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Abstract. The integrability condition for the Lagrangian implicit differential systems of
(TP, ω̇), introduced in [7], is applied for the specialized control theory systems. The Pontryagin
maximum principle was reformulated in the framework of implicit differential systems and the
corresponding necessary and sufficient conditions were proved. The beginning of the classification
list of normal forms for Lagrangian implicit differential systems according to the symplectic
equivalence is provided and the corresponding differential caustics are calculated.

1. Introduction. In [18] F. Takens has formulated the problem of integrability of
the implicit first order differential equations. Previously such systems were introduced
in physics of generalized Hamiltonian systems and statics of the constrained mechanical
systems (cf. [4], [8], [5], [3]). If P is a smooth manifold and A is a subset of P , then
the local integrability of a vector field V on A (not necessary continuous) is traditionally
defined as an existence at each point p ∈ A a C1-curve γε,p : (−ε, ε) −→ A for some ε > 0,
such that γε,p(0) = p and γ̇ε,p(t) = V (γε,p(t)) for all t ∈ (−ε, ε). Such a curve is called an
integral curve of V with initial value p. Moreover we may have an extra demand that two
integral curves with the same initial value are the same on their common domain, and
for each p ∈ A there is a neighbourhood U of p in A and an ε > 0 such that the mapping

U × (−ε, ε) 3 (p̃, t) 7→ γε,p̃(t) ∈ A
2000 Mathematics Subject Classification: Primary 57R45; Secondary 58C35, 70H05, 34A26.
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is defined and continuous.
There are well known examples of discontinuous vector fields which are locally inte-

grable in the previously defined sense (cf. [6]). The discontinuous vector fields may be
constructed as subsystems of an implicit branching systems considered as the subsets
(submanifolds) of the tangent bundle. Thus there is an important question for the local
integrability of such systems under possible weaker assumptions.

If f : X −→ P is a smooth mapping, then the class Ξ(f) of natural examples of
implicit parametrized differential systems is given by vector fields along the mapping f .
Ξ(f) is the set of mappings V : X −→ TP such that f = τP ◦ V , where τP : TP −→ P

is a canonical projection. If f is singular then vector fields along f form the implicit
differential systems. For an elementary example we can take

f : X −→ P, f(x) = −(x− a)2, a 6= 0,

with the singular value at y = 0. Consider the vector field V = x ∂
∂y along f , then an

implicit differential system in TP may be written in the form

ẏ = x, 0 = y + (x− a)2, (ẏ, y) ∈ TP.
If a 6= 0, then V is not integrable at y = 0. f is a locally stable mapping, then V can be
written in the form V = df ◦ ξ + η ◦ f , where ξ, η are the smooth vector fields (germs) in
the following commuting diagram

TX

X

ξ

df

f

η

P

TP

-

-

6

��
��
��
��
��
��*

V

6

V is integrable if the vector field η is tangent to the set of critical values of f , but this
implies the condition a = 0.

Our main purpose in writing this paper was to show necessary and sufficient conditions
for local integrability of differential systems which form the Lagrangian submanifolds in
tangent bundles to symplectic manifolds. The special emphasis was done for systems
which correspond to control theory systems, i.e. vector fields along sub-immersions. The
complete analysis was done for the differential systems being the constrained Lagrangian
submanifolds, which in the conormal bundle case correspond to the Pontryagin maxi-
mum principle (cf. [17]). The classification problem for germs of differential systems was
formulated and the first normal forms of integrable Lagrangian differential systems were
calculated.
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2. Implicit differential systems. Let P be a smooth manifold. A submanifold D of
the tangent bundle TP can be considered as a differential equation. If D is not transversal
to the fibration, then D is called an implicit differential equation. We assume dimD =

n = dimP . This type of differential equation can be written locally in the form

ẋi = gi(x, λ), 1 ≤ i ≤ n,
0 = fj(x, λ), 1 ≤ j ≤ m,

where fj , gi are smooth maps from Rn × Rm to R. The most important problem, which
we consider in what follows, is an existence of the integral curves of this system (cf. [18],
[7], [5], [19]). More precisely:

Definition 2.1. A submanifold D of TP is called a first order differential system.
An absolutely continuous curve γ : I −→ P is called an integral curve of D if the tangent
vector (γ(t), γ̇(t)) belongs to D for almost every t ∈ I.

A differential system D ⊂ TP is said to be integrable at u ∈ D if there exists an
integral curve γ : (−α, α) −→ P (α > 0) of D such that (γ(0), γ̇(0)) = u.

A differential system D ⊂ TP is said to be integrable (resp. weakly integrable) if there
exists a smooth (resp. absolutely continuous) integral curve at each u ∈ D.

Now we assume that P is a symplectic manifold endowed with a symplectic form ω.
Thus we have the flat isomorphism β : TP −→ T ∗P of vector bundles defined by β :

TP 3 u 7→ ub = iuω ∈ T ∗P . Now we endow the tangent bundle TP with the symplectic
structure ω̇ = β∗ dθP being the pullback of the Liouville form of T ∗P . Then β is the
symplectomorphism between (TP, ω̇) and (T ∗P, dθP ) and the triplet (TP, τP , κ), where
τP : TP −→ P is the canonical projection, and κ is the one-form such that dκ = ω̇,
defines the cotangent bundle structure on TP .

Any Lagrangian submanifold of (TP, ω̇) is locally generated by the generating family—
Morse family (cf. [20]) in the cotangent bundle structure (TP, τP , κ) on TP . In local terms
it means that there is an open neighbourhood of every point of D such that in Darboux
coordinates around the chosen point, in which

κ =
n∑

i=1

(
ẏi dxi − ẋi dyi

)
,

the differential system D is described by the following system of equations, κ|D = −dF :

ẋi =
∂F

∂yi
(x, y, λ), 1 ≤ i ≤ n,

ẏj = − ∂F
∂xj

(x, y, λ), 1 ≤ j ≤ n,

0 =
∂F

∂λk
(x, y, λ), 1 ≤ k ≤ m,

(1)

where F : R2n×Rm −→ R is a smooth function in a neighbourhood O of zero in R2n×Rm.

Definition 2.2. Let (P, ω) be a symplectic manifold. A first order differential system
D is called an implicit Lagrangian differential system if it is also a Lagrangian submanifold
of the symplectic space (TP, ω̇).
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An implicit Lagrangian differential system is called an integrable Lagrangian differen-
tial system or integrable Lagrangian system (resp. weak integrable Lagrangian system) if
it is integrable (resp. weak integrable).

When the number of Morse parameters is m = 0, this means that D is a graph of the

function (x, y) 7→
(∂F
∂y

(x, y),−∂F
∂x

(x, y)
)

and the Hamiltonian field
−→
F of F in (P, ω) is

tangent to D so D is integrable. Moreover, we see immediately that any integral curve
D must be an integral curve of

−→
F .

Let D be an implicit Lagrangian differential system. Denote by CD the critical values
of the projection τP |D : D −→ P . The set CD will be called the differential (or Hamil-
tonian) caustic of D. Assume D is integrable, then if γ : I −→ P is an integral curve
of D passing through the point γ(0) = p ∈ CD, then γ̇(0), belonging to ΓD—the set of
critical points of the projection τP |D : D −→ P , has to be tangent to CD. Further on
we assume that CD (and ΓD respectively) is a stratified set, i.e. there is a collection of
smooth manifolds CkD and ΓkD, k ∈ J , such that CD =

⋃
k∈J C

k
D, ΓD =

⋃
k∈J ΓkD. This

assumption is fulfilled for the locally A-finite maps (cf. [11]). Thus the tangency of γ(0)

to CD is understood as a tangency to the corresponding stratum of CD. Let us define

∆D =
{
v ∈ TD : TτP (v) = τTP (v), v ∈ TD

}
,

then we have naturally TτP (∆D) ⊂ D ⊂ TP , and TτP (∆D ∩ TΓDD) ⊂ TCD, where as
we can easily check TτP (∆D ∩TΓDD) = ΓD. So the curve γ whose tangent lift is passing
through the point belonging to ΓD, has to be tangent to the differential caustic point.
Thus we have obtained the following necessary condition for integrability of D.

Proposition 2.1 (cf. [7]). Let D be a Lagrangian differential system and suppose
that its caustic CD is a stratified set, CD =

⋃
k∈J C

k
D. Then for all strata CkD the tangent

space TCkD contains the corresponding stratum ΓkD of the set of critical points of τP |D.

3. Lagrangian manifolds and Pontryagin’s maximum principle. Consider
q : S −→ X to be a locally trivial fibration of a manifold S with a typical fibre manifold
U onto a manifold X and denote by n the dimension of X and m the dimension of the
fibre. Suppose we have the map Γ : S −→ TX (which is the vector field along q) such
that q = τX ◦ Γ if τX : TX −→ X is a canonical projection. An admissible curve or
S-curve is an absolutely continuous map γ : I −→ X such that γ̇(t) belongs to Γ(Sγ(t))

for almost every t ∈ I, where Sγ(t) is the fibre of S over γ(t). The manifold U which is
the “typical fibre” of S is called the control space and X is called the state space.

Take a Lagrangian function on TX, that is a differentiable map L : TX −→ R. Given
two fixed points x0 and x1 suppose that the set Ωx0,x1

of S-curves γ : [t0, t1] −→ X such
that γ(t0) = x0 and γ(t1) = x1 is not empty. Then we can consider the optimal problem
of minimizing the functional ∫ t1

t0

L
(
γ(t), γ̇(t)

)
dt

on the set of S-curves belonging to Ωx0,x1
. If there exists an S-curve which realizes this

minimum we call it an optimal curve. A classical necessary condition for an S-curve to
be optimal is given by the Pontryagin maximum principle.
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Before giving these conditions in terms of implicit Lagrangian differential system, we
must introduce some notations. Denote by T ∗X ×X S the bundle product over X of the
cotangent bundle T ∗X and S, and consider the map

H : T ∗X ×X S × R −→ R

defined by H(p, v, ν) = 〈p,Γv〉+ νL(Γv), where 〈 , 〉 is the duality bracket in T ∗X. This
function is called classically the Hamiltonian of the optimal control problem. In local
coordinates (xi, ẋi, yj , ẏj , λk, ν), 1 ≤ i, j ≤ n, 1 ≤ k ≤ m, on TT ∗X ×X S×R, the map Γ

can be locally defined by the system of functions

ẋj = fj(x1, . . . , xn, λ1, . . . , λm), 1 ≤ j ≤ n,
and we have

H(x, y, λ, ν) =
n∑

j=1

yjfj(x, λ) + νL(x, λ).

To this problem we can associate a one-parameter family of implicit Lagrangian differ-
ential systems {Hν}ν∈R on P = T ∗X, which is locally defined by:

ẋi =
∂H

∂yi
(x, y, λ, ν), 1 ≤ i ≤ n,

ẏj = − ∂H
∂xj

(x, y, λ, ν), 1 ≤ j ≤ n,

0 =
∂H

∂λk
(x, y, λ, ν), 1 ≤ k ≤ m.

(2)

With this notation, the classical Pontryagin maximum principle (cf. [17]) can be (in-
completely) formulated in the following way:

Theorem 3.1. If an S-curve of Ωx0,x1
defined on I, is optimal for the Lagrangian L,

then there exists an absolutely continuous integral curve (γ, p) : I −→ Hν for some ν ∈ R
such that if ν = 0 then we must have p(t) non-zero for all t ∈ I.

Remark 3.1. In the context of the previous theorem, we have even more, namely

H(x(t), y(t), λ(t), ν) = const.

which is a supplementary condition in a complete version of the Pontryagin maximum
principle. For absolutely continuous curve, this property is not true in general, for implicit
Lagrangian differential system, but here this result depends strongly on the optimality
of the S-curve.

Definition 3.1. An absolutely continuous integral curve (γ, p) : I −→ Hν for some
ν ∈ R is called a bi-extremal and a field of the one-forms p(t) along γ is called an adjoint
vector . This bi-extremal is called normal (resp. abnormal) bi-extremal if ν 6= 0 (resp.
ν = 0 and p(t) 6= 0 for all t ∈ I).

Remark 3.2.

1) From the linearity of H with respect to the variable y, it is easy to see that if (γ, p)

is a bi-extremal, then for every non-zero ν ∈ R, (γ, νp) is also a bi-extremal. So in the
family of Lagrangian manifolds {Hν}ν∈R, it is sufficient to consider only two manifolds
H0 and H1.
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2) For a given S-curve we can have an adjoint vector p for which (γ, p) is a normal
bi-extremal and an adjoint vector p′ for which (γ, p′) is an abnormal bi-extremal. If all
bi-extremals (γ, p), associated to γ are abnormal, we say that γ is strictly abnormal.

A crucial problem in the optimal control theory is to decide if an optimal curve γ can
be strictly abnormal. In this case, it is clear that γ is independent of the Lagrangian L.
In the opposite case, when an optimal curve γ is not strictly abnormal, in many general
problems of optimal control, we have an adjoint vector p such that (γ, p) is an integral
curve of some “canonical Hamiltonian field” on P = T ∗X; so these curves are smooth.
To detect strictly abnormal optimal curve, we must study the abnormal bi-extremals.

Consider a regular C∞ distribution4 on a manifold X, that is a sub-bundle4 of TX.
If we take on 4 a Riemannian metric g, then we are fitting to the previous situation with
S = 4 and L = g. Then we have a sub-Riemannian structure on X and the optimal curves
of this problem are exactly the minimizing geodesics in sub-Riemannian geometry. It is
well known that in such situation there can exist strictly abnormal geodesics (cf. [12],
[9], [13], [10]). The abnormal bi-extremal of this problem have another characterization
in our context, which we present now.

Given a sub-Riemannian regular distribution on X. Let us denote by Ωk
x0

the set of
4-curves or horizontal curves γ defined on [0, 1] with an origin γ(0) = x0 and which are
of class k (k = 0 for absolutely continuous, or k non-zero integer for Hk class). The set
Ωkx0

has a structure of Banach manifold (this is even the Hilbert manifold for k = 2).
The map end : Ωkx0

−→ X defined by end(γ) = γ(1) is smooth and when 4 6= TX,
this map has always singular points. These singular points are exactly the curves γ for
which there exists an adjoint vector p such that (γ, p) is an abnormal bi-extremal (see
[12], [14]). Precisely, in local coordinates, if Z1, . . . , Zm is a local basis of 4 then the
horizontal curves are solutions of the system of differential equations

ẋ(t) =
m∑

i=1

λi(t)Zi(x(t))(3)

for some smooth functions λi(t).
So the implicit Lagrangian system D associated to the problem is locally generated

by the Morse family

F : R2n × Rm −→ R, F (x, y, λ) =
m∑

i=1

λi〈y, Zi〉

ẋj =
m∑

i=1

λiZij(x), 1 ≤ j ≤ n,

ẏj = −
m∑

i=1

λi

〈
y,
∂Zi
∂xj

(x)
〉
, 1 ≤ j ≤ n,

0 = 〈y, Zi(x)〉 1 ≤ i ≤ m,

(4)

where Zi =
n∑

j=1

Zij
∂

∂xj
.

This implicit Lagrangian differential system is exactly the one which was previously
denoted by H0 with S = 4 and F is in fact the Hamiltonian of the control problem.
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4. Integrability conditions. In this section, we will prove the integrability con-
ditions, when the generating Morse family is not too singular and also necessary and
sufficient conditions for integrability in the context of some genericity assumptions.

Consider an ideal I in the ring A(U) of smooth functions defined in a neighbourhood
U of (x, y, λ) ∈ R2n+m. We denote by Z(I) the zero set of I, that is the set of points
z ∈ U such that f(z) = 0 for each f ∈ I. Recall that I is principal if I is generated
by single function and is said to have the property of zeros if each smooth function f

vanishing on Z belongs to I (cf. [15]). Let D be a Lagrangian submanifold of TP and
consider a generating Morse family F defined on a neighbourhood U of R2n × Rm. We
denote by SF (x, y, λ) the field on U of symmetric matrices

( ∂2F

∂λi∂λj
(x, y, λ)

)
.

Let Σr be the set of points at which the rank of SF (x, y, λ) is r and Σ =
⋃m−1
r=0 Σr be

the singular set of SF (x, y, λ). Finally, we denote by {f, g} the Poisson bracket on R2n

for the canonical symplectic structure.

Theorem 4.1. Let D be a Lagrangian submanifold of (TP, ω̇), and suppose that there
exists, on a connected open set U of R2n×Rm, a generating Morse family F defined on U
such that :

(i) Σm is not empty on U and locally around each point of Σ the ideal I generated
by detSF possesses the property of zeros ;

(ii) if MF is the m× (m+ 1) matrix obtained from the column vectors of SF and the

column vector
{∂F
∂λ

, F
}

, and Σm−1 is not empty, the rank of MF is m − 1 on a dense

set of Σm−1.

If these two conditions are satisfied, then Σ contains a hypersurface which is an open
dense set of Σ. Moreover, on the subset

O =
{(∂F

∂x
(x, y, λ),−∂F

∂y
(x, y, λ), x, y

)
:
∂F

∂λ
(x, y, λ) = 0, (x, y, λ) ∈ U

}
,

there exists a unique (Hamiltonian) vector field
−→
H such that for any v ∈ O the integral

curve of
−→
H , t 7→ (γ(t), γ̇(t)) is the unique integral curve of D at v. In particular, if these

hypotheses are fulfilled for each open covering of D, then D is a Lagrangian system and
moreover, there exists a unique vector field Z such that each integral curve of Z is an
integral curve of D. On the complement of the singular set CD of the mapping τP |D such
a curve is unique.

Remark 4.1. If condition (i) is fulfilled for each open covering of D, from the density
of Σm it is easy to see that condition (ii) is then a necessary and sufficient condition for
integrability (cf. [7]).

By Ms we denote the set of symmetric m×m matrices over R. The family of subsets
of matrices of rank r {Σr}r∈N defines a stratification of Ms. The codimension of the
stratum Σr is

(m− r)(m− r + 1)

2
.
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For a Lagrangian submanifold D of (TP, ω̇), we have given a generating Morse family
F on an open set U ⊂ R2n × Rm. The matrix SF is a map from U to Ms. If this map
is transverse to the stratification, then the function detSF possesses the property of
zeros ([16]). Moreover, the transversality condition implies that if the image of SF meets
a stratum Σr for r ≤ m− 1 then this image intersects all strata Σ′r for r ≤ r′ ≤ m. From
Theorem 4.1 and Remark 4.1, we obtain:

Corollary 4.1. Consider a Lagrangian submanifold D of (TP, ω̇) and suppose that
for every point in D there exists a generating Morse family F : U ⊂ R2n × Rm −→ R
such that the associated matrix SF is transverse to the stratification {Σr}r∈N in Ms.
A necessary and sufficient condition for integrability of D is :

On the stratum Σm−1 the vector column
{∂F
∂λ

, F
}

is linearly dependent on the vector

columns of the matrix SF .

When the field of matrices SF is transverse to the stratification {Σr}r∈N in Ms we
will say that SF is a generic field of matrices . Now we present a result about integrability
which is not “generic” in the previous sense.

Theorem 4.2. Let D be a Lagrangian manifold of (TP, ω̇) and suppose that D has,
for every point of D, a generating Morse family F defined on an open neighbourhood U of
R2n×Rm such that at each point of U the rank of the matrix SF is r < m everywhere, and

suppose that
{∂F
∂λ

, F
}

is a linear combination of the vector columns of SF everywhere.

Then D is a Lagrangian differential system. Moreover, the integral curve at each point
of D is not unique.

For the proof of Theorems 4.1 and 4.2 we use the following lemma.

Lemma 4.1. Suppose that there exists a C∞ solution µ(x, y, λ) on an open set
U ⊂ R2n × Rm of the implicit equation

SF µ =
{∂F
∂λ

, F
}

(5)

then D is integrable at each point of
{(∂F

∂y
(x, y, λ),−∂F

∂x
(x, y, λ), x, y

)
:
∂F

∂λ
(x, y, λ) = 0

}

for each (x, y, λ) ∈ U .

Proof. Suppose that t 7→ (x(t), y(t), λ(t)) is a smooth solution of (1). By differentia-
tion of

∂F

∂λk
(x(t), y(t), λ(t)) = 0

with respect to t we obtain an implicit equation for µ ∈ Rm

0 =
∂2F

∂λk∂λi
(x, y, λ)µi −

∂2F

∂λk∂xj

∂F

∂yj
(x, y, λ) +

∂2F

∂λk∂yi

∂F

∂xi
(x, y, λ).

This expression can be written in the following way, using the Poisson bracket and the
previous notation:

SF µ =
{∂F
∂λ

, F
}
,(6)
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so, if we can find a smooth solution µ(x, y, λ) of the system (6), then the system of
ordinary differential equations

ẋi =
∂F

∂yi
(x, y, λ), 1 ≤ i ≤ n,

ẏj = − ∂F
∂xj

(x, y, λ), 1 ≤ j ≤ n,

λ̇k = µk(x, y, λ), 1 ≤ k ≤ m,

(7)

is locally integrable.

Proof of Theorem 4.2. As the matrix SF is symmetric then by choosing any scalar
product 〈 , 〉 on Rm we can consider SF as a symmetric operator on this space. Now
from the fact of constant rank r < m and the symmetry of SF there exist subbundles E1

and E2 of the trivial bundle E = U × Rm such that they are SF invariants E1 = ImSF

and E2 = KerSF and E = E1 ⊕ E2. Now
{∂F
∂λ

, F
}

belongs to E1 everywhere and the

restriction of SF to E1 is invertible. Take a local orthonormal basis (Z1, . . . , Zr) of E1 and
(Zr+1, . . . , Zm) orthonormal of E2. Denote by C the column matrix of the components of{∂F
∂λ

, F
}

on the previous basis. Of course these components are 0 on (Zr+1, . . . , Zm). Let

P be the orthogonal matrix field of components of this local basis. Putting S ′ = P−1SFP

we can solve SX = C. Moreover, take any section K of the kernel bundle E2 and denote
also by K the column matrix associated. Then we have A(X + K) = C too. Then
µ = P−1(X + K) is a C∞ solution of (5) and from Lemma 4.1, D is locally integrable.
As r < m, the choice of K may be arbitrary and so we do not have the uniqueness of the
local integral curves.

Proof of Theorem 4.1. By using Lemma 4.1 it remains to show that, under conditions
(i) and (ii), the system (5) has always a smooth solution µ(x, y, λ). The function which
prescribes to z the rank of SF (z) is lower semi-continuous. As U is convex, then the
subset of Σm, at which SF is of maximal rank m, is an open dense set in U . Moreover,
by the same argument of lower semi-continuity, the closure of Σm−1 (if this set is not
empty), is the union of all sets Σr for r < m.

Lemma 4.2. Let S be a C∞ field of symmetric matrices of order m on a neighbour-
hood V of 0 ∈ RN and of rank m− 1 at 0. Suppose that I, the ideal generated by detS,
is not locally trivial and possesses the property of zeros. Then there is an open dense set
of Σ which is a codimension one submanifold. Moreover, if C is a smooth matrix column
of dimension m on V such that C is linearly dependent on the vectors of S on a dense
subset of Σ, then the equation SX = C has a C∞ unique smooth solution on V .

From Lemma 4.2 we conclude that if Σm−1 is not empty, it contains an open dense
submanifold. So again from the Lemma 4.2, SF is invertible on the open dense set Σm.
So the system (5) is a Cramer system. In particular, if S∗F is the C∞ field of the matrix
of co-factor of SF , we have

det(SF )µ = S∗F
{∂F
∂λ

, F
}
.(8)

Using the hypothesis (ii), from the Lemma we know that we can extend the solution
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of (5) onto Σm−1. Consequently, the terms of the matrix S∗F

{∂F
∂λ

, F
}

can be divided

by detSF on Σm−1 (cf. [7]). As Σ is the closure of Σm−1, it follows that all terms of

S∗F

{∂F
∂λ

, F
}

are zero on the closure of Σ so again by condition (i) we can conclude that

they are divisible by detSF and so we obtain a unique C∞ solution µ.
Now, around each point (x0, y0, λ0) ∈ Σm, by the implicit function theorem, there

exists a smooth map v(x, y) such that

∂F

∂λ
(x, y, v(x, y)) = 0(9)

and v(x0, y0) = λ0; moreover, by differentiation we have
(∂v
∂x

(x, y),
∂v

∂y
(x, y)

)
= (SF )−1

{∂F
∂λ

, F
}

= µ
(
x, y, v(x, y)

)
,(10)

so v is uniquely defined. By local uniqueness we can construct on Σm a smooth function—
again denoted by v—such that (7) and (8) are satisfied. This means that over Σm, D is
the graph of the function

(x, y) 7→
(∂F
∂y

(x, y, v(x, y)),−∂F
∂x

(x, y, v(x, y))
)

and so the solution of the differential system (10) are integral curves of the Hamiltonian
field of F (x, y, v(x, y)). So this vector field can be extended on all U . The complement of
the critical set CD is the graph of a closed one-form δ over an open set of P . So from the
previous argument, this vector field can be extended to a vector field on D.

Proof of Lemma 4.2. Let 〈 , 〉 be the canonical scalar product on Rk. Then we
can consider S as a linear operator which is symmetric relative to 〈 , 〉. Consider the
characteristic polynomial P (z, t) = det(S − t Id) of S. As S is symmetric, all roots of

P (z, t) are real numbers. From the hypothesis, we have P (0, 0) = 0 but
∂P

∂t
(0, 0) 6= 0.

By the implicit function theorem, there exists a neighbourhood V ′ of 0 ∈ RN and a
C∞ function φ : V ′ −→ R such that φ(0) = 0 and P (z, φ(z)) = 0 on V ′. In fact, the
set {z ∈ V ′ : φ(z) = 0} is exactly the set Σ of points at which the rank of S is m − 1.
Suppose that Σ has a non-empty interior. Then on a small enough neighbourhood of a
point z ∈ Σ, the rank of S would be m−1 and then detS would be identically zero on this
neighbourhood and the ideal I would be trivial on this neighbourhood which contradicts
our hypothesis. So, the complement Σm of Σ in V ′ is dense.

Now we show that there exists an open dense subset Σ̂ of Σ which is a C∞ hyper-
surface. Suppose that there exists an open set of Σ such that dφ = 0. Without loss of
generality, we can suppose that it is a neighbourhood of 0 ∈ Σ. Then it follows that for

all partial derivatives
∂φ

∂zi
= 0 on this open set for all 1 ≤ i ≤ N . So by the property of

zeros, we have
∂φ

∂zi
= fiφ. As φ(0) = 0, this imposes by induction on i = 1, . . . , N that

φ does not depend of each variable (z1, . . . , zi) and finally that φ is identically zero which
is again a contradiction with the non-triviality of I.

We can write P (z, t) = (t− φ(z))P1(z, t) with P1(0, t) 6= 0. So on Σm the set

E1 = {(z, v) ∈ {V − Σ′} × Rk : Sv = φ(z)v}
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is a one-dimensional bundle. By using the symmetry of S, on Σm, we can decompose
the trivial bundle E = V ′ × Rk in a Whitney sum E1 ⊕ E2 such that E2 is an (m− 1)-
dimensional bundle invariant for S and S is invertible in restriction to E2. On the other
hand, on Σ, at each point we have the unique decomposition Rk = KerS ⊕ ImS. As Σ′

is dense in V ′ and E′1 = E1 ⊕ K is also invariant by S, by passing to the limit in an
adequate Grassmannian, for all z0 ∈ Σ, we have

lim
z→z0

E2 = ImSz0 , lim
z→z0

(E1 ⊕K) = KerSz0 .(11)

Now we take a C∞ field C on V of m-dimensional column matrices such that C is
everywhere linearly dependent on the set of the column matrices of S on a dense set of Σ

and consequently on all Σ by continuity. As the map z 7→ KerSz and z 7→ ImSz are
continuous (as functions in an adequate Grassmannian), from (7) we deduce that there
exists a field P of invertible matrices of order k, of class C0, such that S′ = P−1SP is of
the type

(φ 0

0 S′

)
.

Consider the field C ′ = P−1CP . From the hypothesis, it follows that

C ′ =

(
fφ

C ′

)

where f is a continuous function. So the solution X ′ of S′X ′ = C ′ is equal to

X =

(
f

(S′)−1C ′

)

It follows that we can extend the solution of SX = C on Σ.

Question. We have seen that, under the hypotheses of Theorem 4.1, there exists a
smooth integral curve at every point of D and this curve is unique on the complement of
the singular set CD of τP |D. Can it happen that the integral curve at a point of CD may
not be unique?

Example 4.1. For a given integer n ≥ 1 choose m such that
m(m+ 1)

2
≤ n. Choose

an injection σ of the {(i, j) : 1 ≤ i ≤ j ≤ m} into the set of integers {1, 2, . . . , n} such
that σ11 = 1 and denote by J the set of values σij . Consider the implicit Lagrangian
differential system generated by the function F defined by

F (x, y, λ) =

m∑

i,j=1

φijλiλj +
∑

l 6∈J
xlyl

with φ11(x, y) =

n∑

1≤i≤j≤m
xσijyσij , and otherwise φij(x, y) = φji(x, y) = xσij . The matrix

SF is (φij) which is transverse to the stratification {Σr}r=0,...,m of Ms on the open set
O = {(x, y) ∈ R2n × Rm : (x, y) 6= (0, 0)}. Moreover, it is easy to see that the ideal
generated by detSF possesses (locally) the property of zeros on R2n × Rm. As

{
φ11, φij

}
= φij
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for (i, j) 6= (1, 1) and 0 otherwise, and also
{
φij , φkl

}
= 0

for (i, j) and (k, l) different from (1, 1), we conclude that
{∂F
∂λ

, F
}

is a linear combination of the vector columns of SF , D is a Lagrangian differential system
(i.e. integrable) on O from Corollary 4.1 and on R2n × Rm from Theorem 4.1.

Example 4.2. Consider a distribution 4 on an n-dimensional manifold X. We con-
sider the control problem for curves, which are tangent to 4 almost everywhere. Con-
sider any Lagrangian L on D. Then to this problem one associates naturally two implicit
Lagrangian differential systems D0 and D1, locally defined in the following way (see
Section 3):

Consider a local basis (Z1, . . . , Zm) of 4. A curve γ : I −→ X is horizontal if we have

γ̇(t) =
m∑

i=1

λi(t)Zi(γ(t)).(12)

Then the generating Morse families for Dν , ν = 0, 1, are F ν : R2n × Rm −→ R defined
by

F ν(x, y, λ) =
〈
y,

m∑

i=1

λiZi(x)
〉

+ νL(x, λ).

• For ν = 0, the integral curves of D0 give rise to abnormal bi-extremals. If F is
linear in the variables λ, we cannot apply the theorem. The projection of bi-extremals
are the singular curves of the distribution. Such curves are solutions of the system of
linear differential equations (cf. [7]):

m∑

i=1

λi〈y, [Zi, Zj ]〉 = 0

for non-trivial λ. In fact it corresponds to the existence of a non-zero curve λ such that
{ ∂F
∂λj

, F
}

= 0, 1 ≤ j ≤ m,

or in equivalent form,
m∑

i=1

λj
{
Hi, Hj

}
= 0, 1 ≤ j ≤ m,(13)

where Hi(x, y) = 〈y, Zi(x)〉.
If the dimension m of 4 is even, then the matrix (

{
Hi, Hj

}
) has a non-zero kernel.

So on the open set of points at which rank of the matrix is maximal we have non-trivial
solutions of (13) and then by Theorem 4.2, D0 is integrable on this set, but in general
the solutions are not unique. If D0 is integrable then the conormal bundle A4 ⊂ T ∗X
is an isotropic submanifold of D0 and all singular curves are tangent to the coisotropic
distribution C = TAD ∩ [TAD]⊥, where [TAD]⊥ is the symplectic orthogonal of TAD.

When m is odd, for generic distribution 4 the system (5) has only non-trivial
solutions on the hypersurface Σ whose equation is H0(x, y) = det

{
Hi, Hj

}
= 0.
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• For ν = 1, the symmetric matrix associated to F 1 is
( ∂2L

∂λi∂λj
(x, y, λ)

)
.

If we choose L so that SF is transverse to the stratification of Ms the equation of the first

stratum Σm−1 is given by det
( ∂2L

∂λi∂λj
(x, y, λ)

)
= 0 and the condition for integrability

from Corollary 4.1 is

rank
( ∂2L

∂λi∂λj
(x, λ),

m∑

i=1

λj

[{
Hi, Hj

}
− ∂2L

∂λi∂xj
Zjj

])
= m− 1

on Σm−1. For instance if L(x, λ) =

m∑

k,l=1

gklλkλl where G = (gkl) is a symmetric matrix,

the first condition imposes the transversality to the stratification of Ms and the last one is

rank
(
gkl,

m∑

l=1

λl

[{
Hk, Hl

}
− ∂gkl
∂xj

Zil

])
= m− 1.

Unfortunately, for m > 1, if 4 is not involutive, in general this Lagrangian differential
system is not integrable if Σm−1 is not empty: the condition (ii) of Theorem 4.1 is satisfied
only on the measure zero subset of Σm−1.

5. Equivalence and classification of implicit Lagrangian differential sys-
tems. Let (D1, p1), (D2, p2) be two germs of implicit Lagrangian differential systems
in TP . We assume D1, D2 are integrable systems. By an equivalence of the differential
systems we call the symplectomorphism preserving integrability.

Φ̇ : (TP, dκ) −→ (TP, dκ),

such that the following diagram commutes

TP

TP

Φ̇

β

β

Φ

T ∗P

T ∗P

-

-

?

P

HHHHHHj

�������

?
φ

P

��
��
��*

HH
HH

HHY

τP πP

τP πP

?

where Φ is a germ of a symplectomorphism of the cotangent bundle (T ∗P, dθP ) and φ is
a germ of a symplectomorphism of (P, ω).
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Definition 5.1. We say that (D1, p1), (D2, p2) are equivalent if there exists a germ
of an equivalence Φ̇ such that

Φ̇(D1) = D2, Φ̇(p1) = Φ̇(p2).

We see that Φ̇ is the pull-back by β of the standard equivalence Φ of a cotangent
bundle T ∗P . Φ is given by a symplectic lifting of φ, T ∗φ (cf. [2], [20]) and gradient of
a smooth function f on P . We easily see that the integrability of D is preserved by the
equivalences, which are symplectic liftings of a diffeomorphism φ. However it is not so for
the gradient additive equivalence.

Assume that Φ is the symplectomorphism

Φ(x̄, ȳ, x, y) =
(
x̄+

∂f

∂x
(x, y), ȳ +

∂f

∂y
(x, y), x, y

)
(14)

and the corresponding Φ̇ = β−1 ◦ Φ ◦ β is defined by the differential df of a smooth
function f : P −→ R. Then we have the following lemma.

Lemma 5.1. If the implicit Lagrangian differential system D is integrable, then the
equivalent differential system Φ(D) is integrable if and only if

β−1 df |CD ⊂ TCD.(15)

Proof. If F : R2n × Rm −→ R is a local generating family for D ⊂ TP , then the
generating family for an equivalent system D̃ = Φ̇(D) has the form (cf. [2])

F (φ(x, y), λ) + f(x, y),

where φ : R2n −→ R2n is a symplectomorphism-germ and f : R2n −→ R is a smooth
function-germ. If D is integrable and γ : I −→ R2n is an integral curve through
γ(0) ∈ CD, where γ̇(0) ∈ ΓD, then D̃ is integrable with the integral curve γ̃ : I −→ R2n,
through γ̃(0) ∈ φ−1(CD), with ˙̃γ(0) ∈ ΓD̃ because of the tangency condition ΓD̃ ⊂
Tφ−1(CD). This condition follows from the assumption that β−1df is a logarithmic vec-
tor field tangent to CD.

Let the germ (D, p) be generated by a Morse family-germ G : P × Rm −→ R such
that D is given by the equations

ẋi =
∂G

∂yi
(x, y, λ), 1 ≤ i ≤ n,

ẏj = − ∂G
∂xj

(x, y, λ), 1 ≤ j ≤ n,

0 =
∂G

∂λk
(x, y, λ), 1 ≤ k ≤ m.

By W we denote the critical set

W =
{

(x, y, λ) : Fk(x, y, λ) :=
∂G

∂λk
(x, y, λ) = 0

}

and πW is the canonical projection, πW : W 3 (x, y, λ) 7→ (x, y).

Theorem 5.1. If the projection πW of the smooth hypersurface W into P has the
Whitney singularities of type Σ1,Σ01,Σ001 at 0, then the germ of Lagrangian differential
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system (D, 0) can be reduced, by the formal equivalence Φ̇, to one from the following
normal forms :

(D1) G(x, y, λ) =
1

3
λ3 + y1λ,

(D2) G(x, y, λ) =
1

4
λ4 +

1

2
y1λ

2 + x1λ−
1

12
y2

1 ,

(D3) G(x, y, λ) =
1

5
λ5 +

1

3
y1λ

3 +
1

2
x2λ

2 + y2λ+
1

2
x1.

Proof. For Whitney’s singularities of the projection πW , the kernel of this projection
is one-dimensional. Then by the reduction procedure of Morse parameters (generalized
Morse Lemma [2]) we get the generating family with m = 1—one Morse parameter.
For generic Whitney’s singularities W = {(x, y, λ) : F (x, y, λ) = 0} is a smooth hyper-
surface (cf. [11]). Now we consider W as a hypersurface in the coisotropic hypersurface
Y = {µ = 0}, which is contained in the extended symplectic space P̃ = T ∗R × P , en-
dowed with the symplectic structure ω̃ = dµ∧ dλ+ ω. By an assumption the coisotropic
projection π : Y −→ P , restricted to the hypersurface W , generically can have only
Whitney’s corank 1 singularities Σ. Now, by Arnold-Darboux Theorem (cf. [1], Th. 3,
p. 7) we obtain three formal normal forms, according to the formal R+-equivalence of
generating families for the projection πW .

F = λ2 + y1, F = λ3 + y1λ+ x1, F = λ4 + y1λ
2 + x2λ+ y2.

Thus the generating family G, with respect to the equivalence preserving integrability,
can be written in three corresponding forms

Σ1 : G(x, y, λ) =
1

3
λ3 + y1λ+Q1(x, y),

Σ01 : G(x, y, λ) =
1

4
λ4 +

1

2
y1λ

2 + x1λ+Q2(x, y),

Σ001 : G(x, y, λ) =
1

5
λ5 +

1

3
y1λ

3 +
1

2
x2λ

2 + y2λ+Q3(x, y).

By the calculation on the basis of the integrability condition (15) we get

Q1(x, y) ∈ I(CD1
),

Q2(x, y) = −y
2
1

12
+ I(CD2

),

Q3(x, y) =
1

2
x1 + I(CD3

),

where I(CDi) is the ideal of functions vanishing on CDi . In the corresponding cases we
have I(CD1

) = 〈y1〉, I(CD2
) =

〈
(y1/3)3 + (x1/2)2

〉
and

I(CD3
) =

〈
16y4

1y2 − 4y3
1x

2
2 − 128y2

1y
2
2 + 144y1x

2
2y2 + 256y3

2 − 27x4
2

〉
.

Thus choosing the simplest representants we obtain the desired normal forms of the
theorem.

Remark 5.1. If, instead of symplectomorphism φ, in the equivalence of Lagrangian
differential systems we take a general diffeomorphism, then especially in two-dimensional
case of P (cf. [3]), we get immediately the local classification of Lagrangian projections,
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and corresponding caustics. However in general case we lose the Hamiltonian structure
and such equivalence is not distinguishing between Hamiltonian and general differential
systems.
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