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Some aspects of a particular class of bifurcation varieties which are provided by simple and
unimodal boundary singularities are studied. Their correspondence to diffraction theory is
established. The generic caustics by diffraction on apertures are derived and their generating
families for the corresponding Lagrangian varieties are calculated. It is proved that the
quasicaustics associated to simple singularities are smooth hypersurfaces or Whitney’s cross-
caps. The procedure for calculating the modules of logarithmic vector fields is given, and the
minimal sets of the corresponding generators are explicitly calculated. The general boundary

singularities are constructed and the structure of quasicaustics defined by parabolic

singularities is investigated.

I. INTRODUCTION

Let F: (C"*+!'XCP,0) - (C,0) be a germ of a holomor-
phic function. By (S, 0) C (C"*',0)- we denote a germ of a
some hypersurface in (C"*',0). The quasicaustic @(F) of F
is defined as

Q(F) = {aeC?; F(+, a) has a critical point on S}.

Let F represent the distance function from the general wave
front in the presence of an obstacle formed by an aperture
(cf. Refs. 1 and 2) with boundary S. The corresponding qua-
sicaustic Q(F) is build up from the rays orthogonal to the
given wave front and touching the boundary of the aperture
(see the example of the quasicaustic illustrated in Fig. 1).
The quasicaustic is a subvariety of the usual caustic (also
called the bifurcation set>*)

{aeC?; F(-,a) or F| (-, a) havea critical point},

and represents the structure of shadows formed by the com-
mon, pecular positions of aperture and incident wave front.
In this paper we investigate the structure of generic
caustics and quasicaustics by diffraction on smooth obstacle
curves and apertures (optical instruments). We use for this
the classical phase space for general optical instruments, i.e.,
the space of pairs of rays (/, 1), where lis an incident ray and
is a transformed ray (produced by / and the optical instru-
ment), endowed with the canonical symplectic structure.
This space was first introduced by Luneburg® in his math-
ematical theory of optics and then revived by Guillemin and
Sternberg® in their symplectic approach to various physical
theories. To each optical instrument, in the mentioned phase
space, there corresponds a Lagrangian subvariety, say 4, de-
fining all physical properties (from the point of view of the
geometrical theory of optics’) of the system. So when 4 is
fixed we can obtain all transformed wave fronts by taking the
symplectic images 4 (L) of all Lagrangian subvarieties L of
incident rays (i.e., optical sources). (See, also, Ref. 8.)
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The plan of the paper is as follows. In Sec. II we give
preliminary results about the basic phase spaces and con-
struct representative examples in the symplectic approach to
general optical systems. The geometrical structure of caus-
tics by diffraction on apertures, as well as their generic classi-
fication in the case of half-line aperture on the plane and
half-plane aperture in Euclidean three-space, is investigated
in Sec. III. We compute the normal forms for generating
families of the generic canonical varieties in the case of dif-
fraction on smooth curves in Sec. IV. When considering the
caustics by diffraction on apertures, the quasicaustic compo-
nent becomes important. In Sec. V we generalize the meth-
ods for ordinary caustics initiated by Bruce®'” to investigate
the structure of logarithmic vector fields on quasicaustics. In
Sec. VI we derive the generators for the modules of tangent
vector fields to the quasicaustics corresponding to simple
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FIG. 1. Whitney’s cross-cap quasicaustic.
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boundary singularities and prove that they are not free. Fin-
ally in Sec. VI we analyze the structure of quasicaustics and
the reduction of functional moduli in normal forms of La-
grangian pairs.

Il. SINGULARITIES IN ACTION OF OPTICAL
INSTRUMENTS

Let (M, @) be the symplectic manifold of all oriented
lines in ¥=R>. We look on ¥ as the configurational space of
geometrical optics with refraction index n: V>R, n=1.
Here (M, @) is given by the standard symplectic reduction

wy: H(0)->M=T*S?,
where the hypersurface H ~'(0) is defined by the Hamilto-
nian

H:T*V-R, H@pg:=i(p|I*-1),
and m,, is the projection along characteristics of the asso-
ciated Hamiltonian system.

Let (p,q) be coordinates on (T *V,w, ), where @, is an
associated Liouville two-form. By (U,w) we denote the local
chart on (M,w) described as an  image
ma(H ~'(0) N{p, > 0}) with restricted symplectic form w.
The (p,q) form Darboux coordinates on (7*V,w ). In cor-
responding Darboux coordinates (7,s) on (U,w) we can
write
(78) = Ty (P2:P3:91,92:93)

90> _ 9103

2 2 ’q3 2 2 ’
\/1 —P:— P \/1 —P =P
where the unique reduced symplectic structure @ is given by
the formula

= (Pz,P3; 9> —

2
wylp-10) = ThHo, |y =) dr;\ds;.

i=1
In the introduced coordinates on M, to each point (7,s)
€ U we can uniquely associate the corresponding ray (in pa-
rametric form):

(91,92,93)
= (0,5,,5,) + u(l,

r r )
Ji-ri—-n Jl-n-n
ueR.
By the above formula one can translate the concrete optical
problems into the language of the phase space (M,w) and
vice versa (cf. Refs. 5, 6, and 11).

Let (U,w) and ( U,&) betwo examples of the symplectic
space of optical rays or its open subsets. Usually these mani-
folds denote the spaces of incident and transformed rays of
an optical instrument.

Definition 2. 1: The phase space of optical instruments is
the following product symplectic manifold:

Il = (U XU, 13% — mto),

where 7, ,: U X U— U,U are canonical projections (this was
first introduced by Luneburg’).

The process of optical transformation (say, reflection,
refraction, or diffraction, etc., of the incident rays) is gov-
erned by the subvariety of Il, which is Lagrangian, i.e., it is
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stratified onto isotropic submanifolds of 1 where maximal
strata are Lagrangian (cf. Refs. 8, 12, and 13).

Definition 2.2: We define the general optical instrument
to be a Lagrangian subvariety of H (generalized symplectic
relation®!4).

Remark 2.3: 1t is easily seen that reflecting or refracting
optical instruments (cf. Ref. 15) correspond to graphs of
symplectomorphisms between (U:w) and (U,&). But, for
example, the diffraction process is described by a quite gen-
eral Lagrangian subvariety of IT (cf. Ref. 1). In fact, let
(a,bx,p,u,v,w) — F(a,bx,y,u,v,w) be the optical distance
function (cf. Refs. 2 and 16) from the wave front

{z=@(xp) = A3 + Axy + 197 + O5(x,)}
in the presence of the aperture {20, z = mb — 1}, where
m>0. If the incident ray goes from (x,y) = (0,0) to (a,b)
= (0,0), then the transformed rays from (a,b) = (0,0) to
(u,v,w) are given by

dF

—a-g(o,u,v,w) = 0,

F(bx,p,u,v,w): = F(0,b,x,p,u,0,w),
which, for the distance function
F=[(x—a)+ (y— b)* + (p(xp) — mb + 1}]'/?

+((w—a)+ (=5 + (w—mb + 1)?)'7?,

reads

m2? +v*(m* = 1) = 2mv(l + w) =0
and

v+ m(1 + w)<0.

These conditions define the half-cone of diffracted rays (see
Refs. 1 and 7).

Example 2.4: Reflection from the curve: Let the mirror
be defined by {g, = 0}. Let (U,w), the space of incident
rays, be defined as 7y (H ~'(0)N{p,>0}) and the corre-
sponding space of reflected rays be defined as U=,
(H ~'(0) N{p, <0}). Then this reflecting optical instrument
is equivalent to the Lagrangian subvariety of I1,

Mo{((r5),(F5))eU XU r=%,s=5} = A,
and its corresponding generating family (cf. Refs. 17-19)

where A€R, is a Morse parameter.

In our approach the sources of radiation produce rays in
the space denoted by (U,w). Thus we have the following
definition.

Definition 2.5: We define the general source of light as a
Lagrangian subvariety LC (U,w) of the space of incident
rays. If A C II is an optical instrument, then the trans-
formed system of rays [or equivalently the transformed
wave front (cf. Ref. 18)] is a symplectic image L' of L by
means of 4, i.e.,

L':=A(L): = {peU; there exists peL
such that (p,p)ed},

which is usually a Lagrangian subvariety of (U,&) (cf. Ref.
8).
Example 2.6: Reflection of a parallel beam of rays: The
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beam of parallel rays is given in (U,w) by L = {r=0} (a
point source of light at infinity ). By reflection in the mirror,
x—(@(x),x)eR%,@(0) = ¢’ (0) = 0,9 "(0) %0, the canoni-
cal variety ACII (defining the reflection process) brings
into L some focusing property and produces the well known
caustic. The reflected beam of rays 4(L) has the form

2¢'(x)
s )=(
(rs @'(x)*+1

px)g'(x){1 +¢ (x)z)z)
@'(x)>—1

Remark 2.7: Local genericity of the wave front pro-
duced by L C (U,w) is preserved during the process of reflec-
tion or refraction (cf. Ref. 15) because the corresponding
canonical variety is a graph of symplectomorphism. Thus
the caustics, produced by reflection or refraction, are classi-
fied by the simple singularities of type 4, , D,, E,.?° It may
not be so in a diffraction process, where 4 CII is no longer
the graph of symplectomorphism. In this case the differen-
tiable structure of L is drastically changed by 4 and A(L) is
no longer smooth. Its singular locus brings a completely new
type of caustic responsible for the structure of shadows and
half-shadows of an obstacle as well.

Ill. CAUSTICS AND QUASICAUSTICS BY DIFFRACTION

Let L be a source of light or transformed wave front in
(M,w). Now we recall the geometric construction that al-
lows us to define caustic or wave front evolution in V, corre-
sponding to L (cf. Refs. 12 and 13). Let Z be the product
symplectic manifold

E=(MXT*V,7m¥w, — rtw),

where 7, ,: M XT*V-M, T*V are the canonical projec-
tions. One can check that K: = graph 7,, C= is a Lagran-
gian submanifold of =. Thus there exists its local generating
Morse family (cf. Ref. 17), say,

K: ]Rk Xz? X V-R (,u,fC,Q) _’K(ﬂri,q)’

where 7' *X is an appropriate local cotangent bundle struc-
ture (special symplectic structure,’>’* on (M,»). The
transformed system of rays forms a Lagrangian subvariety of
(T*V,w, ) given as an image

= (Kod)(L)C(T*V,0,),

where Ko4 C E is a composition of symplectic relations (cf.
Refs. 12 and 17). If

G:R'XX XX-R, (vx,%) - G(vx,%), X, X=R"

is a generating family for ACII and F: R™ XX-R,
(A,x) = F(A,x) is a generating family for L, then the trans-
formed Lagrangian subvariety Lc(T* V.o ) is generated
by (not necessarily a Morse family)

"I“;'v: Rk+ I+m+2n>< VR,

FAvpx%q): = Gvx,%) + K(u,%9) + F(A,%),
where R*+/+ ™+ 2" jg 3 parameter space.

In optical arrangements the source of light is usually a

smooth Lagrangian submanifold of (U,w). Only after the
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transformation process through an optical instrument does
it become singular.

Definition 3.1: Let LC (U,») be an initial source var-
iety. We define the caustic by an optical instrument 4 C I, to
be a hypersurface of V' formed by two components: (1) sin-
gular values of 7y |z _ginez; and (2) 7 (Sing L); where

= (KoA4)(L) and Sing L denotes the singular locus of L.

Remark 3.2: In reflection or refraction we do not go
beyond the smooth category of L (at least in this paper) so
the associate caustics, in transformed wave fronts L, are
those realizable by smooth generic sources (cf. Refs. 15 and
21). Thus in what follows we will be interested in caustics
caused by diffraction, which will enrich substantially the list
of optical events (cf. Ref. 22) and complete the correspon-
dence between singularities of functions and groups genera-
ted by reflections.!52?

Diffracted rays are produced, for example, when an in-
cident ray hits an edge of an impenetrable screen [i.e., an
edge of a boundary or interface (cf. Ref. 1) ]. In this case the
incident ray produces infinitely many diffracted rays, which
have the same angle with the edge as does the incident ray
(see Remark 2.3.) This is so if both incident and diffracted
rays lie in the same medium. Otherwise, the angles between
the two rays and the plane normal to the edge are related by
Snells law.” Furthermore, the diffracted ray lies on the oppo-
site side of the normal plane from the incident ray; that is, all
rules and laws of geometrical optics correspond exactly to
the Lagrangian properties of the corresponding varieties
ACIL

Let I be the diagonal in I1. By £} we denote the set of
oriented lines in (U,») that do not intersect the screen. Thus
we have the following proposition.

Proposition 3.3: In the edge diffraction in an arbitrary
Euclidean space, the canonical variety A CII has two com-
ponents

A=4'047,

where 4’ = QX QCI and 4” is a pure diffraction of rays
passing through the edge of an aperture, defined in Remark
2.3.

Corollary 3.4: Let LC (U,w) be an incident system of
rays. Then the edge diffracted system of rays,

= (Kod)(L),

is a regular intersection (cf. Ref. 24) of two smooth compo-
nents: L, = (KoA4’)(L) and L, = (Ko4”)(L), i.e.,

L=L,UL, dmL,NL,=dimL,~1,
T(L,NL,) =T,L,NT,L,.

Thus we see that the caustic caused by the edge diffrac-
tion has three components: (1) the caustic of Z,, which is a
part of the caustic in incident wave front L; (2) the caustic,
purely by diffraction on the edge, i.e., the caustic of Zz; and
(3) the image m, (L,NL,) of the rays passing exactly
through an edge.

Definition 3.5: The set 7, (L,NL,)CV is called the
quasicaustic by diffraction on aperture. The rays belonging
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to the quasicaustic that are contained in the aperture plane
we will call the rays at infinity.

Usually the quasicaustics describe the structure of sha-
dows and half-shadows in configurational space V (see Fig.

1).
]

Ay —W3+A(g;—a) —ig A% a>0,
Ay — '+ g, —a) — g A, a>0,
B;: —*+qA—Yga% {450},
By —iA°— g A%+ (g, —qa), {450},

where A is a Morse parameter and a is the moduli of the
common position.

(2) In generic one-parameter families of caustics by dif-
fraction on the half-line aperture, which do not pass through
infinity, the only possible configurations are those described
in metamorphoses of optical caustics (see Ref. 21, p. 113,
and Ref. 25) and the additional cases illustrated in Fig. 2.

Proof: 1t is easily seen that K = graph m,, C Z is genera-
ted locally by

K(rq.,q,) = 427—541"2-

The only stable systems of rays K(L) C (T*V,w, ) are gen-
erated in (M,w) by L:={(rs); s= — (8F/dr)(»},
where

(a)

. Cyelnvisible ’

aperture

7S ()

aperture

aperture

(b)

aperture
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FIG. 2. Transformations of caustics in the presence of aperture.
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Proposition 3.6: (1) Generic caustics by diffraction on
the half-line aperture on the plane are diffeomorphic to the
A, A, B,=C,, B, boundary caustics. Normal forms for
their generating families as images A(L) [or pairs (4,L) in-
general position] are the following:

and 4:={q, =0, ¢,<0};

and 4: ={g, =0, ¢,<0};

and A:={g, =0, ¢;<0};

and 4: ={q, =2a, ¢,<24*}, a>0;

1
A Fi(r) = — 1P,
Ay Fo(r) = ——§r3,
Ay F5(r) = —4r* (cf Refs. 18 and 21).

Let the aperture be defined in its normal form by
q, =0, ¢,<0 (soACII). Thus we have the boundary singu-
larities (cf. Ref. 26) A(L) defined in (M,3) by the following
generating functions:

Ay Fi(7) = — 7, {70}
Az: i‘z(;) = _31?, ;ER;
Ay Fy(7) = — 1, {7>0}.

Taking A4, in the general position with respect to A we obtain
part (1) of Proposition 3.6. Part (2) follows by checking all
the possible one-parameter evolutions ( where the quasicaus-
ticis not passing through infinity ) of the stable caustic on the
plane and in the presence of the half-line aperture. Two pos-
sible directions of intersection of the 4, caustic by an edge of
the aperture give us the cases (a) and (b) in Fig. 2. The
evolution of an edge of the aperture passing through the ray
tangent to the cusp caustic A4, is illustrated in Fig. 2(c).
Finally an evolution through the intersection point of the
A, + A, caustic gives us the case of Fig. 2(d). This com-
pletes the proof of Proposition 3.6.

Looking at the position of the quasicaustic in the diffrac-
tion problem with a half-plane aperture in R* we can elimi-
nate the C,-boundary caustic. Thus we have the following
proposition.

Proposition 3.7: Generic caustics by diffraction on the
half-plane aperture in R? are diffeomorphic to the 4,, 4,, A,
B,, B,, B,, F, boundary caustics.

Remark 3.8: (1) For the general linear hyperbolic sys-
tem of first order (cf. Ref. 7),

3., 0u
Lu=u+ Y A——+ Bu=0,
v=1 8xv

where u represents, say, in the case of crystal optics, the pair
of vectors (E,H), and ¥ u = 0 corresponds to Maxwell’s
equations. In the geometrical optics approximation, we ob-
tain another characteristic equation (eikonal equation)

3
det(cb, + ZA":;CD ) =0,

v=1 X,

for the phase function ®(x,7); u~e“**"¢%(x,t). In this
case the conical refraction in crystal optics is an example of a
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Lagrangian variety quite generally situated in the associated
phase space (cf. Refs. 6 and 7).

(2) In the edge diffraction on system of apertures (men-
tioned in Ref. 1) the singularities of the distance function are
classified by the singularities on the many-dimensional
corners.?’ In very constrained systems of apertures the clas-
sification is obtained using the methods of the theory of sin-
gularities of functions on singular varieties (cf. Refs. 9 and
16).

(3) The generic quasicaustic in the edge diffraction in
R?, corresponding to the F singularity of the distance func-
tion (cf. Ref. 25), is realized geometrically (see Fig. 1) when
the curve of rays passing through the edge on the incident
wave front is tangent to a constant curvature line on the
wave front. This situation is generic (cf. Ref. 21).

IV. DIFFRACTION ON SMOOTH OBSTACLES

Now we can apply an introduced symplectic framework
to describe the diffraction on smooth closed surfaces in R>.
The problem is connected to the Riemannian obstacle prob-
lem (cf. Ref. 28), i.e., determination of geodesics on a Rie-
mannian manifold with smooth boundary. Any geodesic on
such a manifold is C' and consists of generically finitely
many so-called switchpoints, where the geodesic has an ini-
tial or end point according to whether it lies in the interior
part of the manifold or on the boundary. Cauchy uniqueness
for manifolds with a boundary states that every boundary
point (point of an obstacle) has a neighborhood in which, if
two geodesic segments with the same initial point, initial
tangent vector, and length do not coincide, then one of them
has its right end point in the interior part of the manifold and
is an involute of the other (in the planar case it lies on an
appropriate involute of the obstacle curve). A geodesic ¥
that has the same initial point, initial tangent vector, and
length as ¥ is called an involute of a geodesic 9. The reformu-
lation of the above obstacle problem in terms of geometrical
optics of diffraction needs a definition of a surface diffracted
ray. A surface diffracted ray is produced when a ray is inci-
dent tangentially on a smooth boundary or interface. It is a
geodesic on the surface in the metric nds, where n is the
refractive index of the medium on the side of the surface
containing the incident ray. At every point it sheds a diffract-
ed ray along its tangent (cf. Refs. 1 and 22). A surface dif-
fracted ray is also produced on the second side of an interface
by a ray incident from the first side at the critical angle [arc-
sin (n,/n,)]. In this case at every point it sheds rays back
toward the first side at the critical angle. However, in what
follows we will neglect these rays.

Let us consider an open subset .S of an obstacle surface in
R>. Let /, be the initial tangent line to the geodesic segment ¥
on S, and let /, be a tangent line to .S. We say that /, is subordi-
nate to /, with respect to an obstacle S if /, [or its piece in
(R?,5) ] belongs to the geodesic segment with the same ini-
tial point and the same tangent vector as ¥ has. By simple
checking we have the following (cf. Ref. 18).

Proposition 4. 1: Let ¥ be a geodesic flow on S. Then the
set
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A ={(LheIl; T is subordinate to /

with respect to S and geodesic flow 7}

is a Lagrangian subvariety of IT defining the diffraction pro-
cess on an obstacle S.

Now we look for the generic pairs (4,L). At first we
consider the planar case.

Proposition 4.2: For the generic obstacle curve on the
plane the only possible canonical varieties 4 CII have the
following normal forms of generating families (or func-
tions):

Z,: G(rjr)= — ﬁ(r’ +7), (obstacle curve g, = — qf ),
Hy: GAApurF) =54 +A3) —rA3 —FA3

+1PA, + P4,

(obstacle curve ¢, = ¢q3 ),
A,,: G(r,F) = 4(r|r| + 7[7), (double tangent).

Proof: Let us take the noninfiection point of the generic
curve. Parametrically the curve is given as
(41,9;) = (v, — v?), veR, and the corresponding family of
tangent lines corresponding to the given incident ray has the
form

(91,92) = (0,p%) + u(1, — 2v),
By identification
r=4v/(1 + 4%,
F=40/(1+47%),
wherg (v,0) €R? parametrize the variety 4, we obtain the
case A4, that corresponds to the Cartesian product of two
ordinary folds. Taking the inflection point for an obstacle

curve, we obtain, in the same way, the following parametri-
zation for ACII:

ueR.

s=1v

§=7,

s= — 25, r=_3_"2__, F= — 277, ;=__3'_’2__.
V1 +9°* JI+95°

After straightforward calculations we obtain the generating
family for it, denoted by H. Analogously we obtain the 4, ,
case. a

Corollary 4.3: For (4,L) in the gfneral position we have
the possible stable images A (L) C (M,3),

A, Fi(F) = — 3P,

Hy: F(AF) = gA° —FA* + P4,

45,0 Fy(P) = }[7|F,
and the generating families for their corresponding configu-
rational images,

K(4,): Fi(Aq1,9:) = —pA° + A — Jg,A 7%

K(H,): Fy(AA201,87) =245 — A1 + 1434,

+ gA, — i%’l %)
K(4,,): F3(4,9,,9,) = M 4]+ qA — 591/1 2

[see Figs. 3(a)-3(c) and also the figures in Ref. 22].
Proof: In the general position of 4 and L, only one point
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‘w | ‘
‘ K(Az)

()

FIG. 3. Canonical varieties for the generic obstacle curve on the plane.

of L is tangent to an obstacle curve in the neighborhood of
the considered point of this curve. Hence in the calculation
of (KoA4) (L) in all the cases (4,, H;, and 4,,) it is neces-
sary to put = const in generating families of Proposition
4.2 O

Remark 4.4: (A) The first, most important, results in
obstacle geometry and its correspondence to the structure of
singular orbits of H; and H, group actions were discovered
by Shcherbak.'® The aim of the present paper is to show how
singular wave front evolutions appear in the general setting
of the mathematical theory of optics (cf. Refs. 5, 6, and 18)
and to complete the investigations of the caustics and quasi-
caustics that appear there. As we see, the planar obstacle
problem is connected to the studies of tangent developables.
More degenerated singularities there can be described using
the blowing-up construction (cf. Ref. 29).

(B) The K(4 ,, ) singularity appeared as an adjacent to
the higher singular one (see Fig. 4) in a generic one-param-
eter family of obstacles

9= — g1 +4aqi —i@’, aeR,,
ie.,
r= —2av, — 3ejar? + (4a® — 1)v2 + O(v?),
s = 2€a®%, + 4av? + 3efav? + Jt,
€= +1, v, >0, v_<0.
(C) We can see that by choosing the special symplectic

FIG. 4. The higher-order singularity of a canonical variety.
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structure fibered over (p,,p,) in the H; case, we can investi-
gate only a cuspidal edge of 4(L ). In fact, with its generating
family

Fi(Ag,p) = Fy(Ap) — pP1 — BoP
after reduction of the u,, z,, and A, parameters, we obtain
the generating family for the H, singularity,

Fi(Ap) =$A° —pA> + 1p34,
and its level sets (wave fronts) as in Table 2 of Ref. 16. This
observation is connected with the much more general feature
of obstacle singular wave front evolutions; namely, all singu-
larities in obstacle geometry as indicated in Table 2 of Ref. 16
are generated by the generalized open swallowtails [in
(M,&) space] with generating family (see Ref. 8, p. 106)

~ A x k+1 2
. +1 =
Az(k+1)-f (x + zsi—lxk—i+l) dx.
0

i=2
The E, (I>1), A; (I>2) (cf. Ref. 16) singular wave front
evolutions are reconstructed from Zz(k +1y singularities by
specifying appropriate common generic positions of 4 C II
and 4, , ;, C(M,d).

V. VECTOR FIELDS ON CAUSTICS AND
QUASICAUSTICS

As we can see from the preceding sections, caustics in
the wave front evolution, or in a diffracted wave front on the
aperture, are defined as bifurcation sets for the correspond-
ing generating family (Morse family*'?) of functions or the
family of functions on the manifold with boundary, respec-
tively (cf. Refs. 20 and 26). To investigate the structure of
these sets and modules of tangent vector fields on them, in
what follows we shall consider the real analytic or holomor-
phic functions (germs). For the ordinary caustics, defined
as the critical values of the Lagrange projections (cf. Ref.
20) from the Lagrangian submanifolds, which are not neces-
sarily fibered by optical rays, the procedure is the follow-
ing.>*

Let £ (€",0) - (C,0) be a holomorphic function of fi-
nite codimension, i.e., the dimension of the quotient
& y/J(f) as a complex vector space is finite, where & ,,
denotes the ring of holomorphic functions 4: (C",0) — (C,0)
and J(f) is theidealin & ,, generated by the partial deriva-
tives df /9x,,...,df /9x,, . Let A4 ,, denote the maximal ideal
in 7 ,,.1f gy,....8, is a basis for 4 ,, /J(f), then

F: (€% C0) ~ (C0),
Fxa) =f(x) + 3 aig,(x)

i=1
is a miniversal unfolding of f (cf. Ref. 30).
The caustic of F [or bifurcation set of F (see Refs. 4 and
9)] is the following set (germ):
B(F) ={aeCP; F, has a degenerate critical point}.

The set of critical values of 7: (2F,0) —» (C?,0) (7 is a ca-
nonical projection on the second factor), where

2F=[(x,a)eC")(CP;a—F=---=_‘?£'-=o},
ax, Jx,

is the caustic. It appears to be important to know the mod-
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ules of tangent vector fields to caustics (as well as to wave
fronts,>2%*! which is easier). They are useful in the reduc-
tion of functional moduli in the classification of generic sym-
metric and nonsymmetric Lagrangian submanifolds (cf.
Ref. 20, p. 344, and Ref. 32). We recall some necessary defi-
nitions from Refs. 3 and 33. The set of germs of holomorphic
vector fields on C?, at 0, tangent to the nonsingular part of
B(F), is called the set of logarithmic vector fields of B(F) at
0. It is denoted also by Derlog B(F). In Refs. 4, 9, and 10
(see, also, Refs. 31 and 33) a general method for computing
these vector fields was given. It was shown that 4, singulari-
ties are the only ones whose module of tangent vector fields
to B(F) is free (i.e., caustic is a free divisor**). Applying the
method used in these papers we investigate the modules of
vector fields tangent to the quasicaustics in diffraction on
apertures (this is a first step in the investigation of the struc-
ture of caustics by diffraction).

Let &, ., denote the ring of holomorphic functions 4:
(CXC"0) - (C,0). The hypersurface S ={y =0} corre-
sponds to the boundary of an aperture. Following the gen-
eral scheme used in Ref. 20 for boundary singularities, we
shall consider holomorphic functions f: (CXC",0) - (C,0)
of finite codimension, i.e.,

dimg &, /A < o,
where
aF o o >
A ={y—= —,..,
(£ <y3y ox," x,

denotes the ideal in &, , generated by the partial derivatives
af /dx,,...,0f /3x, and y df/dy (cf. Refs. 20 and 34). Let
80-»8. 1 form a basis for 7, .,/A(f) with g =1 and
8,€4 (. Then the miniversal deformation, in the category
of deformations of functions on the manifold with a bound-
ary, as a Morse family for the corresponding diffracted La-
grangian variety (cf. Refs. 13 and 24) is defined as follows:

F: (CXC"XC”_ I’O)_’ (C’O)s

n—1
=fx) + Y a8 (yx).

i=1

F(y,x,a)

Proposition 5.1: The caustic (or bifurcation set) from
diffraction on the aperture, having the generating family
F: (CXC"XC?0)—(C,0) (pisnot necessarily minimal) of
functions on the manifold with boundary (extended edge)
has three components

(1) B,(F) ={aeC? F(-,-,a) has a degenerate

critical point},

(2) B,(F) ={aeC? F(0,-,a) has a degenerate
critical point},
(3) Q(F) = {aeC?; F(-,",a) has a critical

point on § = { y = 0}}.

Proof: By Corollary 3.4, we have the three isotropic sub-
manifolds defining the system of diffracted rays L,, L,, and
L,NL,. Itis easily seen that in terms of the generating fam-
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ily/distance function F, the corresponding caustics can be
written in forms (1)~(3) of Proposition 5.1. O
The set (germ)

(2, F0) = ([(x,a)eC"xC";

JF

sxC* axl

F
&

— oF

sXC* 8x,,

- o},o)
sxXC
is called the restricted critical set.

Using the Splitting Lemma®® and the versality property
of F, we have the following proposition.

Proposition 5.2: (A) The restricted critical set (2, F,0)
is the germ of a smooth manifold of dimension p — 1.

(B) The quasicaustic of F, (Q(F),0), is an image of
(Z, F,0) by the natural projection 7: X, F,0-»C?0 to the
second factor.

The set of logarithmic vector fields of Q(F) at 0 is de-
fined (cf. Refs. 3 and 33) to be the set of germs of holomor-
phic vector fields on C ? at O, tangent to the nonsingular part
of Q(F);itisan & ,, module.

Proposition 5.3: Let £eDerlog Q(F), then it is  liftable,
i.e., for some germ of a vector field &, on C*X C ?, tangent to
3, F at 0, we have

£omr = dmoé.

Proofi & lifts uniquely by 7 at every point aeC?

— I'(w|3, r). Hence £ lifts to a holomorphic vector field £,
on C" X C# tangent to 3, F and defined off a set of codimen-
sion 2 in C" X C #. By Hartog’s theorem, &, extends to a holo-
morphic vector field £ tangent to 3, F.

Now using the 7-lowerable vector fields & tangent to

3, F we will construct the module Derlog Q(F). Let Fbe as

above. We define the ideal
I(F) = <¢(x,a), (5@ 2L

o, (x,a)>ﬁ (xay»

where 1 and F are given by decomposition:
F(yx,a) = F(0,x,a) + y¥(x,a) + y’g(yx,a),
F'(x,a): = F(0,x,a).

Let

&= 2/3 +§_‘,7/, ,

i=1 i i=1 ,'

n

I’YIEﬁ (x,a)?

be the germ of a vector field at 0cC” X C %, tangent to =, F.
Then we have

; (E (o,x,a))el(n
dy
and
= ( OF .
§ (_ (O,X,a))d(n, i=1,..,n
Ox;
For our

pu—1
=frx)+ Y ag:(x),

i=1

F(yx,a)
we have

S. Janeczko 1003

Downloaded 04 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



gll(xa)——f(Ox) + 2 a; ——-(OX)

i=1
So we need

zﬁo"gb_'_z 98:

i=1 i=1

el(F)

oxc”

and

%
——el ,
.;Ba 3x+121 ax, )

whereg(x): = g(0,x). Thus we obtam the following lemma.
Lemma 5.4: £ is a lifting of £eDerlog Q(F),

= za(a)——

i=1

1<j<n,

if and only if, for some 8,€7 .., (i = 1,...,n), we have

2/3

i=1 i=1

z el(F),
ay 0XC (5.1)

n

———eIF
z 6x3x+,§1 (£).

We have chosen the normal form for F in such a way
that the variables a,,...,a, (p>u — 1) do not appear in F.
Now, following the general scheme used in Refs. 3 and 10 for
ordinary bifurcation sets, we can propose a procedure for
constructing the tangent vector fields to quasicaustics.

By the Preparation Theorem,?**® the module

O (ymay /BF),
where

- dF JF dF
A(F)=<y—’_‘,’_> (nx,a)

dy dx, x,
is a free & ,, module?® generated by 1,8,,...,8, _ ;- So, for
any hed , . .)» We can write

h(y.x,a) = B(y.x,a)y %I—? (y.x,a)

+ Z B:(y.x, a) — (y,x a)

i=1

+ 2 a;(a)g;(yx) + ala), (52)

i=1
forsome B0 (,, ., ;€0 oy, el .
By straightforward checking we obtain the following
proposition.
Proposition 5.5: Let hed ,, ., satisfy

ok awm, I eI(P),

i=1,.,n
0x; |oxcrxce

ay OXC"XC?

Then the vector field

=3 ag,

where a;, i=1,..,u — 1, are defined in (5.2) and «a,,
[ = u,...,p, are arbitrary holomorphic functions from & ,, , is
tangent to the quasicaustic Q(F) = 7(Z,F). Conversely,
suppose

1004 J. Math. Phys,, Vol. 31, No. 4, April 1990

(=3 a

i=1
is tangent to Q(F). Then there is some he& . ,, as above
with

h—EB

+ﬁy'—+ z a;g; +a,

i=1 y i=1
and
Gh e, eI(F). 0
ax, OXC"% P ay OXC"XC?

We see that the set of all such & with (dh /dy) |s€l(F),
(8h /9x,;) |5l (F), 1<i<n,forman & ,, module:in fact, it is
the kernel of the & ,, module homomorphism,
dh h dh )
d’ axl ” ox,

®: O, Dk (

( ﬁ (o) )n +1
I(F)+<y>'/4(yxa) .

Here, A(F)CI(F) + ()4 (%) and clearly the set of tan-
gent vector fields to Q(F) is a finitely generated & ,, mod-
ule. We denote 5 = & X C" X 7.

V1. QUASICAUSTICS OF SIMPLE AND UNIMODAL
BOUNDARY SINGULARITIES

The simple singularities of functions on the boundary
{y = 0} of a manifold with a boundary were classified in Ref.
20, p. 281. Their miniversal unfoldings are

A +y4+xttl4 2 ax, uxl;

i=1

B,: +y*+x*+ Z a; yt~!

i=1

n>2;

C,:oypxt+xt+ z axtl u>2;

i=1

D +y+xix,+x4" '+ Z axy +a,_ 1%, p>k

i=1
Eg: £y X1 £x5 +ax, + ax, + asx}
+ agx,x; + asxx3;
E;: 2y +X7 4+ X% + 61X, + %, + a3%] + ax.x,
+asx; + agxs;
Eg +y+x 4+ % +ax, + X, + a3%] + a,%,X, + asx;
+ X, X; + a;X,%3;
F: 4+ +x+a,y+ ax +a,xy.
Thus we have, after direct checking, the following proposi-
tion.
Proposition 6.1: The quasicaustics for simple boundary
singularities are

D,, E,: Q(F) =9,
B,: Q(F) ={aeC*~ ' a,_, =0},
C,: Q(F) ={aeC*""; a,_, =0},
Fy QUF) ={aeC? @} + idia, =0}

(i.e., Whitney’s cross-cap, see Fig. 1).
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Thus we need to calculate only the module of vector
fields tangent to Q(F,). Let us define the germ, at zero, of the
variety X: = Q(F,) U{a, = 0}. We see that the vector fields
tangent to (X,0) lie in Derlog Q(F,).

Proposition 6.2: The vector fields

1, d 3
V= —— g - 2L
: s e T
3 3
V,=a,-2-+a,2,
2 13,+2302
1 9 2 9
V.= ——qg, -2 £ 9
= T35 T3 0,

form a free basis for the & ,, module Derlog X.

Before we prove this theorem we need the following
proposition.

Proposition 6.3: For corank-2 boundary singularities F:
(CXCX €0) - (C,0), the space of functions he& , , ,, re-
constructing the & ,, module of vector fields tangent to the
quasicaustic Q(F) has the form

h(yx,a) =f (fﬁ (0,5,0)¢,(s,a)
0

+ a—x (0,s,a)z//2(s,a)) ds + y*E(y,x,a),

where $,€0 ., (i=12),£€0 .0
Proof: Every function hed ,,, ,, can be written in the
form

h(y,x,a) = ,(x,a) + yn,(x,a) + yn(»x,a),
and thus
%f; (0,x,a) = n,(x,a), g% (0,x,a) = % (x,a).

By Proposition 5.5, we can take

7,(x,@)el(F) and 7,(x,a) =f g(s,a)ds, gel(F),
0

obtaining all functions
72(x,a) + yn,(x,a) + y*(v,x,a)(mod A(F)),

defining the # ,, module of vector fields tangent to Q(F).
Now we see that

1, (x.a) + yn,(x,a) + yn(y.x,.a)

= 1,(x,a) +y*¢€ (y,x,a)(mod<y oF ) E) G (yxar ) ,
dy ox

where£e0 ,, ., - Adding an element of { y)J(F) [J(F) isan
ideal of 7, ,, generated by 9F /dy, dF /9x,,...,0F /9x, ]
does preserve the space of functions and does not affect the
resulting vector field.

Proof of Proposition 6.2: I(F,)= {ax+ ay3x*
+@3) & (.o, By Proposition 6.3, taking ¥,,¢,£=1, we
have

hi(x,a) =la, x> + ax
= — 1@}y + a,x — Ja,a;(mod A(F))),
hy(x,a) =y = —axy —a, (mod A(F,)),

hy(x,a) = x> + xa; = — Ja,xy + }a;x(mod A(F)).

1005 J. Math. Phys., Vol. 31, No. 4, April 1990

Then the corresponding ¥; belongs to Derlog Q(F,)
(i = 1,2,3). By simple computation we obtain

Vi(a,) =0, V,(a))= —a,, Vi(a)= —day;
Thus V,€Derlog X as well. We also have that
det(V,(a),V,(a),V;5(a)) = —a, (@ + aaal)

is a reduced equation for (X,0); thus, by the results of Saito**
(see, also, Ref. 3), we find that (X,0) is a free divisor. O

We define the following ideals of &, and &
respectively:

Of) = (M) + ( - )zﬁw

{(»x,a)?

and

2
®m—<y>J(F7+(‘9F aF) -

ax,  ox,

For determining all fields tangent to the quasicaustic we
need the following lemma.

Lemma 6.4: The space & ,.,/O( f) is finite dimen-
sional. Its C basis also generates the quotient space
& yxay/O(F) asan £ ,, module.

Proof: ©( f) DA(S) and fis finitely determined as a
boundary singularity. Thus &, ., /@( f') is C-finite dimen-
sional with the basis {g,,....gy }. Let us define the mapping

v (CxC"xCFO)-.(CxC"xC"‘"*””XC",O),

F
Y(yx,a) = (y—— (.x, a),y (y,x aj,....y g x,a),
ax, ax,
oF aF
S 050 55 ) a)

J
with 1<, j<n, i<j, and ordered set of pairs (i, /). Thus we
have

1

ﬁ(y.x.a) /W*(/(y,x,a) )ﬁ(y,x,a) gﬂ(y,x) /G)(f)ﬂ(y.)() :

By the Preparation Theorem,>® every element 4 of &

(nx,a)
has the form
N dF F
h(yx,a) = Z é (y-aT (y,x,a),yg— (rx,a),...,
ax a), ox, (y,x,a) o (y,x,a),a)
xXg (y.x).
Thus

N
ﬂ(y,x,a)/®(lr)§[2 'ﬁi(a)gi(y’x)} ’ 1I’ieﬁ,(a),
i=1

which completes the proof of Lemma 6.4.

Let {g,,....gx } be a Cbasis for &7, ,, /O( f). In general
we have the following proposition.

Proposition 6.5: Functions he &, ,, , which reconstruct
the Z ,, module of vector fields tangent to Q(F), can be
written as

(yx

N
z ai(a)gi (yyx)9

i=1

h(yx,a) =
where
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N Je.
3 @@ 2 oxnerp),
i=1 ay
N
S a (a) (o x)el(F),
i=1

1<j<n.

Proof: By Lemma 6.4, any he? . ,, can be written as
N

h(yx,a) =Y a;(a)g(yx) +B(yx.a)y %f rx,a)

i=1

n

+ Y Bx, a)y— (yx,a)
i=1 a]

n

+ Y Bk,(y,x,a) T o, 0 E (y,x,a),
Ki=1 dx,
where a,€0 .y, BB PLED (yxa)- By simply checking the
assumption of Proposition 5.5, we see that the three last
terms in the above formula do not affect on the resulting
vector field belonging to Derlog Q(F). This proves Proposi-
tion 6.5. O
Proposition 6.6: The & ,, module Derlog Q(F,), ie.,
the module of holomorphic vector fields tangent to Whit-
nery’s cross-cap, is generated by the vector fields

1 , 8 a
= ——qg7 — -
R
Vz_al_a__}.azi’
da, da, (6.1)
_ 1,9 2,9 |
? 3 'Ga, 3 day
J 1 )
V,=a,———a,a s
4 azaal 3 13‘92

which satisfy the relation
a,\V,—2a,V,+3a,V;=0.
Proof: We have
O(f) = (a9
and
O /O f)=[1x, X X2y .

By Proposition 6.5 all functions he? , . ,, leading to the
construction of Derlog Q(F,) can be written in the form

h(yx.a) = a,(a) + ay(a)x + az(a)x* + a,(a)x’

+ as(a)y + ag(a)xy,
where a,€ (a), i = 1,...,6, are such that

as(a) + as(a)xel(F,),
a,(a) + 2a,(a)x + 3a,(a)x*el(F,) (seeSec.V).

(6.2)

By simple calculations we check that V;, i = 1,...,4, are tan-
gent to Whitney’s cross-cap. Calculations using power series
or a homogeneous filtration show that these are the only
vector fields generating Derlog Q(F,). In fact,

h=a, —lasa; + (a, — da.a;)x + (as —

+ (@ — jaqa,)xp(mod A(F,)).

iasa,)y

1006 J. Math. Phys., Vol. 31, No. 4, April 1990

Hence all vector fields belonging to Derlog Q(F,) can be
written in the form

a d d 1 i)
V=a,— +a + a; — a,af —— + a,V,,
“9a,  "da, da, 6 ' *da, °
(6.3)
where a,, a5, ag ai, ai€d (a) satisfy
as + agxel(F,), a5 + axel(F,), (6.4)

which are a simple rewritten version of (6.2). Here we use
the formula x* = — § a;(mod I(F,)). Solving (6.4) using a
power series, we obtain an expression for (6.3) that involves
only ¥V,,i=1,2,3,4. 0
Proposition 6.5 gives an algorithm for calculating all
vector fields tangent to quasicaustics corresponding to
boundary singularities. Now we restrict our attention to
quasicaustics corresponding to the unimodal boundary sin-
gularities.
Let us c¢onsider the miniversal deformations for para-
bolic boundary singularities®®:
Fio: ¥ +X+a,y’x+axy+a;"+a,p+asx,
K, YV 4+xtta ypx* +apxy +ax’ +ax+asy,
D,, (=Lg): 7x1X2 + xz +yx,+a yx;
+1a:%3 + a3y + ax, + asxy,
where a, is a modulus parameter. The Milnor number of
these deformations is 6 and the boundary is {y = 0}. We
treat these three cases separately, starting with F ;.
Proposition 6.7: The module Derlog Q(F, ) is not free
and is generated by the following vector fields:

(6.5)

Proof: We have
I(F) = (ayx 4+ a3,3%* + a5) O 4,
and
O 5m /OCf) = [Lxpx2 % xp 2 0% .
Thus
h =a,+ax+ax’ +ax’ +asy
+agy + ar y + agry’.
The equations
oh
dy

ok = a, + 2a;x + 3ax*el(F)

ox y=0
reduce the calculations to those in the proof of Proposmon
6.6. a

= a5 + agxel(F),

y=0
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In remaining cases we only need to calculate the one-jets
of vector fields generating the module. We now treat the case
K,,.

Proposition 6.8: All vector fields belonging to
Derlog Q(K,,) have the following form:

1 ad 1
ag — —a,a +Ua)——+(a —a,Q;
(9 2 1“5 6 al 8 T 6 1“4

1 ( 5 )) aJ
——aas+ag| V——aa,)) —
4 2T 12 ")) 3a,

1 3 )5
a; —aa + —a,a
> 3+ @+ ¢ 465a3

G
i~ s

a, — —

1 5
+ (a7 - —a2a4 + aq (W— ey a2a3)

where
as,aEd (a),
U= —kala,((8 +a})/(4—a})) — Lala, — la,,
V= —lai((as +{a,a; —Ja\a;)/ (4 — a}))
— %145 + Ja,a,
W= — Lai((a,as — 2a,)/(4 —a})) —
+ la,a, + jasa,,

a, + agx + agx® = A(x,a) (a,x* + a,x + as)

74013,05

Xmod({4x® + 2asx + @) (0 )»
aj + ajx + a,x* = B(x,a)(a,x* + a,x + as)
xXmod({4x> + 2a;x + a4)ﬁ(x,a) )s

ABel ..
Proof: We easily calculate

I(F) = {a,x* 4+ ayx + as, 45> +2a,x +a,) & (1.0)»
®(f) = (y29yx3,x6>ﬁ(y,x) ’

SO we can write

h =a, + ax + ax* + ax® + ax’

+ g’ + aq p + agxy + agx’y,
Ik = a, + agx + ax’el(F),
dy ly=o
-g—}i =a, + 2a;x + 3ax* + dasx’ + Sagx*el (F).
X ly=0

Introducing the functions
a; =a, — asd,,
aj =2a; — 2a.a;,

3a;30,

and using the Malgrange preparation theorem
O oy (4%° + 205x + 8,) 0 (0 =[1,x,X%] 5,

we obtain the respective equations for @, ag, @, and

— 306a4,

a, =3a,—

a;y, ay, a;. (]
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Now, taking (6.5) into account, we can calculate the one-
jets of the corresponding module generators:

JVz—az:ai-l+asai2

’n_%i,

le,.=-;-azaia3+a5£—4, 6.7
’%_%%53

V= —2a,aial—azaaz+2 8i3+3a48‘314
v L, 0 3,8

4 aal 8 803 '
We now treat the last case D, ;.
Proposition 6.9: The module of the logarithmic vector
fields Derlog Q(D, , ) has seven generators. Their one-jets
are

a d d d
Y, = a— —as— +a,—,
Jh= 3a,+ 2603 58a4 48a5
]1V2=J Vl’
d a a d
"Wy= —-2——-2a,—+a,— —a
Ira= da, alaa3+ * da, 2305
J a d J a
"W, = —3a,— + 24, — — 4a
JVa= 3 gt o O G T % 5, T 5
1 d a 1 a
W= ——ay—+ 20— — —a,—,
Is 2 33,+ saaz 2 3a3
JVs—azi+a4 J
da,’
c? d d a
W, =a,— 2a,— +2a
iV 2az+a3aa+ 434+ saa5 .

Proof® As in the preceding cases we follow the standard
procedure:

I(F) =

(x, +ax, + az,x,x, + a4,5xf + x3
+ azxz + a5> ﬂ(x,a) ’
ﬁ(y,:() /®( f) = [ l’xl’x2’ y’x% ’xl-xzrxg X2 y,x?,

2 2 3 4 3
X1 XX 1X35X3,X3,X1%3 | ¢+
Thus by Proposition 6.5 we have
2
h=ag+ ax, + ax; + a3y + ax] + asxx; + agx;
3 2
+ a.x, y + agxi + agF(0,x,a) + a,ox,x;
+ @ X3 + apxi + apx,x;
and

oh
— = a3 + axl(F),
3y y=0 ’ e
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ah
dx,

y=0

=@, — 20,05 + 3(a,a, + @5 ag — a olas + Ja,a,
+1a3) + ;v + x( — 24,24 + 30,0505 + 5
— aola; +a,ay) + ap)el(F),

o

Ix,

y=0
=@, — 0sa; ~ 20,014 — 32y, (as + a,a, + 4a3)

+ 4a,,v + x,(206 — a,a5 + dua,,
—3a,,(a; + §a,a5) — 3a;a,)el(F).

Because 1, x, form a free basis for &, ,, /I(F), we immedi-
ately obtain

a,=0, a,=0,
a, =2a,a, — 3(a,a, + a3)ag
+ @10(as + jara, + §a3) — a3,
as = 24,0, — 34,805 + @yo(a; + 40,a5) — a,
a, = ay(2a,a, — 30,0305 + ay0(a; + 1a,8,) — ay3p)
+ 20,00+ 3ay,(as + Ja,0, + 4a3) — day,y,
ag = 1a,(2a,a, — 3a1a5a5 + ao(a; + 1a,1a;) — a,3p)

—2ua,, — 3o, (a, + 4a,a;) + 30,4,

where

p=(a,+1a,a;)*> —as — a0, — 1a3,

v =(a, +1a,a;) (a5 + la,a, + 1a3).
Inserting these into 2 we obtain the formula for

h(mod A(F)) — h(mod A(F))|,_q y—o-

From this formula we can read off not only the one-jets but
also all the generators of the module. 0
Let p: C?—C* be a projection on C*CC”. We say that
Q(F) & C*is locally equisingular along C* near p,eC* if, for
all peC* near p,, the pairs (o~ ' (),0) and (o' (p) NQ(F),0)
are all diffeomorphic. Checking the vector fields listed in
Propositions 6.7 and 6.9, we have the following corollary.

Corollary 6.10: (1) The quasicaustic Q(F, ;) is equisin-
gular along the two-dimensional singular locus, parame-
trized by {a,,a,}.

(2) The quasicaustic Q(D, , ) is equisingular along the
two-dimensional singular locus, parametrized by {a,.a,}.

In both cases the fiber (o~ '(p) NQ(F),0) is diffeomor-
phic to Whitney’s cross-cap.

The logarithmic vector fields can also be used for the
classification of the generic Lagrangian pairs (L,,L,) up to
quasicaustic equivalence (cf. Refs. 24 and 32). The singular
Lagrangian variety L, UL, is provided by generic families of
functions on the manifold with boundary. In this sense, to
determine the germ of the Lagrangian pair means to define
the generating family of functions on a manifold with a
boundary (cf. Sec. III).

Let £ (CxC"0)-(C,0) be a finitely determined
boundary singularity. Let F: (CXC"XC*#~1,0) - (C,0) be
its miniversal unfolding. If G: (CXC"XC?0)-(C0)isa

1008 J. Math. Phys., Vol. 31, No. 4, April 1990

generaﬁng family for a Lagrangian pair, then generically Gis
a pullback from the miniversal unfolding F of the finitely
determined germ f(y,x) = G(y,x,0), i.e.,

G(yx,a) = RP(y,x,a),¢(a))+ h(a),

where ®: (CX C" X C7,0) - (CXC"0) is a family of biholo-
morphisms, germs preserving the hypersurface { y = 0}.
The pullback ¢: (C?,0) - (C*~1,0), ge@ 4, 'and hel .
Thus analogously to the classification of generic Lagrangian
submanifolds (see Ref. 20, p. 337), the classification of gen-
eric Lagrangian pairs is done by specifying the miniversal
unfoldings of finitely determined boundary singularities and
their generic pullbacks ge& 45 *.

Let us assume that Lagrangian pairs are modeled on
unimodal singularities £ (€ X C",0) - (C,0), i.e., the generic
generating family with such f has the following prenormal
form:

G: (CXC"XCA0)-(C0), p>p—2,

—2
G(yx,a) =fyx) + ”Z g (x)a; + g, (yx)A(a),

i=1
where g, , (,x) defines the modulus direction.
Generically, the pullback ¢ is transversal to this direc-
tion, so

A=Al ma,_,~0: (C27#+2%0)=(C0)

is a Morse function. Thus there are possible two generic nor-
mal forms for the generating families of Lagrangian pairs of
unimodal type:

(1) A(e)=a,_,, when p>u—2 and DA(0)#£0;
2) A(a) = 7](01,---,0,‘__2) :ta,zl_x + "_'012;,
when DA(0) =0;

where 7€l ;, [@ = (a,...,a, _,) ] is a functional modulus.

To obtain more information about classifying quasi-
caustics, we need to introduce a weaker equivalence relation
in Lagrangian pairs (cf. Refs. 20 and 32 in the case of func-
tional moduli in the standard classification of Lagrangian
submanifolds). Let

G,(y.x,a) = Fly,x,¢,(a)) + fi(a),

Gz(}’,x,a) = m,X,¢z(a)) +fl2(a)
be two generating families for the corresponding Lagrangian
pairs .Z, and .Z,, respectively. We say that .& |, .£, are
quasicaustic equivalent if §,, ¢, are right-left equivalent, i.e.,

$1(a) = (¢°¢,0¢) (a),
for some biholomorphism &: (C 7,0) - (C #,0), and some bi-
holomorphism #: (C*~',0)-(C#~',0) preserving the
quasicaustic {Q(F),0).

Proposition 6.11: For unimodal boundary singularities
F,,, D, ,, by quasicaustic equivalence, the functional modu-
lus A can be reduced to zero.

Proof’ On the basis of Ref. 20, p. 343, we need to check
only that

M gy TlA1(a),..,47(8)) O (> (*)
which implies that

M € ($THE (1 — 1) + THE (D)),
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for ¢: (C%,0) - (C*~',0) being in the general position to
the modulus direction. Here by & ($) we denote the vector
fields along ¢ (cf. Ref. 30). Let & (u — 1) and & (p) be the
spaces of vector fields on (C#~',0) and (C*,0), respective-
ly. This enables us to apply the ordinary homotopic method
to eliminate the functional modulus A. Taking into account
the vector fields listed in the Propositions 6.7 and 6.9,

14 S Al J
[ i;] i gl_,_ ’
we immediately have fulfilled (*) for the parabolic singular-
ities F, , and D, ;. g
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