohagrangian submanifojdn M. Now we intro-
duce the natural equivalence group acting on the space of such germs.

Definition 11.1: We say that the two gernf&,,p4), (L,,p,) of symplectic relations in\
are equivalent if there exist two symplectomorphism germg\8, , 7,(p1))— (M, 71(p2)) and
B,: (M5, m5(p1))— (M5, m5(p,)) such that the symplectomorphism>BB, of M sends L, into
L, and p, into p,.

For the symplectic relatioh C M, we define the corresponding symplectic Gauss map,

GiLap—ToLeAy,.

We call L to be, in general, positiofior generic(cf. Ref. 19] if G is transversal taCA 5,
=Uy_,CcA,,. We say thal has ak-vertical positionat pe L if G(p) e C A,,. We callk a
rank of k-vertical position. A O-vertical position corresponds to the case wh&na graph of a
local symplectomorphism at, i.e., G(p) e A,,—CA,,. For genericL the isolated points of
vertical position appear only ii=2s?, for somese N. In this case they are isolated points in the
2s-vertical position. In their neighborhood there dcevertical positioned points withkk<2s.
Following the standard representation of Lagrangian gdohsRef. 16§ we have the following
preparatory lemma.

Lemma 1ll.1: For any germ of a Lagrangian submanifgld,p) C M there are local cotan-
gent bundle structures around,(p), say T X and aroundm,(p), say TV, such that(L,p) is
generated in

M= (T*XXT*Y, 75 wy— 7] wx),

by a germ of a generating function: (XX Y, 7xxv(p))—R, such that, in local coordinates on
(XXY,mxxv(p)) we have

n
F(x,y)=”2_1 XiYjdij(X,y), 2

where wy and wy are the corresponding Liouville symplectic structures ohXTand T°Y,
respectively

Proof: If ((p,q),(p,d)) are Darboux coordinates aM, then we find the partitiod UJ
={1,...n}, INJ=0, TUJI={1,...n}, TNI=0, such that there exists a smooth function
S(p; ,q;,P7.03), which is a generating function fot(p) (cf. Refs. 5 and 16, Sec. 111.19.3By
the symplectomorphism

®(p1q;ﬁaa):(_ql P3P Ags _’qT I’ﬁ !ET 1a3):(§vX; 771y)1

which preserves the product structure/ef, we find the generating functida(x,y) for (L,p) in
the canonical special symplectic structufé XX T*Y on M. The coordinates §x) e T* X,
(n,y) e T*Y are new coordinates on the cotangent bundles in whigp)(is generated by the
generating functioir. Then, further on, using the symplectomorphism#/gfandM, preserving
the corresponding cotangent bundle structures, we obtain the reducejanfifunction F. We
recall thatL is described by the following equations:

JF

JF o
ﬂi:a_yi(X:Y)a gj:_&_xj(xvy)i 1=<i, Jj=n.

O
Theorem IIl.1: Let peL and we assume that the Lagrangian submanifolcatound p is
generated by the generating function in the normal form (2). Then we have the following
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(1) Rank of the vertical position of L at p is equal to the corank of the magx
= 9°F1ax; dy;) at wxxv(p).
(2) At each peL, for a generic L, the family of mappings

n n
P XXY—R", - D(x,y)= ,Zl y;¢1j(x,y),...,121 Yidni(X,y) |,
where ¢;;(x,y) are defined in Eq. (2), has a generic singularityzat. v(p).

Proof:

(1) Any linear relationL, by Lemma lll.1, is equivalent to one generated by the quadratic form
E{}=lxiyjaij . So the dimension of the kernel of the matri;( is exactly equal to the rank
of verticality of L. This is a local symplectic invariant ot (p) that does not depend on the
choice of the corresponding cotangent bundle structures.

(2) By Lemma IIl.1, any relationL is locally generated by the generating functibifx,y)
=2 XiYj#ij(X,y), and by the form of functiofr uniquely represented by a smooth family of
mappings,

D(X,y) = ($1(X%,Y), -, n(X,Y)),

such thatd(x,0)=0. We see that the Gauss m@pL— T,L corresponds exactly to the one-jet
extensionj'®(x,y) of the mappingd, so the transversality @& is equivalent to the correspond-
ing transversality ofb to the canonical stratification of smooth mapping€k8¥& R" into R" (cf.
Refs. 15, 16. O

Corollary I11.1: At any point pe L of the 0-vertical position of L symplectic relation L is
parallelizable, i.e., it is locally symplectically equivalent to its tangent spage With the follow-
ing generating function:

n

FOX,y)=2>, Xyi-

i=1

Remark 111.1: If n=2 then the supercritical points appear in generic L as the isolated points,
in fact codim GA,=4, and G is transversal to §,=C,A, (see Example I11.1). If gL is a
supercritical transversal point then on the basis of Lemma lll.1, on a neighborhood bfip
generated locally by the following generating function:

2
F(X,Y):”Z:l XiYjbij (X,Y),
where ¢;;(0,0)=0, ij =1,2,p=0, and the transversality condition is equivalent to

rankD®(0) =4,

where®(x,y) = (¢ij(X,y)) € M.

If we need to iterate a symplectic relatibnwe have to use the symplectic equivalence group
preserving the canonical product structure/ef=(M XM, 75 o — 7} w). We say that the two
germs L,p1), (Lo,p2)CM, wherew(p;)=m(p;)=Pi, i=1,2, are D-equivalentdiagonal
equivalencg if there exists a symplectomorphism geBn(M,p;)—(M,p,) such that BXB)
X(L4)=L,. Using the notation of the composition of symplectic relations, we can write

L2: éoLloét_

Now slightly extending the proof of Lemma lll.1, we have the following result.
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Lemma I11.2: For any gern{L,p) C.M there exists a local cotangent bundle structureXT
(D equivalence) aroundr,(p), such that(L,p) is generated in

M=(T*XXT*X, 75 ox— 7} wx),

by a Morse Family germ XX Xx Rk 0)—R [we assumedr,(p)=0],

F(x,ym:; X i (X,Y,\), (3)

such that k=dim X. If the integer k is minimal then it is an invariant of D-equivalence symplectic
group action

We see that the linear symplectic relations M are classified by the classes of linear
mappings,

D=(cpy,...,n): R"XR"XRK-R",
extracted from the normal forr{8), with the standard equivalence relation
(XY, M) = (A(X), Y (y),A(X,y,N),
where the equivalent mapping, s&/, is given by
D' (x,y,\)=ATO(A(X),B(Y),A(X,Y,\)).

Remark I11.2: An important source of the nontrivial symplectic relations is given by the KdV
and MKdV hierarchies of nonlinear differential equations (cf. Ref. 2). The main example is the
Darboux relation (correspondence). If we consider the Sdimger operator

L=—D?+u=—(D+f)(D—f)=—D?+(f2—1"),
and its isospectral deformation

~ d
L=-D?+v=—(D—f)(D+f)=—(D+g)(D—g)=—D?+g’+g? (DZEJ’

then we get the Darboux relation
_f/+f2=g/+g2’

in the product of two copies of function spagef variable x endowed with the difference of the
Poisson structures

{F,.G}= f—D—dx

where Hf],G[f] are the functionals or¥.

For the Schidinger operator— D2+ u there is an infinite hierarchy of isospectral flows, with
a corresponding set of integralg[lu]=fL,(u,uy,Uyy,...)dX. The first integrals expressed by
f-variable can be written in the form

Hk[f]zf Li(F,f 4 Fyxy.)dX;

Ho[f]zf (f,+f2)dx, Hl[f]:%f(f§+2fxf2+f4)dx,
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1
Hz[f]:f (—f2 +5f2f24+f5+

3
A ff§+§f5)x>dx.

The Darboux transformation preserves these integrals and gives the difference of the integrands
that is the x derivative, i.e.

d—
Ldfl=Ldal= g Fd Tl (4)

where R f,g] are differential polynomials. Now we restrict the problem to n jets of functions of
X, SO £=£(f,fx,...,ff(r_‘_)_x) and provide the symplectic reduction to finite-dimensional symplectic
space by reduction of functional parameteitH/sf =0, which gives the finite-dimensional re-
duced space and indicates the symplectic structure from the formula

SH d
de=—rdf+ d—XZi p dg,

where q=f, q,=f,,...,q,=f"" Y. Thus, after restriction of Darboux transformatior-fg to
the “stationary hypersurface’sH/5f =0, on the basis of (4), we get the symplectic relation

d d —
dx 2. piin_; P; dQ; Z&dF,
generated by the Morse family S:

As an example one can consider the integrand (cf. Ref. 2)
L=3(f2+ 1%+ faf?+bf,

where a b are real parameters. In the symplectic variables y p=f,, Q=g, P=g,, the
corresponding Darboux relation is generated by the function

S(9,Q)= 3(a*+ Q3%+ 3a(Q+q)+blog(q+Q).

IV. ACTION AND ITERATION OF SYMPLECTIC RELATIONS

Let LC M be a symplectic relation an8C(M,w) be a subset oM. Then we define the
image ofS by L;

L(S)={peM:3, s,(p".,p)eL}.

Obviously this action of. on subsets oM preserves all their symplectic properties. Thus i§
Lagrangian, isotropic, or coisotropic, thér(S) is also Lagrangian, isotropic, or coisotropic,
respectively, unless it is singuléef. Refs. 7, 17, and 18

Now we consider the linear case, and ass@iga Lagrangian subspace. As a canonical pair
we define (,L), whereL e A,, andl e A,,.

Proposition IV.1: There is a natural mapping

H:ApX Agn— Ay, H(,L)=L().
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Proof: We have to check that(l) is a Lagrangian subspace of(w). Indeed, we can
choose the cotangent bundle fibration m and represent andL by generating families, say
(N,01)—G(\,qq) for | and (u,q4,9)—F(&,q4,9) for L. Then the generating family for the
imageL(l) is defined by

H(w,v,N,q)=F(w,v,q) +G(\,v).

By the standard reduction @f,v,\)-Morse parameters, we get the generating familyLf@r) in
the form(cf. Refs. 16 and b

k
H;ap,q):f(qul pigi(a),

wheref is a quadratic form and(q) = (g1(q),...,9x(q)) is a linear mappingg(q) =Aq. Now we
easily see that the space

oF oF
[(p’Q) € M:BpeRk:p: E(P*CI)’OZ %(P:Q)]

is ann-dimensional Lagrangian subspace & ,(w) because dim(Kek) +dim(ImA)=n. O
Another view on the image(l) is given through the unitary group reconstruction of Lagrang-
ian subspace&f. Ref. 9. We write

where

A
B)eU(Zn).

The corresponding projections onto the first and the second compongitaoé given in the form

ay
Lt(M)=[A( : ),aieR]=ﬂ'1(L),
A2n
a;
L(M)=(B( : ),aieR]=ﬂ'2(L).
®2n
B1
1=y G . ,ﬂiER ,
Bn

whereG e U(n). Then, at first, we define the subspacg g,
ay B1
RP"DOVag=9 aiFgepAl - | =G| - ,
A2n Bn
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and finallyL(l) is defined in the following way:

ag
. ;aeV(A‘G) ,

A2n

L(l)= B(

where we denoter=(aq,...,as,), andB=(B1,---,Bn)-
The mapping

p:AspaL—H(lg,L)=L(lp) e A,,

wherel, is a fixed element of\,,, is a fiber bundle projection. Ldt be represented by@I
e U(2n), where we denote bfx=A;+iA,, B=B;+iB, the decomposition oA andB complex
matrices.

Proposition IV.2: The fiber op is defined b)(é) e U(2n), such that we have the following

(1) rank (gz) <n.

(2) A; and B, are surjective on ¥ Ker(ii).

Proof: It is enough to find such € A,,,, thatL(ly)=1,. Choosely={(q+ip) e M:p=0},

then we get the condition
@y
A
(B)( : ) =R,

Qon

and surjectivity of A; and B; on the Kernel of @z) corresponds to the property thg

=R"CC" is mapped byt ontoly. O
Now using the Proposition 1.1 we investigate the geometric structure of an ilndgye
Proposition 1V.3: Any image ofd A, by Le A,, is a Lagrangian subspacé bf a coisotro-

pic space I(M)=m,(L)C(M,w). Thus, it is a counterimage, by a canonical reduction

L(M)—L(M)/L(M)“ of some Lagrangian subspace in the reduced symplectic space
(LIM)/IL(M)“, D), 7™ ®= |-

Proof: We defineL'(M)=,(L), L(M)=,(L), which are the coisotropic subspaces of the
same codimension in both componentsidf L (M) is a coisotropic space, so the Kernelwof|,
projected ontd_(M), by m,, is a symplectic polar ok (M), andvice versathe Kernel of,|,
projected ontd_'(M), by =, is a symplectic polar of'(M). Thus, for the pairl(L), in any
common position, the image(l) is a Lagrangian subspace of the coisotropic spgdd). O

Remark IV.1:

(1) The mapping is smooth on all strata oA,,=GSp,UUy_,C,A,,, where GSp, denotes
the graphs of symplectomorphisms. Only on these strata can we pull back the universal

det?
Maslov clasq p* u], (AanGSpZniAnﬁ S') (cf. Refs. 10 and 9).
(2) In the smooth nonlinear cask(l) is always isotropic on his smooth strata. The correspond-
ing local generating family is of the form (cf. Ref. 7)
H\, 1, v,0) =G\ u) +F(v,1,0),
where Q\,q;) is a generating Morse family for | and (,q,,q) is a generating Morse
family for L. We notice that H is not necessary Morse family so the corresponding im(@ye L
may not be smooth

There is an interesting symplectic invariant prescribed to the symplectic relation and based on
the cohomological properties of the relatiaf. Refs. 19 and 20 Now we will assume that the
Lagrangian submanifold C M is compact(with boundary, and the first cohomology group
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HY(L,R) is trivial. Instead of M;,w;), (M,,w,) we take two copies of the same symplectic
manifold (M,w). For any choice of 1-forna, such thatw=de, the 1-formns a— 7} a|, is exact
and

w5 a— 7] al =dH, (5)

for some smooth generating functithL— R.

If a4 is another choice of a 1-form for whicle;=w, thend(a;—a)=0 and a;—«
=dG, for some smooth functios:M —R (whereM has a boundary or is not compadtor a
new underlying 1-formay, the Lagrangian submanifold has another generating function
H.:L—R, such that

7y = 7y aqf =dH;. (6)

Proposition 1V.4: The generating functions, tdnd H defined by the formulas (6) and (5) are
joined by the following relation:

Hi=H+(73G—71G)l.. (7
Proof: Subtracting formulg5) from the formula(6), by sides, we get
w5 (a1 —a)+ w3 (a;—a@)=d(H,—H),
and becauser; — a=dG we get finally
d(73G—m5G)=d(H;—H).
If we normalize the additive constants in the definitionddofH,, andG, we obtain the formula
7 Now we consider the multiple, iterated images by the relation Let a:{(xo,xg

el,(X1,X2) el,...,(Xe_1,%X0) €L,}. We will call o the periodic orbit ofL. We will associate
with o the following number:

k—2
N(o)zgo H(X; X+ 1)+ H(X_1,X0)-

Now using the formuld7) we have a natural property &f(o) (cf. Ref. 19.

Corollary IV.1: N(o) is an invariant with respect to the action of the group of symplecto-
morphisms operating oM, w).

If L=graph®, whered®:(M,w)—(M,w) is a symplectomorphism, then the set of numbers
{N(o)}, where o is any periodic orbit of® is called the spectrum of. This spectrum is
extensively studied i is a billiard mapping associated with the convex regioR'ir(cf. Refs. 20
and 8. In the case of a graph, the formul@ reduces to the following one:

Hl:H+q)*G_G.,
where
d* a— a=dH,

and the iterational invariant to the periodic orbit®f o={xq,X1,... Xc_1} IS given in the form

k—1
N<a>=;0 H(X;).
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As an example, we consider the billiard symplectic map.{die a smooth compact convex
region inR". Let X be the boundary of) and T* X the cotangent bundle of. The symplectic
billiard mapB: T*X—T*X is defined on the sdtl ={(x,£) e T*X:|¢|<1}. To the point §, &)

e U we prescribe the poin(,£¢’) € U in the following way. Letn(x) be the outward unit normal
vector toX at x. There is a unique, unit elemefite (R")* such that(7,n(x))<0 and{%,v)
=(¢,v) for allv e T, X, where we identifyl, X with the corresponding subspacelh. To a given
(x,€) there existsx’ € X, which is the unigue point of intersection f with the positive line
segmentx’ =XN{x+tx,t>0}, wherey is a unique vector iR" corresponding td;, and¢’ is
defined as the unique element T}, X for which we have(7,v)=(&',v) for all v e T,,X. Obvi-
ously B(x,é)=(x",£') is symplectic and the generating function for gr&ph(T*X
XT*X, 5 Ox— 77 Ox) is defined as the perimeter,

H:XXX—R, HXxx)=|x"—x|,

wherefy is the Liouville one-form orm* X. By the projectionmy x : T* XX T* X— XX X and the
smooth map

P T*X=T*XXT*X, p(x,&)=(x,— &X', &),

we get the functionH: T*X—R, H=p* Wf(xxﬁ such thatB* 6y— 6x=dH, which gives the
symplectic invariant

k-1
N(o)= 2 H(x;, &),
for the periodic orbito={(xq,&0),.--,Xx_1,&k_1)}, Which is the length
Xy = Xo| ++ -+ [Xo— X1

of the closed geodesic of the billiard system and defines, for all closed geodesics, the length
spectrum ofQ) (cf. Ref. 8.
In general, if we assume that

LCM=(T*XXT*X, 75 wx— 75 wx)

is generated by the smooth generating funcEofx,y) —F(X,y), then the invarianiN(o) defined
on the periodic orbit oL,

Ty x(0) ={(X0,X1),(X1,X2), ... ,(Xk—1,X0)}
is the critical value of the function
G:XX .. XX—?R, G(S’(O ,7(1,... !’S‘(k—l): F(’XO ,’Xl) + F(’Xl ,322)"’ st F(’Xk_l,’)-{o),

for which 7y« x(0o) is a critical point.

Definition 1V.1: By{N(o)}k we denote the set of symplectic invariants for k-point periodic
orbits. We will call them k-point symplectic invariants

For the general billiard system the Lagrangian submanifolshay not be the graph of any
symplectomorphism. Lap: X—R" be an imbedding of a closed orientable surface and we assume
that it is generic, i.e., the function

Ho(xy) =800 - d(y)l,

defined onX X X outside of the diagonal has only nondegenerate critical points ¥, X—A.
We easily see that the critical points 'IElfqb are, in fact, the two-point orbits or double normals of
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the possibly nonconvex billiard system. The corresponding invariants are the critical values of
ﬁd,. Using the Morse theory methods, Morse inequalitie$, Refs. 13, 12, Theorem)lwe
obtain an estimation for the number of k-point invariants for small k.

Theorem IV.1: If ¢ is a generic imbedding of a surface of genusthben we have the
following lower bound for the number of two-point symplectic invariants:

#{N(o)}?=29%+3g+3.

For the generic billiards on the plane we have at least two two-point symplectic invariants. In
the case of an ellipsoidy=0, with the three unequal axe§M{(o)}2=3. If this is an imbedding
of the torus we have at least eight two-point symplectic invariants of the toruslike billiard system.
In three-dimensional billiard systems, the lower bound fiX o)} is expressed by the first Betti
numberd, of X. In fact, if $:X—R" is generic, then the lower bound is given by the numbers:

2d3+3d,+4, if d; is even,
or
2d7+3d,+5, if d; is odd.

If X=S""1 then we have fN(o)}?=n.
Now we consider an imbedding:X—R", which is generic with respect to the generating
function

1
VoY) = 15— ey

defined outside of the diagonal The corresponding symplectic relatior M, defined bW,
provides the geometric setting for finding the equilibrium positions of equally charged particles on
an imbedded surface in Euclidean space. The iterational symplectic invaNémsdefine the

least potential energy of the number of charged particles in equilibriunX.ofhe two-point
symplectic invariants fot. exactly correspond to the double normals—equilibrium positions of

the two equally charged particles—and thus the corresponding lower bounds are analogous to that
established for the billiard system in Proposition 1V.1. The three-point invariants are defined by
the critical points of the function,

1 N 1 N 1
[p(x) =) oY) = (D] ()= ()|’

v@(x,y,2)=

defined outside the total diagonalin XX XXX and generic. Now, following the further Morse-
theory estimations obtained in Ref. 12heorem 3, we get the following lower bound for the

number of three-point symplectic invariantslof
Theorem IV.2: If ¢:X—R"is a generic imbedding of a surface of genygtien we have the
following lower bounds:
#{N(0)}3=(49%+8g°+69+12)/3, for g#=2(mod?3),
or

#{N(0)}3=(49%+8g2+6g+14)/3, for g=2(mod3),

if g#=1 or #{N(0)}*=11if g=1.
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