
CLASSIFICATION OF SYMMETRIC CAUSTICS II:
CAUSTIC EQUIVALENCE

STANISLAW JANECZKO AND MARK ROBERTS

ABSTRACT

Symplectic equivalence of Lagrangian projections is too strong to yield a useful classification of projections
which commute with a symmetry group action. A weaker equivalence relation, caustic equivalence, is
introduced and used to classify the caustics of Lagrangian submanifolds that are invariant under
symplectic involutions.

1. Introduction

Symmetric caustics arise naturally in a number of contexts including, for example,
phase transitions [4] and phonon focusing [12] in crystals. In this paper and its
predecessor [6] we describe some general singularity theory machinery that can be
used to classify these caustics.

Let X be a smooth manifold with a smooth action of the compact Lie group G.
This action extends to an action on the cotangent bundle T*X which leaves invariant
the natural symplectic form. If L is a G-invariant Lagrange submanifold of T*X then
the Lagrange projection nL: L -*• X is G-equivariant and its discriminant, the caustic
CL of L, is a G-invariant subvariety of X. In [6] we considered the classification of the
pairs (T*X,L) up to symplectic equivalence, that is, G-equivariant symplecto-
morphisms of T*X which preserve its natural fibration. Some of the main ideas are
reviewed in §2 of this paper. However it appears that this equivalence relation is too
strong to be really useful; the classification of corank 1 Z2-invariant caustics
described in [6] showed that there can exist generic projections which have infinite
codimension if dim X ^ 3.

In this paper we introduce a weaker equivalence relation, caustic equivalence,
which however still preserves the equivariant diffeomorphism type of the caustic. The
main idea is to describe the caustics as sections through larger' G-versal' caustics and
to classify these using singularity theory machinery developed by Damon [3] for
rather different purposes. The tools we need are described in §3.

In §4 we apply this machinery to the classification of corank 1 Z2-invariant
caustics, giving a complete classification of generic caustics that can occur if
dim X < 6. In higher dimensions we again have the problem of generic caustics with
infinite codimension, but these results represent a considerable improvement on
the classification of [6].

We would like to apply the techniques described in this paper to higher corank
singularities which are invariant under other symmetry groups, such as the corank 2
caustics with square symmetry investigated by Nye [8]. The main difficulty appears to
be the computational problem of finding enough information about vector fields

Received 5 December 1991.

1991 Mathematics Subject Classification 58C27.

The work of the first author was supported by an SERC Research Grant and that of the second by
an SERC Advanced Research Fellowship.

J. London Math. Soc. (2) 48 (1993) 178-192



CLASSIFICATION OF SYMMETRIC CAUSTICS II 179

tangent to bifurcation sets of versal unfoldings to be able to prove that pull back
mappings are infinitesimally stable. This could perhaps be overcome by using
symbolic computation software.

A variation on the ideas developed in this paper is given by Montaldi [7]. He has
used caustic equivalence, and the assistance of the software Macaulay, to classify
certain corank 3 Lagrange singularities with an antisymplectic symmetry that occur
in time reversible Hamiltonian systems.

The classification of symmetric Legendrian projections (that is, singularities of
symmetric wavefronts) turns out to be much more straightforward than that of
Lagrangian projections. This is because the distinction between the analogues of
symplectic equivalence and caustic equivalence does not exist. A discussion with
examples is given in [13], which also contains alternative proofs of Theorem 4.1 of this
paper and the main classification theorem of [7].

Finally we note that the ideas described in this paper can be interpreted in the
context of multi-parameter gradient bifurcation problems which are invariant under
the action of a symmetry group which acts on the parameter space as well as on the
'state space'. In such an interpretation the basic objects of study are taken to be
parametrized potential functions. These can be identified with the Morse families of
the Lagrangian theory. However in the case of gradient bifurcation problems there
seems to be no reason to require that the nondegeneracy condition (2.2) in §2 should
hold.

2. Symmetric caustics

We first review some of the results of [5, 6]. We identify the manifold (X, JC0)
with (Un, 0) and assume that the action of G on (IRn, 0) is linear and orthogonal. We
denote IRn with this action of G by V. We also identify T*V with V® V*, where
V* is the dual of V. The orthogonality of the action of G on V implies that V*
is isomorphic to V. If (L, 0) <= (T* V, 0) is a (7-invariant Lagrange submanifold
germ and nL:(L,0)->(V,0) its associated G-equivariant Lagrange projection, then
kerDnL(0) = TOL n V* is a (7-invariant subspace of V* which we denote by W*. Let
W*x denote a (/-invariant complement to W* in V* and define W = (W*)* and
WL = (W*1)*. We can identify V with W® W1. Let q1...qk denote coordinates
for W, qk+1,...,qn for W1, px, ...,pk for W* and pk+1, ...,pn for W*1. Then the
submanifold germ (L, 0) is given by a set of equations:

dF,

(2.1)
dF '

where F(pv ...,pk,q1,...iqn) is a (/-invariant smooth function germ satisfying:

_ * ( 2 .2 )

biC=1 k
d=l n

and

at p = q = 0. Condition (2.2) means that the equations (2.1) do indeed define a
smooth submanifold germ while (2.3) ensures that kerD7rL(0) = W*. We call a
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G-invariant function germ satisfying (2.2) and (2.3) a (G-invariant) Morse family. If
V is a representation of G which has a G-invariant subspace isomorphic to V, then
an invariant Morse family F:W*®V^U also defines an invariant Lagrange
submanifold L of T*V. Let qx,...,qn be coordinates on the subspace isomorphic to
V and extend these to a system qx,...,qn' on V. Then the equations for L' are
obtained by supplementing (2.1) by q} = 0 for j = « + l , . . . , « ' . We say that the
Lagrange submanifold L is a trivial extension of L.

The discriminant of nL (the caustic of L) is given by:

f &F d2F
CF = {qeV:3peW* such that — (/?, q) = 0 and det-r-r (/?, #) =

I dp dp2

If F: W* © V-* U is regarded as an unfolding, that is a family of functions on W*
parametrized by V, then CF is the set of parameter values q for which F(-,q) has non-
Morse critical points—the local bifurcation set of F. The caustic of a trivial extension
of a Lagrange submanifold L is the product of the caustic of L with a smooth
G-manifold. Two G-invariant Lagrange submanifold germs (L}, 0) c= (T* V, 0),
(j = 1,2) are symplectically equivalent if there exist germs of a G-equivariant
symplectomorphism Q>:(T*V,0)-*(T*V,0) and a G-equivariant diffeomorphism
0:(F,O)->-(F,O) such that no® = <f>on and O(LJ <= L2. Two G-invariant Morse
families i^: fF* © K-+IR (y=l>2) generate symplectically equivalent Lagrange
submanifold germs if and only if they are /^-equivalent. This means that there exists
a G-equivariant diffeomorphism germ Y : ( W * © V,Q)^>(W*® V,0), a G-equi-
variant diffeomorphism germ y/:(V,0) ->(F,0) and a G-invariant function germ
a: (V, 0) -• R such that n2 o Y = \\i o 7i2 and /5(/>, #) = ^(^(z?, q)) + a(#), where 7r2 is the
natural projection from W*® V to V. The 'tangent space' for this equivalence
relation, and some simple results concerning infinitesimally /?G-stable Morse families,
are described in [6].

We call the G-invariant function g e r m / = F(-,0) on W* the organizing centre of
F. Let RG denote the group of germs of G-equivariant diffeomorphisms of (W*,0).
Recall from [9, §4] that finite /^-determinacy holds in general in &G(W*), the space
of G-invariant function germs on (W*,0). It follows that for generic Morse families
the organizing centres / a r e finitely i?G-determined. If G is finite it follows from [10,
Prop. 5.1] tha t / i s actually /^-finitely determined, and so by [11, Theorem 2.1] has an
unfolding which is 'G-versal'.

PROPOSITION 2.1. Suppose G is finite and letfeSG{W*) be R-finitely determined.
Set U = m(W*)/J(J) with its induced action of G. Then there exists a G-invariant
unfolding 3F: W* © U -* U such that for any representation V of G and G-invariant
unfolding F: W* © V-* U with an organizing centre F(-, 0) which is RG-equivalent tof
there exists a G-equivariant map germ <f>:(V, 0) -•(£/, 0) such that F(p,q) is
RG-equivalent to

This gives a 'prenormal form' for generic G-invariant Morse families when
G is finite. In [6] we showed that the infinitesimal instability of such a Morse
family is equivalent to the infinitesimal /?G-stability of the 'pull-back' mapping
0:(K,O) -> (C/,0). Here RG is the group of germs of G-equivariant diffeomorphisms
of(K,0).

For a general compact group G the organizing centre / of a generic G-invariant
Morse family must be a germ that can appear in a generic family of G-invariant germs
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parametrized by VG. If/is i?G-simple [2, §17.3], this means that the codimension of
the i?G-orbit of/in the space of (7-invariant germs which vanish at 0 will be less than
or equal to the dimension of VG. Moreover the restriction F\wtQVG will be an
i?G-versal unfolding of/ If G acts trivially on W* then an i?G-versal family F\Wi,9Vc
is i?-versal in the non-equivariant category. It follows from [11] that F must be
i?G-equivalent to a trivial extension of F\Wi,eva.

3. Caustic equivalence

In this section we introduce an equivalence relation between G-invariant Morse
families that is weaker than /^-equivalence, but still preserves the equivariant
diffeomorphism type of caustics. Let G be a compact Lie group acting orthogonally
on V = Un and W = Uk as before. Let CFczV denote the caustic of the (/-invariant
Morse family F: W* 0 K-> U.

DEFINITION 3.1. Two G-invariant Morse families F}: W* 0 F-> U (J = 1,2) are
caustic equivalent if the following conditions hold.

(1) There exists a representation U of G, a G-invariant Morse family
&:W* 0 £/-• IR and G-equivariant map germs ^:(K,0) -• (U,0) such that F}(p,q)
is i?G-equivalent to ^{p, <f>}(q)).

(2) There exists a pair of G-equivariant diffeomorphism germs (H, h) with
H:(Vx £/ ,0)-(Kx C/,0) and h:(V,0)^(V,0) satisfying:

(a) H(x,y) = (h(x),H(x,y)), where H.VxU-^U is a map germ satisfying

(c) H(x,<f>1(x)) = (h(x),<t>2(h(x))).

The equivalence between fa and 02 defined by condition (2) is an equivariant version
of the ^-equivalence of Damon [3] with V = C?. We shall also say that (f>x and 02

are K% -equivalent. Clearly h maps ^(C^) diffeomorphically to (j>i\C?), and hence
CF diffeomorphically to Cp .

If Fx, F2 and 2F satisfy the conditions of the definition then their organizing centres
/l5 /2 and / (respectively) are all /?G-equivalent to each other. If they are finitely
^-determined then $F can be taken to be a G-versal unfolding of/ As we remarked in
§2 this holds generically if G is finite. In this case SF and C? can be taken to be
polynomial and hence analytic. This is essential in order to be able to apply the
machinery of [3].

Let &: W* 0 U -• IR be an analytic G-invariant Morse family and C = C?
its caustic. The tangent space for K% equivalence of equivariant map germs
<f>:(V,0) -• (U,0) is defined as follows (compare with [3, § 1]). Let $G(V, U) denote the
(^G(F)-module of terms of smooth G-equivariant mappings (K,0)-> U. Let &G(U)
denote the ring of germs of G-invariant analytic functions on (U,0) and ®G(U)
(®G(U), respectively) the &G(U)- (<^(t/)-respectively) module of germs of smooth
(analytic, respectively) G-equivariant vector fields on (U, 0). Similar definitions are
made for vector fields on (V,0). Define

0a
G(C) = {Ze®G(U):Z ̂ e/a(C)V^e/a(C)},

where Ia(C) is the ideal in &G(U) consisting of analytic function germs which vanish
on C. Then 0G(C) is a finitely generated <£G(C/)-module with generators {^}^l5
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say. Let {(,}{_! generate 0G(K) as an (fG(K)-module. For any G-equivariant germ
(f>:(V,O)-•(£/,0) let 0G(0) denote the (£G(K)-module of germs of smooth G-
equivariant vector fields along 0. We identify 0G(0) with SG{V, U) in the usual way.
We also identify 0G(£/) with SG(U, U), and so the vector fields ^ with G-equivariant
germs £j:U-> U. Finally we define the extended A^-tangent space of <p to be the
finitely generated submodule of SG{V, U) given by:

DEFINITION 3.2. A G-equivariant map germ 0:(F,O)-»(£/, 0) is infinitesimally
KG-stable if TeK

G{<f>) = £G{V, U).

Note that the group RG of germs of G-equivariant diffeomorphisms of (V,0) is
contained in KG and so, since infinitesimal instability of <j> is equivalent to the
infinitesimal instability of ^{p, (j>{q)), we see that infinitesimal stability with respect
to caustic equivalence is a weaker condition than that with respect to symplectic
equivalence. The group KG lies between RG and KG, the group of all G-equivariant
'contact equivalences' of the mappings <j>. Infinitesimal ATG-stability is a generic
property for all pairs of representations Kand U [9]. We shall see in §4 that the same
is not true for KG, though infinitesimal AT^-stability is generic more often than
infinitesimal instability is.

One property that KG does share with RG is that infinitesimal stability implies that
the associated Morse family is i?G-versal when restricted to W* © VG, as long as $F
is a G-versal unfolding and the vector fields tangent to Cy all vanish at 0.

PROPOSITION 3.3. Let 2F\W* @U^Ubean analytic G-versal unfolding such that

0G(C)c=(m(C/)0a(t/))G,

where C = Cy. Then if the G-equivariant map germ (f>\(V, 0) -> (t/,0) is infinitesimally
Kg-stable, the Morse family ^{p,<j){q)) restricted to W* © VG is Reversal.

Proof. The germ <j> is infinitesimally A^-stable if and only if the map

r>(r'U)

induced by C,\->C'0 is surjective. This implies that

_ ©G(F) SGjV, U)

^o®,., m + (m(V)#(V,U))G

is surjective. The source of xp is a real vector space with basis given by

— (J =l,...,a),
dq}

where q1}...,qa are coordinates for VG. The target of y is £G(V, U)/(m{V)S(V, U))G,
since the vector fields ^ all vanish at 0. This in turn is isomorphic to UG and hence
to mG{W*)/J(f)G where/is the organizing centre of J5". Thus the surjectivity of f is
equivalent to the i?G-versality of the restriction of #"(/?, <j){q)) to W* © VG.
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Our main tool in the classification of Z2-invariant caustics in the next section is
the following 'reduction lemma', which is proved by standard techniques.

PROPOSITION 3.4. Let C be an analytic subvariety of U. Let </>t:V-*U be an
analytic \-parameter family of G-equivariant maps such that for each t the germ of
<$>t at 0 is infinitesimally K^-stable. Then there exists an analytic family of pairs
of G-equivariant analytic diffeomorphisms (Ht,ht) with Ht:VxU->VxU and
ht:V-*V, satisfying:

(a) Ht(x,y) = (ht(x),Ht(x,y)), where Ht: Vx U^ U,
(b) Ht{VxC)^ VxC,
(c) the germs of Ht(x, 0o(x)) and (ht(x), <j>t(ht(x))) at 0 are equal.

REMARKS 3.5. (1) In general the K% equivalences constructed by the proposition
do not preserve the origin in V, that is ht{§) # 0. However, if all analytic vector fields
tangent to C vanish at 0 it follows that Ht(x, 0) = 0 for all x and t. Conditions (a)
and (c) of the proposition imply that Ht(0, </>0(0)) = <f>t(ht(O)) and so if 0O(O) = 0 it
follows that ht(0) e 0^(0). In particular, if 0 is an isolated solution of <j>t(x) = 0 then
ht(0) = 0.

(2) In addition Ht(x,0) = Q for all x implies that DxHt(0,0) = Q and so, if
0O(O) = 0, we have that

DHt(0,0O(O)) • Dx 0o(O) = Dx <pt(ht(O)),

and so the rank of Dx <j>t at ht(0) must be equal to that of Dx <f>0 at 0. This can also be
used to prove that ht(0) = 0. See the proof of Theorem 4.1 (b) in the next section.

4. Z2-Symmetry

We now apply the results of the preceding sections to give a classification of the
caustics of corank 1 Lagrange projections from Z2-invariant Lagrange submanifolds
of T*Un, where Z2 = {1,/c} acts on V= Un by:

= n. (4.1)

We assume that Z2 acts non-trivially on W* = U: if X is a coordinate on W* then
K-X = — X. The /^-finitely determined Z2-invariant germs on W* are i?G-equivalent
to one of thefk(X) = X2(k+X), with Z2-versal unfoldings &k\ W* 0 £/-• IR given by:

X*i + ZJuiX*i-\ (4.2)

where ult ...,uk,v1,...ivk are coordinates on U = U2k, with Z2-action:

K(u1,...,uk,v1,...,vk) = (-ux,...,-uk,v1,...,vk). (4.3)

A Z2-invariant Morse family with organizing centre i?G-equivalent to fk is therefore
i?c-equivalent to one of the form:

\ (4.4)

where the y/t are Z2-invariant, y/t( — x,y) = y/fay) and the (f)i satisfy
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Some easy invariant theory implies that (j>i(x,y) = YJi-\ $ij(x>y)xj where the <j){} are
Z2-invariant, and that the y/i and the 0 U are functions of the yi and the products
xtx}. Thus the pull-back mapping <j>: V-+ U is given by:

<t>(x> y) = (0i(*5 y), • • •, <t>k(
x> y), Vi(*> y),-* vk(

x, y))

(4-5)

The restriction of ^(X,(/>(x,y)) to Fz* is A2(*+1) + E?-i v A j O ^ - I f t h i s i s

/£0-versal then a change of y coordinates (an /^-equivalence) takes ^(Xt(j)(x,y))
to a Morse family of the form:

i£1. (4.6)

Generic Morse families, including Morse families given by infinitesimally A^-stable
pull-back mappings <f>, will have this form. We shall say that a caustic is infinitesimally
stable if it is the caustic of a Morse family given by an infinitesimally A£-stable pull-
pack mapping. The main results of this section are summarized in the following
theorem.

THEOREM 4.1. (a) If r = 1 then generic corank 1 Z2-invariant caustics in Un are
infinitesimally stable and are trivial extensions of the caustics of the Morse families :

(b) If n < 6 then generic corank 1 Z2-invariant caustics in Un are infinitesimally
stable and are trivial extensions of the caustics of the Morse families listed in Table 4.1

(c) Ifr^-2 and s > r*/(r— 1) (for example, r = 2,s = 5 and so n = 7) then there
exist generic corank 1 Z2-invariant caustics in Un which are not infinitesimally stable.

REMARKS, (i) The normal forms I, II, V and XII in Table 4.1 are the standard
versal unfoldings, with induced Z2-actions, of the At singularities where / = 1,3,5 and
7, respectively. Note that only those with / odd appear, despite the apparent Z2

symmetry of, for example, the swallowtail caustic (/ = 4). However the versal
unfoldings with / even are the Morse families of Z2 equivariant Lagrange projections
for which the Z2 action on T*X is antisymplectic, see [7, 13].

(ii) This classification should be compared with that up to symplectic equivalence
given in [6]. It is shown there, for example, that if s ^ r = 1 then infinitesimally
symplectically stable Morse families are equivalent to trivial extensions of the families

A2(fc+1) + E yt A2< + I (a,+^f c + <) Xl X™+Xl X
i-i i-i

with k ^ |(5+1). Here the parameters a< are moduli. It follows from Theorem 4.1 (a)
that these families are all caustic equivalent to trivial extensions of the families
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TABLE 4.1. Morse families of generic corank 1 Z2-invariant caustics in Rn, n ^ 6.

n r Morse family

II

III

IV

V

VI

VII

VIII

IX

x±

XI

XII

4

4

5

5

5

6

6

6

6

1

2

1

2

2

1

2

2

3

-i10+E ^ , x

In particular the moduli do not change the smooth equivariant diffeomorphism types
of the caustics. Similar remarks apply to other normal forms in the two classifications,

(iii) The caustic of normal form III, the 'symmetric butterfly' is shown in Figure
4.1. In Figure 4.2 we show two views of the caustic of normal form IV.

FIG. 4.1. The caustic of normal form III, the symmetric butterfly.

For the proof of the Theorem 4.1 we need a set of generators for the
Z2-equivariant vector fields tangent to the caustic, Ck, of the Z2-versal family 2Fk
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10

2/3

FIG. 4.2. Two views of the caustic of normal form IV. (a) The y2,ya constant sections for a
number of values of y% and y3. (b) A ya constant section with y3 negative.

given by (4.2). This is the same as the discriminant of dtFJdk, and hence the
discriminant of:

(4.7)

Araold [1] showed that the set of all vector fields tangent to the discriminant of

is a free module generated by the vector fields:
1 d .

where

7X
1~r

(4.8)
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with /i_x = 1 and ji} = 0 fory < — 1, j = 0 andy > /. If / is even, then with respect to
the Z2-action

K-QI^ . . . , / / , ) = (Mi, - V v M v •••> - f t ) ,

£( is equivariant if i is odd and 'anti-equivariant' if / is even. By anti-equivariant we
mean that (£«•/) (JC-/I) = — *•(£<•/) 00 for any Z2-invariant function ge rm/on Ul.
Relabel vector fields f< by Q = ^2i_x and £" = £2i for / = 1, . . . ,} / • It follows easily
that the Z2-equivariant vector fields tangent to Ck are generated over the ring of
invariant functions by {£",/% £r}<j-i *•

To get back to our original coordinates (u, v) we set l = 2k and make the
substitutions:

^~x~ (k+l) Vk+1-p M2}~ (k+l) Uk+1-

We do this explicitly for the 1-jets of the vector fields Q. Since

we obtain
* d k d

HI = E^+i-<^+£Vm-iar i = i,...,*, (4.9)
j-i uuj j-i uvj

where
[2(k + i j ) + l ] U i + l ] 2[k + i j \ [ j i + l ]

. (4 .10)
Similar expressions can be obtained f o r / ^ , but these are not needed below.

We use these formulae to obtain a characterization of infinitesimally A^-stable
pull-back mappings.

PROPOSITION 4.2. Let k^s. The map germ <f>: Ur+8 -»• R2k given by (4.5) with
¥} = yj for j = 1> •••»* is infinitesimally K**-stable if and only if the following kxr
matrices, evaluated at x = y = 0, span the vector space of all kxr matrices:

ath row a,b = 1, ...,r

<x= l,...,k

a - 1

od>-. , ^0* i \
~ ~ \

c = k+\,...,s.
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Proof. The A?*-tangent space of $ is given by

where a,b = l,...,r, c = l , . . . , s , and <*,/? = 1, ...,k. By Nakayama's lemma
TKz*k(</>) = &Z*(V, U) if and only if the same equality holds modulo mz«(F) • £\V, U).
The space SZ*{V, U)/mz*{V)-£z*{V, U) is isomorphic to M(k, r) x Rk, where M(k, r) is
the space of k x r matrices. Using (4.9) we see that modulo mZi(V)d?z*(V, U) we have

d<f) _
CXft

( y d - i i d x y d l j L i x o o i o <A c - i A:

j-l

and
= 0,

where the <f>i} and d<f>ij/dyc are all evaluated at x = ^ = 0.
The projections onto the component W of S\V,U)/mz^V)-Sz*{V,U) of

the dcf>/dyc (c = l,...,k) span that component while the other contributions to the
tangent space project to 0. It follows that (j> is infinitesimally stable if and only if
xadi>/dxb (a,b= l , . . . ,r), d(p/dyc (c = k+\,...,s) and c£o0 (a = l,...,fc) span the
component M(k, r). Translated into matrix notation this proves the lemma.

Proof of Theorem 4.1 (c). There can exist infinitesimally AT^-stable germs
(f): Ur+S, 0 -• Ur+S, 0 only if the number of matrices in Proposition 4.2 is greater
than the dimension of M(k, r) that is,

kr. (4.11)

For any given r and 5 there exist generic caustics obtained by pulling back from ^s.
These can be stable only if (4.11) holds with k = s, that is r = 1 or s < r2/(r— 1).

Proof of Theorem 4.1 (a). If r = 1 then generic Morse families are equivalent to
those given by pull-back mappings of the form:

</>(x,y1,...,ys) = (<f>1x,...,<j>kx,y1,...,yk), (4.12)

where the <j>i are functions of yt, ...,ys and x2. We may also assume that 0X = 1. By
Proposition 4.2 these mappings are infinitesimally stable if the vectors:

and

(alva12<f>2,...,alk<f>k),
(0,..., 0, aiP aji+102,..., ajk (j>k+1.}),
(0,...,0,akk),

.&....M for c-k+\,...,s
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span R*. Since a}} ^ 0 {j = 1, ...,k) this is always true. Thus generic Morse families
are given by infinitesimally stable pull-back mappings.

Consider now the one-parameter family of Morse families given by:

These are all infinitesimally stable at x = y = 0 and so by Proposition 3.4 the germ
of 0O at 0 is equivalent to the germ of (f>1 at some point /^(O). Since 0t(*>};i> •••>)0 = 0
implies x = y = 0, Remark 3.5 implies /^(O) = 0. This proves the result.

Proof of Theorem 4.1 (b). Generic caustics are given by Morse families which are
/?G-versal unfoldings when restricted to VG. If n ^ 6 then dim VG < 5 and so for
generic caustics k ̂  5. We treat each case k = 0 , 1 , . . . , 5 in turn.

k — 0. This corresponds to nonsingular Lagrange projections, with Morse
families equivalent to the normal form I in Table 4.1.

k=\. The prenormal form (4.6) with ^>x(x,y) = xx immediately gives normal
form II in Table 4.1.

k = 2. We start with the prenormal form:

By Proposition 4.2 this is stable if and only if the following matrix has rank 2r.

0

021

0

0

022

02r

0

0

0

0

212 021

^021

^021

0

021

0

0

022

02r

02

0
0

021
0

0
0

It follows that the Morse family is stable if and only if one of the following conditions
holds:

0) r = l ,
(ii) r ^ 2 and 02,(O) # 0 for somey ^ 2,

(iii) r ^ 2, 02;(O) = 0 for all j , and the matrix has rank r— 1.
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For r > 2 conditions (ii) and (iii) are equivalent to the statement that (022s ...,02r)
restricted to x = yx = y2 = 0 is transversal to 0, which implies that stability is generic.
We obtain normal forms for each of three cases in turn.

(i) This is dealt with by Theorem 4.1 (a). The normal form is III in Table 4.1.
(ii) In this case the normal form is G-versal and so is equivalent to normal

form V.

2>"->02r)(iii) Since has rank r - l w e must have s—2 ^ r— 1 and so s <* r— 1.

Combined with r ^ 2 and n < 6 this implies r = 2 and hence for some

y ' ^ 3 . Without loss of generality we can take 022 = y3 + y/, where Dy/(0) = 0, and the
prenormal form becomes

X6 +y2 X
4 +y,X2 + ((y3 + y/)x2 + 021 xj X3 + x, X.

Define

For all t this is infinitesimally stable at 0 and so Proposition 3.4 says that there is a
diffeomorphism ht of V such that the germ of (f>t at /it(0) is equivalent to that of 0O at
0. It remains to show that ht(0) = 0. By Remark 3.5 ht(0) lies in 0<~

1(O) and hence in
the set {(x,y):x1 = yx = y2 = 0}. Moreover ht is 22-equivariant, so ht(0) must also lie
in V° = {(x,y):x1 = x2 = 0}. From Remark 3.5(2) the rank of D$t at h$) must equal
that of D(j)Q at 0 and so h$) must lie in {(x,y):x1 = x2 - yx = y2 = 0 = ^3 + ty/}. It
follows that ht(0) = 0.

k = 3. The initial prenormal form is

Since « ^ 6 w e must have r ^ 3.
If r = 1 then the Morse family is equivalent to normal form IV by Theorem

4.1 (a).
If r = 2 then s = 3 or 4 and by Proposition 4.2 the prenormal form is stable if and

only if the following matrix has rank 6.

1
0
0
0

' l l

0
0

0
1

0
0
0
0
0

n

021
0

022
0

fl12 021

a22

0

5021

0
021
0

021

^12 022

0
0

5022

031
0

032
0

«13 031

^23 021
a33

5031

0
021
0

021
ai3 032
U 2 3 TT22

0

5032

The last row of this matrix is omitted if s = 3. A straightforward calculation shows
that the matrix has rank 6 if and only if either of the following conditions holds:

(i) 022(O) # 0,

(ii) 022(O) = 0, 032(O) * 0 and 0.
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Only the first of these is possible if s = 3. Note that generically one or the other of
these conditions will hold and so stability is generic. In case (i) an argument similar
to those above, using Remark 3.5(1), shows that the Morse families are equivalent to
normal form VII. In case (ii) Remark 3.5(2) is used to show that the prenormal form
is equivalent to XI.

If r = 3 then s — 3 and the prenormal form is stable if and only if the following
matrix has rank 9.

• 1

0
0
0
0
0
0
0
0

0 1 1

0
_ 0

0
1
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0

021
0
0

022

0
0

023
0
0

012 021

022

0

0

021

0
0

022

0
0

023

0

012 022

0
0

0
0

021

0
0

022

0
0

023

012 023

0
0

031
0
0

032

0
0

033
0
0

013 031

023 021
a

0

031

0
0

032

0
0

033

0
013 032

023 022

0

0
0

031

0
0

032

0
0

033

013 033

023 023
0

This matrix has rank 9 if and only if 022 033 — 032 023 # 0, from which it follows that
the generic Morse families are G-versal and so are equivalent to the normal form XII.

k = 4. If n ̂  6 then generic Morse families with k = 4 can only occur if r = 1
or 2.

If r = 1 the Morse family is equivalent to VI by Theorem 4.1 (a).
If r = 2 then s = 4 and the prenormal form is

<-2,3,4
J-1.2

This is stable if and only if the following matrix has rank equal to 8.

021

0

021
0

" 22

0
0

0

021

0

021

012 022

0
0
0

031

0

021
0

013 031

023 021

033

0

0

021

0

021

013 032

023 022

0
0

041

0

021

0

014 04

0

021

0

021 -

014 042

024 031 024 024 V32

034 021 034 02
0

*34 V21

J44

Taking the determinant of this matrix shows that its rank is 8 if and only if:

022 ^ 0>
and

{023 034 (013 - 01l) (031 022 ~ 032 02l) + 023 03s(012 ~ aii) 042* 022

+ (034 022 + 033 024) (013 ~ 012) 032 * 0-
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These conditions divide the space of stable prenormal forms into four connected
regions with representative points <f>22 = +1, 042 = ± 1, 021 = 031 = 032 = 041 = 0.
Since for all the prenormal forms 0-1(O) = 0 it follows from Proposition 3.4 and
Remark 3.5(1) that two Morse families in the same connected component are
equivalent to each other, and so all the Morse families are equivalent to one of the
normal forms

The change of coordinates x2 -> — x2 reduces these four normal forms to the two X*.

k = 5. If n ^ 6 then generic Morse families with k = 5 can occur only if r = 1. By
Theorem 4.1 (a) we obtain normal form IX.

This completes the proof of Theorem 4.1.
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