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LINEAR AUTOMORPHISMS THAT ARE
SYMPLECTOMORPHISMS

STANIS�LAW JANECZKO and ZBIGNIEW JELONEK

Abstract

Let K be the field of real or complex numbers. Let (X ∼=K2n , ω) be a symplectic vector space
and take 0 < k < n, N =( 2n

2k
). Let L1, . . . , LN ⊂X be 2k-dimensional linear subspaces which

are in a sufficiently general position. It is shown that if F : X −→X is a linear automorphism
which preserves the form ωk on all subspaces L1, . . . , LN , then F is an εk -symplectomorphism
(that is, F ∗ω = εkω, where εk

k = 1). In particular, if K= R and k is odd then F must be a
symplectomorphism. The unitary version of this theorem is proved as well. It is also observed
that the set Al,2r of all l-dimensional linear subspaces on which the form ω has rank �2r is linear
in the Grassmannian G(l, 2n), that is, there is a linear subspace L such that Al,2r = L∩G(l, 2n).
In particular, the set Al,2r can be computed effectively. Finally, the notion of symplectic volume
is introduced and it is proved that it is another strong invariant.

1. Introduction

Let K be either R or C. Let (X,ω) be a symplectic vector space over K, that is,
X ∼=K2n is a vector space and ω is a bilinear, non-degenerate skew-symmetric form
on X. The symplectic complement of a linear subspace L⊂X is defined as the
subspace

Lω = {x ∈ X : ω(x, y) = 0, ∀ y ∈ L}.
This space may not be transversal to L. A subspace L⊂X is called isotropic if
L⊂Lω, coisotropic if Lω ⊂L, symplectic if L∩Lω = {0} and Lagrangian if Lω =L.
L is symplectic if and only if ω |L is a non-degenerate form. For any subspace L we
have dim L + dim Lω = dim X and (Lω)ω =L. There exists a basis of X, called a
symplectic basis, u1, . . . , un, v1, . . . , vn, such that

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij .

If L⊂X is a subspace, then there is a basis u1, . . . , uk, v1, . . . , vk, w1, . . . , wl of
L such that ω |L(uj , vk)= δjk and all other pairings ω |L(•, •) vanish. This basis
extends to a symplectic basis for (X,ω) and the integer 2k is the rank of ω |L.

We say that a linear automorphism F : X −→X is a symplectomorphism (or is
symplectic on X) if F ∗ω = ω, that is, ω(x, y)= ω(F (x), F (y)) for every x, y ∈X.
If L⊂X is a linear subspace, then we say that F is symplectic on L if
ω(x, y)= ω(F (x), F (y)) for every x, y ∈L. The group of automorphisms of (X,ω)
is called the symplectic group and is denoted by Sp(X,ω). Via a symplectic basis,
Sp(X,ω) can be identified with the group Sp(2n, R) of real 2n× 2n matrices A which
satisfy AT J0A= J0, where J0 is the 2n× 2n matrix of ω (in a symplectic basis). If we
identify R

2n with C
n in the usual way: R

2n � (x, y)−→x + iy, then multiplication
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by J0 in R
2n corresponds to multiplication by i in C

n. With this identification the
complex linear group GL(n, C) is a subgroup of GL(2n, R) and the unitary group
U(n) is a maximal, compact subgroup of Sp(2n, R); U(n)= Sp(2n, R)∩O(2n, R).

If L is a subspace of (X,ω), then obviously the form ω |L and its exterior powers
ωk (volume form in particular) are symplectic invariants (cf. [1]). The following two
natural questions are raised by this property.

(1) Does the assumption that such linear subspace data are preserved determine
interesting transformations of the symplectic vector space?

(2) Is it possible to collect such partial ‘information’ from a finite family of
subspaces and construct a complete system of invariants for the symplectic group?

In this paper, using the methods and ideas introduced in [4], we establish the
structural data on subspaces and find the groups of automorphisms defined by
them. The criteria for symplectomorphisms are confirmed by geometrical intuition
coming from standard symplectic geometry. While symplectic structures naturally
arise in diverse contexts such as Hamiltonian mechanics, field theory, differential
and algebraic geometry, we focus on the motivation to extend the considerations
including the time-reversible (including anti-symplectomorphisms) Hamiltonian
systems (cf. [6]) and composite systems with weakened phase space structure
(cf. [7]).

In Section 3, we discuss the case of a finite family of 2-dimensional subspaces
of a symplectic vector space and describe the properties of linear automorphisms
which are symplectic on all members of this family. The crucial property that
the subspaces of the system are not co-planar, that is, they do not belong to any
hyperplane in the appropriate Grassmannian, allows us to get symplectomorphisms
or even more generally linear symplectic relations. The aim of the rest of this paper
is to set up a method of generalizing this type of argument. In Section 4, the case
of linear automorphisms preserving the symplectic data ωk on 2k-dimensional sub-
spaces is studied and conditions under which these automorphisms become symplec-
tomorphisms are obtained. We need this symplectic version to prove similar results
for the Hermitian case in Section 5. Generically, elements of the Grassmannian of
2k-dimensional linear subspaces of (X,ω) are symplectic subspaces. In Section 6,
we show that the set of all linear subspaces of a given dimension on which the
symplectic form is degenerate up to a fixed rank, is an irreducible algebraic subset
of the Grassmannian. Using this type of strata of the Grassmannian, another, more
general characterization theorem for symplectomorphisms is proved. The symplectic
Gram matrix invariants connected with symplectic volume are studied in Section 7.
We prove that the symplectic volume is a strong invariant on the linear subspaces
of the symplectic vector space, which gives another useful characterization for
automorphisms which are conformal symplectomorphisms.

2. Notation and basic results

Let X be a vector space of dimension 2n. Let L⊂X be an l-dimensional
linear subspace (0 < l < 2n). If vectors v1, . . . , vl form a basis of L, then the line
K(v1 ∧ . . .∧ vl) is uniquely determined by L and it does not depend on the basis
v1, . . . , vl. This line determines a unique point Ψ(L) in the Grassmannian
G(l, 2n)⊂P

N−1, where N = (2n
l ) and P

N−1 denotes the (N − 1)-dimensional projec-
tive space. We have the following notion of co-planar spaces.
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Definition 2.1. Let L1, . . . , LN be l-dimensional linear subspaces of X. We
say that they are co-planar if the points Ψ(L1), . . . ,Ψ(LN )∈G(l, 2n) are co-planar,
that is, if there is a hyperplane Λ⊂P

N−1 containing all points Ψ(L1), . . . ,Ψ(LN ).

Remark 2.1. Note that subspaces L1, . . . , LN are not co-planar if the
points Ψ(L1), . . . ,Ψ(LN )∈G(l, 2n) span linearly the whole space P

N−1. Let
e1, . . . , e2n be a basis of X. Since the Grassmannian G(l, 2n) contains the subset
{ei1 ∧ . . .∧ eil

}0<i1<...<il � 2n we see that the subspaces L1, . . . , LN are not co-
planar if the points Ψ(L1), . . . ,Ψ(LN ) span linearly the Grassmannian G(l, 2n).

If L1, . . . , Lm are not co-planar, then we can always choose a subfamily L1, . . . , Lk

of non-co-planar subspaces with k = N, and conversely, it is easy to construct a
collection L1, . . . , LN which is not co-planar. Hence we can always assume that
m = N. We prove the following theorem.

Theorem 2.1. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < n be a natural number.
Assume that F preserves the form ωk on a collection L1, . . . , LN of 2k-dimensional
subspaces which are not co-planar. Then F is an εk-symplectomorphism (that is,
F ∗ω = εω, where εk = 1). In particular, if K= R and the number k is odd, then F
is a symplectomorphism.

Corollary 2.1. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < l �n be natural numbers
such that (k, l) = 1. Assume that F preserves the forms ωk and ωl. Then F is a
symplectomorphism.

We also observe that the following is true.

Theorem 2.2. Let (X,ω) be a 2n-dimensional symplectic vector space and let
0< l < 2n be a natural number. The set Al of all l-dimensional linear subspaces on
which the form ω degenerates (that is, does not have maximal rank) is co-planar
in the Grassmannian G(l, 2n)⊂P

N−1. More precisely, if Al,2r denotes the set of
all l-dimensional linear subspaces on which the form ω has rank � 2r, then Al,2r−2

is co-planar in Al,2r, that is, there is a linear projective subspace L⊂P
N−1 such

that Al,2r ∩L=Al,2r−2. Moreover, Al,2r is an irreducible algebraic variety with
effectively computable equations.

Finally, we introduce the 2k-dimensional symplectic volume as svol2k(v1, . . . ,
v2k)= det[ω(vi, vj)] and we show the following theorem.

Theorem 2.3. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < n and M = 2(2n

2k ). Assume
that F preserves the 2k-dimensional symplectic volume on a collection L1, . . . , LM

of 2k-dimensional subspaces which are sufficiently general (not two-co-planar, that
is there are no hyperplanes Λ1,Λ2 ⊂P

N−1 such that Ψ(L1), . . . ,Ψ(LM )∈Λ1 ∪Λ2).
Then F is an ε2k-symplectomorphism.
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3. The case of k = 1

Let (X,ω) be a symplectic vector space, that is, X ∼=K2n is a vector space and
ω is a bilinear, non-degenerate skew-symmetric form.

Theorem 3.1. Let X be a symplectic vector space of dimension 2n and let
F : X −→X be a linear automorphism. Assume that F is symplectic on a collection
L1, . . . , LN of 2-dimensional subspaces, which are not co-planar. Then F is a
symplectomorphism.

Proof. It is well known (see for example [1]) that we can always choose a
vector basis e1, . . . , e2n in X (symplectic basis) such that ω((

∑
viei), (

∑
wiei))=∑

0<i�n(viwi+n−vi+nwi). We have ω=
∑n

i=1 e∗i ∧e∗i+n in the dual basis e∗1, . . . , e
∗
2n.

Denote by G(2, 2n)⊂
∧2

X =: Y the set of all vectors v ∧w, where v, w∈X. Let
(vi

1, v
i
2) be a basis of the linear subspace Li, i= 1, . . . , N. It is easy to see that the

linear subspaces L1, . . . , LN are co-planar if the vectors {vi
1 ∧ vi

2}i=1,...,N ⊂Y are
co-planar in Y.

Set ui = vi
1 ∧ vi

2. Now, consider the mapping R :=
∧2

F : Y −→Y . In Y we have the
basis eij = ei ∧ ej , 0< i < j � 2n. For y =

∑
yijeij let η(y)=

∑n
i=1 yii+n. Of course,

η is a linear form on Y .
Observe that η(v ∧w)= ω(v, w). Consequently, the mapping F is symplectic if

and only if for every v, w∈X we have η(v ∧w)= η(R(v ∧w)). However, the form
η(y)− η(R(y)) is linear on Y and by the assumption it vanishes on the vectors
ui, i= 1, . . . , N. Since the latter set is not co-planar in Y , the form η(y)− η(R(y))
vanishes identically on Y . This means that ω(v, w)= ω(F (v), F (w)) for every
v, w∈X, that is, F is a symplectomorphism.

From the proof we have the following.

Corollary 3.1. Let (X,ω) be a 2n-dimensional symplectic vector space. Then
the set of all 2-dimensional linear subspaces on which the form ω degenerates is co-
planar in the Grassmannian G(2, 2n).

Proof. Indeed, this set is given by the equation {y ∈ G(2, 2n) : η(y) = 0}.

Remark 3.1. The Lagrangian Grassmann manifold Λ2 is isomorphic to a non-
singular quadric in P

4. Moreover, if K= R, then this quadric has the signature
(+ + + − −). Indeed, the Grassmannian G(2, 4) is given by the equation
y12y34 − y13y24 + y14y23 = 0 (see, for example, [2, p. 211]). The manifold Λ2 is a
section of the Grassmannian G(2, 4) by the hyperplane y13 + y24 = 0 (cf. the proof
of Theorem 2.1). Consequently, Λ2 in homogeneous coordinates y12, y34, y24, y14, y23

has the equation y12y34 + y2
24 + y14y23 = 0.

We apply the above results to the case of more general symplectic transforma-
tions. Let (X,ω), (Y, µ) be two symplectic vector spaces, X∼=K2n, Y ∼=K2m, m�n.

Definition 3.1. Let F be a linear subspace of X ⊕Y, dim F =m + n. We say
that F is an ε-symplectic relation if F is a Lagrangian subspace of the product
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symplectic vector space (X ⊕Y, µ� εω), that is µ� εω |F = 0, where ε=±1,
µ� εω =π∗

Y µ−π∗
Xεω and πX(πY ) : X ⊕Y −→X(Y ) are the canonical projections.

Remark 3.2. If F is an ε-symplectic relation of (X ⊕ Y, µ� εω), m = n,
ε= + 1(−1), and πX |F : F −→X is onto, then F is the graph of a symplec-
tomorphism (anti-symplectomorphism). If m > n, ε= +1(−1), and the projection
πX |F is onto, then an ε-symplectic relation F is the graph of a symplectic relation
called the symplectic reduction relation (anti-reduction) (cf. [8]). In this case
W =πY (F ) is a coisotropic subspace of (Y, µ), that is the µ-complementary space
Wµ is a subspace of W , and f is the graph of a linear projection of W onto X
along Wµ.

Let F be a linear subspace of X ⊕Y. Let S be an affine subspace of X. We define
the image F (S) of S under F, by F (S)= {y ∈ Y :∃x∈S(x, y)∈F}.

Theorem 3.2. Let (X,ω), (Y, µ) be two symplectic vector spaces with
dim X = 2n, dim Y = 2m, m� n. Let F be a linear subspace of the product
symplectic vector space (X ⊕Y, µ� εω), dim F =m + n. Assume that πX |F
is onto and the form µ� εω is isotropic on a collection of subspaces
L1 ⊕F (L1), . . . , LN ⊕F (LN )⊂X ⊕Y, where L1, . . . , LN ⊂X are non-co-planar, 2-
dimensional subspaces of X. Then the following hold.

(1) F is the graph of an ε-symplectomorphism if m = n.
(2) F is an ε-symplectic reduction relation if m > n.

Proof. First we consider the case m =n. By assumption, F is the graph of a
linear map φ : X −→Y. Take symplectic bases {ei}, {hi} for X and Y. Consider
the linear forms ω̄ :

∧2
X −→K and µ̄ :

∧2
Y −→K given by ω̄(v ∧w)= ω(v, w),

µ̄(s∧u)= µ(s, u). Then ω̄(
∑

xijeij)=
∑n

i=1 xii+n, and µ̄(
∑

yijhij)=
∑m

i=1 yii+m,

where eij = ei ∧ ej , hij =hi ∧hj . The forms ω̄ and µ̄ define a linear form on
∧2

X
by

µ̄(Φ(x)) − εω̄(x), (3.1)

where Φ=
∧2

φ :
∧2

X −→
∧2

Y. As in the proof of Theorem 3.1, let (vi
1, v

i
2) be a

basis of Li, i= 1, . . . , N, and ui = vi
1 ∧ vi

2. By assumption, the form µ̄(Φ(x))− εω̄(x)
vanishes on ui, i= 1, . . . , N. Since {ui}N

i=1 is not co-planar in
∧2

X, the form
(3.1) vanishes identically on

∧2
X, that is, F is Lagrangian, so Kerφ = {0}, since

otherwise ω would be degenerate. Obviously φ is an ε-symplectomorphism. Indeed,
µ(φ(v), φ(w))− εω(v, w)= 0 for every v, w∈X.

In the case m > n we choose a linear section ψ : X −→Y of the canonical
projection πX |F : F −→X and get the vanishing of the form

µ(ψ(v), ψ(w)) − εω(v, w) = 0

for all sections ψ and vectors v, w∈X. From this, using the previous arguments,
we deduce that F is Lagrangian and so an ε-symplectic reduction relation.

4. The general case

Definition 4.1. Let (X,ω) be a symplectic vector space and let F :X −→X
be a linear automorphism. We say that F is an εk-symplectomorphism if F ∗ω = εω,
where εk = 1. Moreover, we say that F is an anti-symplectomorphism if F ∗ω = −ω.
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Remark 4.1. We can treat an εk-symplectomorphism as a root of a symplec-
tomorphism. Indeed, if F is an εk-symplectomorphism, then F k is a symplectomor-
phism.

Theorem 4.1. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < n. Assume that F preserves
the form ωk on a collection L1, . . . , LN of 2k-dimensional subspaces which are not
co-planar. Then F is an εk-symplectomorphism. In particular, if K= R and the
number k is odd, then F is a symplectomorphism.

Proof. Denote by G(2k, 2n)⊂
∧2k

X =:Y the set of all vectors v1 ∧ . . . ∧ v2k,
where v1, . . . , v2k ∈X. Let (vi

1, . . . , v
i
2k) be a basis of Li, i= 1, . . . , N. It is easy to

see that L1, . . . , LN are co-planar if the vectors ui := vi
1 ∧ . . . ∧ vi

2k, i= 1, . . . , N are
contained in a hyperplane in Y.

In Y we have the basis (ei1...i2k
= ei1 ∧ . . . ∧ ei2k

, 0< i1 < . . . < i2k � 2n). For a
vector y =x1 ∧ . . . ∧x2k ∈G(2k, 2n) let y =

∑
yi1...i2k

ei1...i2k
. It is easy to see that

the mappings yi1...i2k
treated as functions of the vectors x1, . . . , x2k form a basis of

the space of all 2k-linear skew-symmetric forms on X. In particular, there are num-
bers ai1...i2k

such that ωk(x1, . . . , x2k)=
∑

ai1...i2k
yi1...i2k

. Take η(x1 ∧ . . . ∧x2k)=
ωk(x1, . . . , x2k). We have η(y)=

∑
ai1...i2k

yi1...i2k
and consequently we can treat η

as a linear form on the whole of Y .
Now, consider the mapping R :=

∧2k
F : Y −→Y . Then F preserves the form ωk

on Li if and only if η(ui)= η(R(ui)). However, the form η(y)− η(R(y)) is linear on
Y and by assumption it vanishes on the set of vectors ui, i= 1, . . . , N. Since the
latter set is not co-planar in Y , the form η(y)− η(R(y)) vanishes identically on Y .
This means that ωk(v1, . . . , v2k)= ωk(F (v1), . . . , F (v2k)) for every v1, . . . , v2k ∈X,
that is, F preserves the form ωk. Now we prove the following.

Lemma 4.1. Let (X,ω) be a symplectic vector space. Let W ⊂X be a 2k-
dimensional symplectic subspace of X, that is (W, ω |W ) is a symplectic vector
space. If

ωk(v, w1, . . . , w2k−1) = 0

for any {w1, . . . , w2k−1}, wi ∈W, then v is complementary to W with respect to ω.

Proof. Because W is symplectic we can choose a symplectic basis {ei}2n
i=1

in X such that W is generated by the vectors ei, i� 2k. In this basis we
have ω |W =

∑k
i=1 e∗i ∧ e∗i+k. Moreover, we can assume that the subspace V ω-

complementary to W is generated by the vectors ei, i > 2k. Now let v =
∑2n

i=1 aiei.
Then taking the (2k − 1)-elements e1, . . . , ‘j’, . . . , e2k, we get

ωk(v, e1, . . . , ‘j’, . . . , e2k) = ±ajω
k(e1, e2, . . . , e2k)= ± ajk!,

so by assumption we have aj = 0, j = 1, . . . , 2k. This means that v ∈ V.

Now consider a general vector subspace V ⊂X of dimension 2k + 2. Take a
general subspace LV ⊂V of dimension 2k and let KV ⊂V be the subspace which
is complementary to LV with respect to ω. Since the form ωk+1 is proportional to
the usual volume form Ω on V and any linear mapping changes the volume form
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by multiplying it by a suitable constant, there is a non-zero constant c such that

Ω(F (v1), . . . , F (v2k+2)) = cΩ(v1, . . . , v2k+2) (4.1)

for every v1, . . . , v2k+2 ∈V.
Now take in (4.1) v1, . . . , v2k ∈LV and v2k+1 = v, v2k+2 = w∈KV . Computing

directly we have (note that v, w are ω-complementary to v1, . . . , v2k!)

Ω(v1, . . . , v2k, v, w) = aω(v, w)ωk(v1, . . . , v2k), (4.2)

where a is a suitable non-zero constant. Since F preserves ωk, using Lemma 4.1,
we can deduce that the subspace F (VL) is complementary to F (KL) with respect
to ω (in the space F (V )). In fact ωk(F (v), F (v1), . . . , F (v2k−1))= 0 for all
v1, . . . , v2k−1 ∈LV , so we can apply Lemma 4.1.

Hence as before we have

Ω(F (v1), . . . , F (v2k), F (v), F (w)) = aω(F (v), F (w))ωk(F (v1), . . . , F (v2k)). (4.3)

Now from (4.2) and (4.3) we conclude that

ω(F (v), F (w)) = cω(v, w).

Since the spaces KV are not co-planar in G(2, V ) we deduce (as in the proof of
Theorem 3.1) that F ∗ω = cω on V. Finally, since F ∗ωk =ωk = ckωk, we have ck = 1.
Thus there are only a finite number of possibilities for c. Let ε1, . . . , εk be all
the kth roots of unity in K (if K= R, then we consider 1 and −1 only). Now
in the Grassmannian G(2,X) consider the subsets Si := {y : εiη(y)= η(

∧2
F (y))}.

Since G(2,X)=
⋃k

i=1Si, there is an i such that Si is not co-planar in G(2,X).
Consequently, we must have εiη(y)= η(

∧2
F (y)) identically, that is, F ∗ω = εiω on

the whole of X. Moreover, if k is odd and K= R, we have εi = 1.

Corollary 4.1. Let (X,ω) be a symplectic vector space and let F :X −→X
be a linear automorphism. Let 0< l < k �n be natural numbers such that (k, l) = 1.
Assume that F preserves the forms ωk and ωl. Then F is a symplectomorphism.

Remark 4.2. The simplest example of an εk-symplectomorphism F :X −→X
is the mapping

Jk

(
n∑

i=1

(viei + vi+nei+n)

)
=

n∑
i=1

(viei + εkvi+nei+n)

in symplectic coordinates, where εk is a primitive root of unity. Thus if the linear
mapping F preserves the form ωk then it has the form F = JlS, where S is a
symplectomorphism and l is a number which divides k.

From the proof of Theorem 4.1 we also have the following corollary.

Corollary 4.2. Let (X,ω) be a 2n-dimensional symplectic vector space. Then
the set of all 2k-dimensional linear subspaces on which the form ω degenerates (that
is, does not have maximal rank) is co-planar in the Grassmannian G(2k, 2n).
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5. The Hermitian case

In this section, we give an application of our results to C-linear mappings of
n-dimensional complex space X = C

n. In particular, we extend the main result of
[4] to the case of C-linear mappings. Let G(k, n) be the set of all k-dimensional
complex linear subspaces of X. Of course G(k, n) is a subset of G(2k, 2n). We have
the following variant of Definition 2.1.

Definition 5.1. Let L1, . . . , Lm be C-linear k-dimensional subspaces of X. We
say that they are not co-planar if the points Ψ(L1), . . . ,Ψ(Lm)∈G(2k, 2n) span
linearly (over R) the set G(k, n).

Remark 5.1. Let N = (2n
2k ). It is easy to see that a sufficiently general collection

{L1, . . . , LN} of k-dimensional C-linear subspaces of X is not co-planar.

Let us recall that a Hermitian product H on a complex vector space X is a map

H : X × X −→C

which is bilinear over R and satisfies the conditions

H(ix, y) = iH(x, y), H(x, y) = H(y, x), H(x, x) > 0, for x 
= 0,

where x, y ∈X, i2 =−1 and · is complex conjugation. In particular, on X = C
n we

have the standard Hermitian product

H(z, w)=
n∑

j=1

zjwj ,

which corresponds to the standard inner product of R
2n. The space X with the

standard Hermitian product H is called the Hermitian space. The metric induced
by H is called the Hermitian metric, and the volume induced by it the Hermitian
volume. This metric and volume coincide in fact with the usual Euclidean metric
and volume induced on X by the standard inner product ξ. If F : X −→X is
a C-linear automorphism and F ∗H = H(F, F )= H, then we call F a Hermitian
isomorphism.

Now we can formulate the main result of this section.

Theorem 5.1. Let (X,H) be a complex Hermitian space of complex dimension
n and let F : X −→X be a C-linear automorphism. Let 0< k < n and let N = (2n

2k ).
Assume that F preserves the Hermitian volume on a collection L1, . . . , LN of k-
dimensional complex subspaces which are not co-planar. Then F is a Hermitian
isomorphism. In particular, F is an isometry.

Proof. We follow the lines of the proof of Theorem 4.1.
Expressing H = ξ + iω we find that ξ is the standard inner product and ω is a

symplectic form on X. It is not difficult to check that on a k-dimensional complex
linear subspace L⊂X we have ωk = (k!)v2k, where v2k is the volume form. Hence
by assumption the mapping F preserves the form ωk on every such L.

We now recall some notation. By G(2k, 2n)⊂
∧2k

X =: Y (here we consider X
as a real vector space) we denote the set of all vectors v1 ∧ . . . ∧ v2k, where
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v1, . . . , v2k ∈X. Let (vi
1, . . . , v

i
2k) be a basis of Li, i= 1, . . . , N. It is easy to

see that the linear subspaces L1, . . . , LN are not co-planar if the vectors ui :=
vi
1 ∧ . . . ∧ vi

2k, i = 1, . . . , N are not co-planar in Y, that is, if they linearly span the
set G(k, n), which is the affine cone over G(k, n). In Y we have the basis (ei1...i2k

=
ei1 ∧ . . . ∧ ei2k

, 0< i1 < i2 < . . . < i2k � 2n). For y =x1 ∧ . . . ∧x2k ∈G(2k, 2n) let
y =

∑
yi1...i2k

ei1...i2k
. It is easy to see that the mappings yi1...i2k

treated as
functions of the vectors x1, . . . , x2k form a basis of the space of all 2k-linear
skew-symmetric forms on X. In particular, there are numbers ai1...i2k

such that
ωk(x1, . . . , x2k)=

∑
ai1...i2k

yi1...i2k
. Take η(x1 ∧ . . . ∧x2k)= ωk(x1, . . . , x2k). We

have η(y)=
∑

ai1...i2k
yi1...i2k

and consequently we can treat η as a linear form
on the whole of Y .

Now, consider the mapping R :=
∧2k

F : Y −→Y . Then F preserves the form ωk

on Li if and only if η(ui)= η(R(ui)). However, the form η(y) − η(R(y)) is linear
on Y and by assumption it vanishes on the set of vectors ui, i= 1, . . . , N. Since
the latter set is not co-planar in Y , the form η(y)− η(R(y)) vanishes identically on
G(k, n). This means that for every k-dimensional complex subspace L and vectors
v1, . . . , v2k ∈ L we have ωk(v1, . . . , v2k)= ωk(F (v1), . . . , F (v2k)). We can say that
the mapping F preserves the form ωk on all complex k-dimensional subspaces. We
have the following variant of Lemma 4.1.

Lemma 5.1. Let (X,ω) be as above. Let W ⊂X be a k-dimensional complex
subspace of X. If

ωk(x, ix,w1, iw1, . . . , wk−1, iwk−1) = 0

for any wi ∈W, then x is complementary to W with respect to ω.

Proof. Because W is a complex subspace we can choose a (complex) basis of X,
{ei}n

i=1, such that ω is in the standard form on W, that is, ω |W = (i/2)
∑k

i=1 e∗i ∧ ei
∗

and W is generated (over C) by the vectors ei, i� k. Moreover, we can assume
that the subspace V orthogonal to W is generated by vectors ei, i > k. Now let
v =

∑2n
i=1 aiei. Then taking the (k − 1)-elements e1, . . . , ‘j’, . . . , ek, we get

ωk(x, ix, e1, ie1, . . . , ‘j’, . . . , ek, iek)=±ajω
k(e1, ie1, e2, ie2, . . . , ek, iek) = ±ajk!,

so by assumption we have aj = 0, j = 1, . . . , k. This means that x∈V. In particular,
x is complementary to W with respect to ω.

Now take a vector x∈X and let V be a (k +1)-dimensional complex subspace of
X which contains vector x. Let L be a complex subspace of V which is orthogonal
to x.

Since the form ωk+1 is proportional to the usual volume form Ω on V and any
linear mapping (here we consider F as a real mapping) changes the volume form
by multiplying it by a suitable constant, there is a non-zero constant c such that

Ω(F (v1), F (iv1), . . . , F (vk+1), F (ivk+1)) = cΩ(v1, iv1, . . . , vk+1, ivk+1) (5.1)

for every v1, iv1, . . . , vk+1, ivk+1 ∈L.
Now take in (5.1) v1, . . . , vk ∈L and vk+1 = x. Computing directly we have (note

that x is complementary to v1, . . . , vk with respect to ω!)

Ω(v1, iv1, . . . , vk, ivk, x, ix) = aω(x, ix)ωk(v1, iv1, . . . , vk, ivk), (5.2)
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where a is a suitable non-zero constant. Since F preserves ωk on L, using Lemma 5.1,
we can deduce that F (L) is complementary to the subspace spanned by {F (x),
iF (x)} (in the space F (V )). In fact ωk(F (x), iF (x), F (v1), iF (v1), . . . , F (vk−1),
iF (vk−1))= 0 for all v1, . . . , vk−1 ∈ LV , so the lemma applies.

Hence as before we have

Ω(F (v1), F (iv1), . . . , F (ivk+1))
= aω(F (x), iF (x))ωk(F (v1), F (iv1), . . . , F (vk), F (ivk)). (5.3)

Now from (5.2) and (5.3) we conclude that

ω(F (x), iF (x)) = cω(x, ix).

This holds for all x ∈ V and since F ∗ωk =ωk on V we have ck = 1, but
H(F (x), F (x))= ω(iF (x), F (x))=cω(ix, x)=cH(x, x) and consequently c>0. Thus
c= 1. Recall that H = ξ + iω. We have

ξ(x, y) = (1/2)(H(x + y, x + y) − H(x, x) − H(y, y))

and so F preserves ξ. However, ω(x, y)= ξ(−ix, y) and hence F also preserves ω.
Finally, F ∗H = H. This finishes the proof.

Corollary 5.1. Let X be an n-dimensional Hermitian space and let
F : X −→X be a C-linear automorphism. Let 0< k < n. Assume that F preserves
the Hermitian volume for all k-dimensional complex linear subspaces of X. Then
F is a Hermitian isomorphism, in particular F is an isometry.

6. Geometry of the set Al,2r

Let Al,2r ⊂G(l, 2n) denote the set of all l-dimensional linear subspaces of X on
which the form ω has rank � 2r. Of course Al,2r ⊂Al,2r+2 if 2r + 2� l. We have the
following.

Theorem 6.1. Let (X,ω) be a symplectic vector space of dimension 2n. Then
the set A2k,2k−2 ⊂G(2k, 2n)⊂P

N−1 is an irreducible algebraic subset of G(2k, 2n)
and it linearly spans a hyperplane in P

N−1. More generally, for r < k the set A2k,2r

is also irreducible and linear in G(2k, 2n), that is, there is a linear projective
subspace L⊂P

N−1 such that A2k,2r =G(2k, 2n) ∩ L. Moreover, the set A2k,2r can
be computed effectively.

Proof. First assume that K= C. Let A=A2k,2k−2 denote the set of all 2k-
dimensional subspaces on which the form ω has rank < 2k (also called the set of
subspaces of rank < 2k).

Now recall the notion of a projectively factorial variety. Let X ⊂P
n be a complex

algebraic subvariety of a complex projective space and let C(X) be an affine cone
over X. We consider the projective coordinate ring R(X) of X as the ring C[C(X)]=
C[x0, . . . , xn]/I(C(X)), where I(C(X))= {F ∈C[x0, . . . , xn] : F |C(X) = 0}. We say
that X is projectively factorial if the ring R(X) is factorial.

If X is a smooth projective variety, we can consider the Picard group Pic(X) of
all algebraic line bundles on X (for details see, for example, [2, p. 133]). It is well
known that if X is projectively factorial, then Pic(X)= Z and Pic(X) is generated
by the line bundle O(H), where H ⊂X is a hyperplane section.
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By the Andreotti–Salmon theorem (see, for example, [5]) the embedded
Grassmannian G(2k, 2n)⊂P

N−1 is projectively factorial. In particular, the Picard
group of G(2k, 2n) is generated by a hyperplane section. It can be easily deduced
from this that for every hyperplane H ⊂P

N−1 the set H ∩G(2k, 2n) is an irreducible
variety which is not contained in a proper linear subspace of H (cf. [3, Lemma 3.18]).
Let H ⊂P

N−1 be a hyperplane such that A= H ∩G(2k, 2n) (cf. Corollary 4.2).
Thus, by the above, A linearly spans the hyperplane H.

Now consider the set A2k,2r. It is irreducible since it contains an orbit of the
symplectic group as a dense subset (in fact the orbit of any subspace l of dimension
2k on which the form ωk has rank exactly 2r is dense in A2k,2r). We show that
there is a linear subspace L such that A2k,2r = L ∩ G(2k, 2n). Take a sequence of
vectors (x1, . . . , x2k) ∈ X2k. Let A be the matrix which has (the coordinates of)
the vectors xi1 , . . . , xi2k−2r−2 as rows. Let δs1,...,s2k−2r−2(xi1 , . . . , xi2k−2r−2) denote
the principal minor of A determined by the columns indexed by s1, . . . , s2k−2r−2.
Consider all possible skew-symmetric forms of the type

ωr+1(xj1 , . . . , xj2r+2)δs1,...,s2k−2r−2(xi1 , . . . , xi2k−2r−2),

where {j1, . . . , j2r+2}∪ {i1, . . . , i2k−2r−2}= {1, . . . , 2k}. It is not difficult to check
that they simultaneously vanish only at the vectors x1 ∧ . . . ∧x2k which belong to
A2k,2r. On the other hand, these skew-symmetric functions can be treated as linear
forms on P

N−1 (cf. the proof of Theorem 4.1). Of course, we can find these linear
forms effectively (as functions of the variables yi1,...,i2k

, cf. the proof of Theorem 4.1).
Since we know the equations of the Grassmannian G(2k, 2n) (see [2, p. 211]), we
can compute the set A2k,2r effectively. This finishes the proof in the case K= C.

Now we sketch the proof for the case K= R. As before, define A⊂G(2k, 2n) as
the set of all 2k-dimensional linear subspaces of X of dimension 2n and of rank < 2k.
This set has a stratification into smooth subsets Ar = {W ∈ A : rankω |W = 2r},
where r = 0, 1, . . . , k − 1 and Ai ⊂ closure(Ai+1). Moreover, every such subset is
homogeneous with respect to the induced action of the group Sp(2n,K). Take
a real subspace L∈Ak−1. Let H ⊂Sp(2n, R) be the stabilizer of L in the group
Sp(2n, R). Thus

dimA = dimAk−1 = dim Sp(2n, R) − dim H.

Now let us complexify X. Let H ′ ⊂Sp(2n, C) be the stabilizer of L⊗C in the group
Sp(2n, C).

Let A′ ⊂G(2k, 2n, C) be the set of all complex 2k-dimensional linear subspaces
of X ⊗C of dimension 2k and of rank < 2k. Then A′ has the same (complex)
dimension as the orbit of L⊗C, and this dimension is equal to dim Sp(2n, C)−
dim H ′. However, H ′ contains the complexification of the subgroup H, thus
dimC H � dimR H and consequently dimC A′ �dimR A, but in the complex case we
have dimA′ = dim G(2k, 2n, C)− 1. From this we see immediately that dimA=
dim G(2k, 2n, R)− 1. This means that the complexification of A is A′. Thus A
spans linearly a (real) hyperplane if and only if A′ spans a (complex) hyperplane.
Now we can finish the proof as above.

From the proof we see that part of Theorem 6.1 can be generalized.

Corollary 6.1. Let (X,ω) be a symplectic vector space of dimension 2n. Let
l, r be integers such that l � 2n and 2r + 2� l. Then there is a proper linear subspace
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L⊂P
N−1 such that Al,2r = L∩G(l, 2n). Moreover, we can compute the equations

of Al,2r effectively. In particular, this is true for the Lagrangian Grassmannian
manifold Λn =An,0.

Definition 6.1. Let L1, . . . , LN−1 ∈ A2k,2k−2 be 2k-dimensional linear sub-
spaces of X (of rank < 2k). We say that they are in general position if they linearly
span a hyperplane in P

N−1.

Remark 6.1. By Theorem 6.1, every sufficiently general subset {L1, . . . ,
LN−1}⊂A2k,2k−2 is in general position. Moreover, we can find such subspaces Li

with rank Li = 2k− 2.

A slightly more general version of Theorem 4.1 is the following.

Theorem 6.2. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < n. Let L1, . . . , LN−1 be 2k-
dimensional linear subspaces of X of rank < 2k which are in general position.
Assume that F transforms L1, . . . , LN−1 onto subspaces which have rank < 2k.
Then there is a non-zero constant c such that F ∗ω = cω.

Proof. We can assume that K= C. Let L be a 2k-dimensional subspace of
rank 2k. There is a constant a such that F ∗ωk = aωk on L. As in the proof of
Theorem 4.1, denote by G(2k, 2n)⊂

∧2k
X := Y the set of all vectors v1 ∧ . . . ∧ v2k,

where v1, . . . , v2k ∈X. Let A= {L1, . . . , LN−1}.
Let H ⊂P

N be a hyperplane such that A2k,2k−2 = H ∩G(2k, 2n). Thus, by
assumption, A linearly spans the hyperplane H. Since L 
∈H we can easily deduce
that the set B := {L}∪A is not co-planar in Y. By assumption, for W ∈ B we have

aη(uW )= η(R(uW )),

where uW ∈G(2k, 2n)⊂
∧2k

X := Y is a vector determined by W.
This implies that the linear form aη(y)− η(R(y)) vanishes on the vectors

uW ,W ∈B. Since the set B is not co-planar in Y , the form aη(y)− η(R(y)) vanishes
identically on Y . This means that aωk(v1, . . . , v2k)= ωk(F (v1), . . . , F (v2k)) for
every v1, . . . , v2k ∈ X, that is, F ∗ωk = aωk.

Now we can repeat word for word the proof of Theorem 4.1 to find that there is
a constant c such that F ∗(ω)= cω and ck = a. Since F is a linear automorphism,
we have c 
= 0.

Corollary 6.2. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < n. Assume that F transforms
2k-dimensional subspaces of rank 2k− 2 onto subspaces which have rank < 2k. Then
there is a non-zero constant c such that F ∗ω = cω.

Corollary 6.3. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< l < 2n and let 2r + 2� l. Assume
that F transforms the set Al,2r into the same set. Then there is a non-zero constant
c such that F ∗ω = cω.

Proof. Let B2r+2,2r denote the set of (2r + 2)-dimensional subspaces of rank 2r.
Since every subspace from B2r+2,2r is contained in some subspaces from Al,2r, it
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is easy to see that F transforms the set B2r+2,2r into the same set. Hence we are
done by Corollary 6.2.

Corollary 6.4. Let (X,ω) be a symplectic vector space of dimension 2n
and let F : X −→X be a linear automorphism. Let 2� l � n and assume that
F transforms l-dimensional isotropic (for example, Lagrangian) subspaces onto
subspaces of the same type. Then there is a non-zero constant c such that F ∗ω = cω.

7. Symplectic volume

In this section we introduce and study the symplectic volume.

Definition 7.1. Let (X,ω) be a 2n-dimensional symplectic vector space. Let
v1, . . . , v2k ∈X. By the symplectic 2k-volume of the collection v1, . . . , v2k we mean
the number

svol2k(v1, . . . , v2k) := det([ω(vi, vj)]1�i,j�2k).

The symplectic volume has the following nice property.

Proposition 7.1. Let (X,ω) be a symplectic vector space and let v1, . . . ,
v2k ∈X. Then svol2k(v1, . . . , v2k) = 0 if and only if either v1, . . . , v2k are linearly de-
pendent or the space (W = 〈v1, . . . , v2k〉, ω |W ) is not symplectic. Moreover, if v1, . . . ,
v2k are linearly independent then rank[ω(vi, vj)]1�i,j�2k = rankω |W .

Proof. If v1, . . . , v2k are linearly dependent, then we can easily see (for example,
by the Cramer rule) that det([ω(vi, vj)]1�i,j�2k) = 0.

Assume that v1, . . . , v2k are linearly independent. There is a basis e1, . . . , e2k

of W = 〈v1, . . . , v2k〉 in which the form ω′ =ω |W has the canonical form. In
particular, rank ω′ = rank [ω(ei, ej)]1�i,j�2k. Also there is a non-singular 2k× 2k

matrix A = [aij ] such that vi =
∑2k

j=1 aijej . Using bilinearity of ω, we have by direct
computation

[ω(vi, vj)] = A[ω(ei, ej)]AT .

This finishes the proof.

Theorem 7.1. Let (X,ω) be a symplectic vector space and let v1, . . . , v2k ∈X.
Then (ωk(v1, . . . , v2k))2 = (k!)2svol2k(v1, . . . , v2k).

Proof. We can assume that K= C. Choose a basis {e1, . . . , e2n} of X such
that ω =

∑
e∗i ∧ e∗i+n. We can treat the determinant svol2k(v1, . . . , v2k)=

det([ω(vi, vj)]1�i,j�2k) as a polynomial function on X2k of degree 2k. Since
the matrix [ω(vi, vj)] is skew-symmetric we have in fact svol2k(v1, . . . , v2k)=
Pf(v1, . . . , v2k)2, where Pf(v1, . . . , v2k) is also a polynomial (the Pfaffian of
[ω(vi, vj)]).

Note that Pf(v1, . . . , v2k)2 = svol2k(v1, . . . , v2k)= 0 if and only if either v1, . . . , v2k

are linearly dependent or the space (W = 〈v1, . . . , v2k〉, ω |W ) is not symplectic (cf.
Proposition 7.1). The polynomial function ωk(v1, . . . , v2k) has the same property.
Moreover, it is not difficult to check that the latter polynomial is irreducible and of
degree k. This means that the polynomials Pf(v1, . . . , v2k) and ωk(v1, . . . , v2k) have
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the same degree and the same zero-sets. Since the latter is irreducible, by the Hilbert
Nullstellensatz there is a constant C such that Pf(v1, . . . , v2k)= Cωk(v1, . . . , v2k). In
particular, C2(ωk(v1, . . . , v2k))2 = svol2k(v1, . . . , v2k). Moreover, by direct computa-
tions we have (ωk(e1, . . . , e2k))2 =(k!)2 and svol2k(e1, . . . , e2k)=1. Thus C2 =(k!)−2

and (ωk(v1, . . . , v2k))2 = (k!)2svol2k(v1, . . . , v2k).

To state the next result we need an additional notion. Let us recall that every
2k-dimensional linear subspace L⊂X determines a unique point Ψ(L) in the
Grassmannian G(2k, 2n)⊂P

N−1, where N = (2n
2k ).

Definition 7.2. Let L1, . . . , LM be 2k-dimensional linear subspaces of X.
We say that they are two-co-planar if the points Ψ(L1), . . . ,Ψ(LM )∈G(2k, 2n)
are two-co-planar, that is, if there are hyperplanes Λ1,Λ2 ⊂P

N−1 such that
Ψ(L1), . . . ,Ψ(LM )∈Λ1 ∪Λ2.

Remark 7.1. Take M = (N
2 ). Let L1, . . . , LM be 2k-dimensional linear sub-

spaces of X. It is not difficult to check that if these subspaces are sufficiently
general, then they are not two-co-planar.

Theorem 7.2. Let (X,ω) be a symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < n. Assume that F preserves
2k-dimensional symplectic volume on a collection L1, . . . , LM of 2k-dimensional
subspaces which are not two-co-planar. Then F is an ε2k-symplectomorphism.

Proof. By Theorem 7.1 on every Li we have either F ∗(ωk)= ωk or F ∗(ωk)=
−ωk.

Denote by G(2k, 2n)⊂
∧2k

X := Y the set of all vectors v1 ∧ . . .∧ v2k, where
v1, . . . , v2k ∈ X. Let (vi

1, . . . , v
i
2k) be a basis of Li, i= 1, . . . , N. It is easy to see

that L1, . . . , LN are co-planar if the vectors ui := vi
1 ∧ . . .∧ vi

2k, i= 1, . . . , N are
co-planar in Y. We define a linear form η on the whole of Y as in the proof of
Theorem 4.1.

Now, consider the mapping R :=
∧2k

F : Y −→Y . Then F ∗ωk =±ωk on Li if
and only if ±η(ui)= η(R(ui)). However, the forms η(y)± η(R(y)) are linear on Y
and by assumption vectors ui, i= 1, . . . , M are in the union of the kernels
of these forms. Since ui, i= 1, . . . , M, are not two-co-planar in Y , either the
form η(y)− η(R(y)) or the form η(y)+ η(R(y)) vanishes identically on Y . This
means that either ωk(v1, . . . , v2k)= ωk(F (v1), . . . , F (v2k)) for every v1, . . . , v2k ∈X
or −ωk(v1, . . . , v2k)= ωk(F (v1), . . . , F (v2k)) for every v1, . . . , v2k ∈X, that is,
F ∗ωk =±ωk.

Now we can repeat word for word the proof of Theorem 4.1 to see that there is
a constant c such that F ∗(ω)= cω. Moreover, we have ck = 1 or ck =−1. In both
cases c2k = 1, hence F is an ε2k-symplectomorphism.

Corollary 7.1. Let X be a symplectic vector space of dimension 2n and let
F : X −→X be a linear automorphism. Let 0< k < n. Assume that F preserves
2k-dimensional symplectic volume. Then F is an ε2k-symplectomorphism.

Corollary 7.2. Let X be a real symplectic vector space of dimension 2n and
let F : X −→X be a linear automorphism. Let 0< k < n. Assume that F preserves
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2k-dimensional symplectic volume. Then F is either a symplectomorphism or an
anti-symplectomorphism.
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