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Let f : Nn → Rn+1 be a frontal with the Gauss mapping ν : N → Sn and let 
P ∈ Rn+1 be a point such that (f(x) − P ) · ν(x) �= 0 for any x ∈ N . In this study, 
for the mapping f̃ : N → Rn+1 defined by:

f̃(x) = f(x) − ||f(x) − P ||2
2(f(x) − P ) · ν(x)

ν(x),

the following four statements hold. (1) f̃ is a frontal with the Gauss mapping ν̃(x) =
f(x)−P

||f(x)−P || at f̃(x). (2) f̃ is the unique anti-orthotomic of f relative to P . (3) The 
property that (f̃(x) − P ) · ν̃(x) �= 0 holds for any x ∈ N . (4) The equality of 
||f̃(x) −P || = ||f̃(x) −f(x)|| holds for any x ∈ N . Moreover, three applications of the 
main result are given. A generalization of the Cahn–Hoffman vector formula is given 
as the first application. The second application involves clarifying an optical meaning 
of anti-orthotomics. The third application provides a criterion for determining a 
front for a given frontal.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this study, let n, N be a positive integer and an n-dimensional C∞ manifold without 
boundary, respectively. Moreover, all of the mappings in this study belong to the class C∞ unless stated 
otherwise.

A mapping f : N → Rn+1 is called a frontal if a mapping ν : N → Rn+1 exists such that the following 
two conditions are satisfied, where the dot in the center denotes the scalar product of two vectors in Rn+1

and two vector spaces comprising Tf(x)R
n+1 and Rn+1 are identified.
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Fig. 1. Orthotomic f and pedal g of (f̃ , ν̃) relative to P .

(1) ν(x) · ν(x) = 1, i.e., ν(x) ∈ Sn for any x ∈ N .
(2) dfx(v) · ν(x) = 0 for any x ∈ N and any v ∈ TxN .

By conditions (1) and (2) given above, it is natural to refer to ν : N → Sn as the Gauss mapping of f . 
In this study, the mapping (f, ν) : N → Rn+1 × Sn is even called a frontal in some cases. The notion of a 
frontal was introduced in several independent studies (e.g., [6,12,23,27]) and it has been investigated widely 
(see [14]).

Definition 1. Let f̃ : N → Rn+1 be a frontal with its Gauss mapping ν̃ : N → Sn and let P be a point of 
Rn+1.

(1) A mapping f : N → Rn+1 is called the orthotomic of f̃ relative to P if the following equality holds for 
any x ∈ N .

f(x) = 2
((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x) + P.

(2) A mapping g : N → Rn+1 is called the pedal of f̃ relative to P if the following equality holds for any 
x ∈ N .

g(x) =
((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x) + P.

Fig. 1 clearly illustrates the relationship between the orthotomic f and pedal g of f̃ relative to P . The 
following Proposition 1 guarantees that the orthotomic of a given frontal is a frontal.

Proposition 1. Let (f̃ , ̃ν) : N → Rn+1 be a frontal and let P be a point of Rn+1 such that the following 
condition is satisfied for any x ∈ N . (

f̃(x) − P
)
· ν̃(x) �= 0.

Then, the orthotomic of f̃ relative to P defined by:

f(x) = 2
(
(f̃(x) − P ) · ν̃(x)

)
ν̃(x) + P

is a frontal with its Gauss mapping: ν(x) = f(x)−f̃(x)
||f(x)−f̃(x)|| . Moreover, the condition that:

(f(x) − P ) · ν(x) �= 0

holds for any x ∈ N .
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Proposition 1 is proved in Section 2. By definition, it is clear that for the pedal g, f = 2g − P is the 
orthotomic. Thus, it is clear that Proposition 1 yields the following corollary, which is a generalization of 
that given by [18].

Corollary 1. Let (f̃ , ̃ν) : N → Rn+1 be a frontal and let P be a point of Rn+1 such that the following 
condition is satisfied for any x ∈ N . (

f̃(x) − P
)
· ν̃(x) �= 0.

Then, the pedal of f̃ relative to P defined by:

g(x) =
(
(f̃(x) − P ) · ν̃(x)

)
ν̃(x) + P

is a frontal with its Gauss mapping: ν(x) = 2g(x)−P−f̃(x)
||2g(x)−P−f̃(x)|| . Moreover, the condition that:

(g(x) − P ) · ν(x) �= 0

holds for any x ∈ N .

It should be noted that in the case where f̃ is a plane regular curve, it is well known that f̃(x) − f(x) is 
a normal vector to f at f(x) (e.g., see [4]). Therefore, a part of Proposition 1 may be simply regarded as a 
generalization of the classical result to frontals of general dimension.

It should also be noted that even if f̃ : N → Rn+1 is non-singular, then the condition that 
“(f̃(x) − P ) · ν̃(x) �= 0 for any x ∈ N” seems not very mild. Thus, even when f̃ : N → Rn+1 is an 
embedding, if the image of the Gaussian curvature function of f̃(N) is a large interval containing zero 
as an interior point, then no points P satisfy the condition that “(f̃(x) − P ) · ν̃(x) �= 0 for any x ∈ N”. 
In addition, if f̃ : N → Rn+1 is an embedding and the Gaussian curvature of f̃(N) is always positive, 
then the set {P ∈ Rn+1 | (f̃(x) − P ) · ν̃(x) �= 0 for any x ∈ N} is a non-empty open set. Moreover, the 
assumptions that “f̃ : N → Rn+1 is an embedding and that the Gaussian curvature of f̃(N) is always 
positive” appear to be common in the study of orthotomics and pedals. (e.g., see [1,5]). Therefore, the 
assumption given in Proposition 1 generalizes the common assumption to the study of orthotomics and 
pedals.

The same condition used in the assumption in Proposition 1 was introduced in the study by Bruce and 
Giblin [4] 7.14 in the case where f̃ : I → R2 is regular, and also by the second author of the present study 
([21] in the case where f̃ : N → Sn+1 is an immersion, by [22] in the case where f̃ : Sn → Rn+1 is a 
Legendrian map, and by [16] in the case where n = 1 and f̃ : S1 → R2 is an embedding). In particular, in 
the study by [16], the following set was defined called the no-silhouette of f̃ and denoted by NS f̃ :

NS f̃ =
{
P ∈ R2

∣∣∣∣∣ R2 −
⋃

x∈S1

(
f̃(x) + df̃x(TxS

1)
)}

.

For a frontal f̃ : N → Rn+1 with its Gauss mapping ν̃, the notion of the no-silhouette NS f̃ can be 
generalized naturally as follows. The optical meaning of the no-silhouette is illustrated in Fig. 2.

NS f̃ =
{
P ∈ Rn+1 ∣∣ (

f̃(x) − P
)
· ν̃(x) �= 0 for any x ∈ N

}
.
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Fig. 2. Left: NS f̃ is not empty. Right: NS f̃ is empty.

Definition 2.

(1) Let f : N → Rn+1 be a C∞ mapping and let P be a point of Rn+1. A frontal f̃ : N → Rn+1 with its 
Gauss mapping ν̃ : N → Sn is called the anti-orthotomic of f relative to P if the following equality 
holds for any x ∈ N .

f(x) = 2
((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x) + P.

(2) Let g : N → Rn+1 be a C∞ mapping and let P be a point of Rn+1. A frontal f̃ : N → Rn+1 with its 
Gauss mapping ν̃ : N → Sn is called the negative pedal of g relative to P if the following equality holds 
for any x ∈ N .

g(x) =
((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x) + P.

By definition, if f = 2g − P , then the anti-orthotomic of f relative to P is exactly the same as the 
negative pedal of g relative to P . Depending on the situation, in some cases, the negative pedal is also 
called the primitive (e.g., see [2]) or the Cahn–Hoffman map (e.g., see [10,15,17]). In geometric optics, the 
notion of an anti-orthotomic is very important (e.g., see [1,4,5]) and the notion of a negative pedal is the 
core concept for Wulff shape studies (e.g., see [7,15,17,19,26]).

By definition, it is clear that an anti-orthotomic (resp., a negative pedal) is a frontal solution for a given 
orthotomic equation (resp., pedal equation). Therefore, obtaining anti-orthotomics or negative pedals may 
be considered inverse problems. Except in the case where the Gauss mapping ν̃ of f̃ is non-singular (i.e., 
the case where f̃ : N → Rn+1 is an embedding and the Gaussian curvature of f̃(N) is always positive), 
these inverse problems have usually been investigated only by solving simultaneous function equations for 
the envelopes.

Example 1. Let g : R → R2 be the mapping defined by g(θ) =
(
cos

(
θ3) , sin (

θ3)). Define ν : R → R2

by ν = g. Then, (g, ν) : R → R2 × S1 is a frontal. Set P = (0, 0) and f̃ = ν̃ = g. Then, clearly, 
(f̃ , ̃ν) : R → R2 × S1 is the negative pedal of g relative to P and f̃(R) = S1.

In addition, the function Φ : R2 ×R → R given by:

Φ(X,Y, θ) = ν(θ) · ((X,Y ) − g(θ))

defines the one-parameter family of affine tangent lines to g(R) = S1. The figure solution for the simultaneous 
equation Φ = 0, ∂Φ

∂θ = 0 is S1 ∪ {(1, Y ) | Y ∈ R}.

Example 2. Let x : R → R be a C∞ periodic function of period 8 that satisfies the following condition for 
any integer n.
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Fig. 3. Graphs for x and y.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(t) = 1 (if 8n ≤ t ≤ 8n + 3),

1 ≥ x(t) ≥ −1 (if 8n + 3 ≤ t ≤ 8n + 4),
x(t) = −1 (if 8n + 4 ≤ t ≤ 8n + 7),

−1 ≤ x(t) ≤ 1 (if 8n + 7 ≤ t ≤ 8n + 8).

Let y : R → R be a C∞ periodic function of period 8 that satisfies the following condition for any integer n.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(t) = −1 (if 8n− 2 ≤ t ≤ 8n + 1),

−1 ≤ y(t) ≤ 1 (if 8n + 1 ≤ t ≤ 8n + 2),
y(t) = 1 (if 8n + 2 ≤ t ≤ 8n + 5),

1 ≥ x(t) ≥ −1 (if 8n + 5 ≤ t ≤ 8n + 6).

Define f̃ : R → R2 by f̃(t) = (x(t), y(t)). Then, f̃ is a C∞ periodic mapping of period 8 and the set of 
singular points of f̃ contains infinitely many closed intervals:

· · · , [−2,−1], [0, 1], [2, 3], [4, 5], [6, 7], [8, 9], · · · .

Fig. 3 shows clearly that even if f̃ has other singular points, the image of f̃ is always the square with the 
following 4 vertexes:

(1,−1) = f̃([8n, 8n + 1]), (1, 1) = f̃([8n + 2, 8n + 3]),

(−1, 1) = f̃([8n + 4, 8n + 5]), (−1,−1) = f̃([8n + 6, 8n + 7]).

Next, in order to show that f̃ is a frontal, we construct a non-zero normal vector (n1(t), n2(t)) to f̃ at 
f̃(t). Let n1 : R → R be a C∞ periodic function of period 8 that satisfies the following condition for any 
integer n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ n1(t) ≤ 1 (if 8n ≤ t ≤ 8n + 1),
n1(t) = 1 (if 8n + 1 ≤ t ≤ 8n + 2),

1 ≥ n1(t) ≥ 0 (if 8n + 2 ≤ t ≤ 8n + 3),
n1(t) = 0 (if 8n + 3 ≤ t ≤ 8n + 4),

0 ≥ n1(t) ≥ −1 (if 8n + 4 ≤ t ≤ 8n + 5),
n1(t) = −1 (if 8n + 5 ≤ t ≤ 8n + 6),

−1 ≤ n1(t) ≤ 0 (if 8n + 6 ≤ t ≤ 8n + 7),
n1(t) = 0 (if 8n + 7 ≤ t ≤ 8n + 8).

Let n2 : R → R be a C∞ periodic function of period 8 that satisfies the following condition for any integer n.
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Fig. 4. Graphs for n1 and n2.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 ≤ n2(t) ≤ 0 (if 8n ≤ t ≤ 8n + 1),
n2(t) = 0 (if 8n + 1 ≤ t ≤ 8n + 2),

0 ≤ n2(t) ≤ 1 (if 8n + 2 ≤ t ≤ 8n + 3),
n2(t) = 1 (if 8n + 3 ≤ t ≤ 8n + 4),

1 ≥ n2(t) ≥ 0 (if 8n + 4 ≤ t ≤ 8n + 5),
n2(t) = 0 (if 8n + 5 ≤ t ≤ 8n + 6),

0 ≥ n2(t) ≥ −1 (if 8n + 6 ≤ t ≤ 8n + 7),
n2(t) = −1 (if 8n + 7 ≤ t ≤ 8n + 8).

Fig. 3 and Fig. 4 clearly show that the following two properties hold for any t ∈ R.

(n1(t), n2(t)) �= (0, 0) and
(
dx

dt
(t), dy

dt
(t)

)
· (n1(t), n2(t)) = 0.

Set

ν̃(t) = 1√
(n1(t))2 + (n2(t))2

(n1(t), n2(t)).

Then, (f̃ , ̃ν) : R → R2 × S1 is actually a frontal.
For the frontal (f̃ , ̃ν), the envelope of the one-parameter family of lines �t perpendicular to the unit vector 

ν̃(t) and that passes through the point f̃(t) does not restore the square f̃(R).

These two examples show that the classical notion of an envelope cannot generally restore the original 
figure for frontals. In order to eliminate the effects of singularities of frontals, Takahashi improved the notion 
of envelopes ([24,25]). The improvement made by Takahashi is suitable, and thus for Example 1, the original 
figure g(R) = S1 can actually be obtained as the envelope in the sense of Takahashi. However, the variability 
condition defined by [24,25] is unfortunately not satisfied for the frontal (f̃ , ̃ν) given in Example 2. Thus, 
even Takahashi’s envelope cannot restore the original square f̃(R) for Example 2. According to Ishikawa, 
a frontal that satisfies Takahashi’s variability condition is called a proper frontal ([14], §6). The frontal 
(f̃ , ̃ν) : R → R2×S1 of Example 2 is not a proper frontal. To the best of our knowledge, except for Example 
2.5 given by [14], all of the frontals investigated in previous detailed studies are proper frontals. We note 
that non-proper frontals are also useful, especially in surface science applications (see §5).

In the following, Example 3 shows that the uniqueness of an anti-orthotomic (resp., negative pedal) does 
not hold in general even when the given mapping f (resp., g) is a frontal.

Example 3. Let f, g : R → R2 be the constant mappings defined by f(t) = (0, −1), g(t) = (0, 0). Let 
ν : R → S1 be the constant mapping defined by ν(t) = (−1, 0). Set P = (0, 1) and define the constant 
mapping ν̃ : R → S1 by ν̃(t) = (0, 1). Then, for any C∞ mapping f̃ : R → R2 with the form f̃(t) = (f̃1(t), 0), 
the frontal (f̃ , ̃ν) is an anti-orthotomic of f relative to P and a negative pedal of g relative to P .

The main aim of this study is to obtain the unique solution of the inverse problem for a given orthotomic 
f relative to P such that P ∈ NSf .
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Theorem 1. Let (f, ν) : N → Rn+1 × Sn, P be a frontal and a point of Rn+1 such that P ∈ NSf . Let 
f̃ : N → Rn+1 be the mapping defined by:

f̃(x) = f(x) − ||f(x) − P ||2
2(f(x) − P ) · ν(x)ν(x).

Then, the following four statements hold.

(1) The mapping f̃ is a frontal with its Gauss mapping ν̃(x) = f(x)−P
||f(x)−P || .

(2) The mapping f̃ is the unique anti-orthotomic of f relative to P .
(3) The point P belongs to NS f̃ .
(4) The equality ||f̃(x) − P || = ||f̃(x) − f(x)|| holds for any x ∈ N .

In the case where P = O and f : I → R2 is a regular curve such that f(x) · ν(x) �= 0 for any x ∈ I, 
the same formula for f̃ was given by [4] 7.14 to define the envelope of perpendicular bysectors of segments 
joining f(x) and P . In addition, by Proposition 1, f̃(x) must be on the normal line {f(x) + aν(x) | a ∈ R}. 
Therefore, in Theorem 1, simply by solving simultaneous linear equations, the same formula for f̃ can 
easily be obtained as that for the intersections of the perpendicular bysectors and the normal lines, and the 
no-silhouette condition P ∈ NSf guarantees that each simultaneous linear equation must have a unique 
solution.

Clearly, the following corollary follows from Theorem 1.

Corollary 2. Let (g, ν) : N → Rn+1 × Sn, P be a frontal and a point of Rn+1 such that P ∈ NSg. Let 
f̃ : N → Rn+1 be the mapping defined by:

f̃(x) = 2g(x) − P − ||g(x) − P ||2
(g(x) − P ) · ν(x)ν(x).

Then, the following four statements hold.

(1) The mapping f̃ is a frontal with its Gauss mapping ν̃(x) = g(x)−P
||g(x)−P || .

(2) The mapping f̃ is the unique negative pedal of g relative to P .
(3) The point P belongs to NS f̃ .
(4) The equality ||f̃(x) − P || = ||f̃(x) − 2g(x) + P || holds for any x ∈ N .

The remainder of this paper is organized as follows. In Section 2, we prove Proposition 1. Theorem 1 is 
proved in Section 3. In the case where the Gauss mapping ν̃ of f̃ is the identity mapping, we have the well-
known Cahn–Hoffman vector formula for f̃ ([9]). In Section 4, the Cahn–Hoffman formula is presented as 
the first application of Theorem 1. In Section 5, as the second application of Theorem 1, the optical meaning 
of the anti-orthotomic f̃ is clarified even at a singular point of the Gauss mapping ν̃ of f̃ . Moreover, in 
order to demonstrate how the clarified optical meaning is useful, we employ it to construct the exact shape 
of the orthotomic f for the frontal f̃ in Example 2 and a given point P ∈ NS f̃ . Finally, in Section 6, as the 
third application of Theorem 1, we give a criterion to ensure that a given frontal is actually a front.

2. Proof of Proposition 1

2.1. Proof that f is a frontal with its Gauss mapping ν(x) = f(x)−f̃(x)
||f(x)−f̃(x)||

We recall that f is defined by f(x) = 2 
(
(f̃(x) − P ) · ν̃(x)

)
ν̃(x) + P .
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Lemma 2.1. For any x ∈ N , f(x) − f̃(x) is a non-zero vector.

Proof. Suppose that f(x0) = f̃(x0) for some x0 ∈ N . Then, the following holds for x0:

f̃(x0) − P = 2
(
(f̃(x0) − P ) · ν̃(x0)

)
ν̃(x0),

which implies that (f̃(x0) − P ) · ν̃(x0) = 0, and this contradicts the assumption that P ∈ NS f̃ . �
Set

ν(x) = f(x) − f̃(x)
||f(x) − f̃(x)||

.

Then, it is sufficient to show that dfx(v) · ν(x) = 0 for any x ∈ N and any v ∈ TxN , i.e., it is sufficient to 
show that:

(f ◦ ξ)′(0) · ν(x) = 0

for any curve ξ : (−ε, ε) → N such that ξ(0) = x. The following lemma clearly holds.

Lemma 2.2.

(1) (f̃ ◦ ξ)′(0) · ν̃(x) = 0.
(2) (ν̃ ◦ ξ)′(0) · ν̃(x) = 0.
(3) (f ◦ ξ)′ (0) = 2 

((
f̃(x) − P

)
· (ν̃ ◦ ξ)′ (0)

)
ν̃(x) + 2 

((
f̃(x) − P

)
· ν̃(x)

)
(ν̃ ◦ ξ)′ (0).

By using Lemma 2.2, we have the following:

||f(x) − f̃(x)||
(
(f ◦ ξ)′ (0) · ν(x)

)
= (f ◦ ξ)′ (0) ·

(
f(x) − f̃(x)

)
= (f ◦ ξ)′ (0) ·

(
2
((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x) −

(
f̃(x) − P

))
= 4

(
(f̃(x) − P ) · (ν̃ ◦ ξ)′ (0)

)(
(f̃(x) − P ) · ν̃(x)

)
−2

(
(f̃(x) − P ) · (ν̃ ◦ ξ)′ (0)

)(
ν̃(x) · (f̃(x) − P )

)
−2

(
(f̃(x) − P ) · ν̃(x)

)(
(ν̃ ◦ ξ)′ (0) · (f̃(x) − P )

)
= 0. �

2.2. Proof that (f(x) − P ) · ν(x) �= 0 for any x ∈ N

For any x ∈ N , we have the following:

||f(x) − f̃(x)|| (f(x) − P ) · ν(x)

= (f(x) − P ) ·
(
f(x) − f̃(x)

)
= 2

(((
f̃(x) − P

)
· ν̃(x)

)
ν̃(x)

)
·
(
f(x) − f̃(x)

)
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= 2
(((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x)

)
·
(
2
((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x) −

(
f̃(x) − P

))
= 4

((
f̃(x) − P

)
· ν̃(x)

)2
− 2

((
f̃(x) − P

)
· ν̃(x)

)(
ν̃(x) ·

(
f̃(x) − P

))
= 2

((
f̃(x) − P

)
· ν̃(x)

)2
.

By the assumption that P ∈ NS f̃ , it follows that (f(x) − P ) · ν(x) �= 0 for any x ∈ N . �
3. Proof of Theorem 1

3.1. Proof that f̃ is a frontal with Gauss mapping ν̃(x) = f(x)−P
||f(x)−P ||

From the assumption that (f(x) − P ) · ν(x) �= 0 for any x ∈ N , it follows that f(x) �= P for any x ∈ N . 
Thus,

ν̃(x) = f(x) − P

||f(x) − P || ,

is well defined. Then, it is sufficient to show that

(f̃ ◦ ξ)′(0) · ν̃(x) = 0

for any curve ξ : (−ε, ε) → N such that ξ(0) = x. f̃ has the form

f̃(x) = f(x) − ||f(x) − P ||2
2 (f(x) − P ) · ν(x)ν(x),

so we have the following:

||f(x) − P ||
((

f̃ ◦ ξ
)′

(0) · ν̃(x)
)

= (f ◦ ξ)′ (0) · (f(x) − P ) − (f ◦ ξ)′ (0) · (f(x) − P )
(f(x) − P ) · ν(x) (ν(x) · (f(x) − P ))

+(f(x) − P ) · (ν ◦ ξ)′ (0)
2 ((f(x) − P ) · ν(x))2

||f(x) − P ||2 (ν(x) · (f(x) − P ))

− ||f(x) − P ||2
2 ((f(x) − P ) · ν(x))

(
(ν ◦ ξ)′ (0) · (f(x) − P )

)
= (f ◦ ξ)′ (0) · (f(x) − P ) − (f ◦ ξ)′ (0) · (f(x) − P )

+(f(x) − P ) · (ν ◦ ξ)′ (0)
2 ((f(x) − P ) · ν(x)) ||f(x) − P ||2

− ||f(x) − P ||2
2 ((f(x) − P ) · ν(x))

(
(ν ◦ ξ)′ (0) · (f(x) − P )

)
= 0 + 0 = 0. �

3.2. Proof that f̃ is the unique anti-orthotomic of f relative to P

The proof is essentially given in the paragraph next to Theorem 1. Thus, only a confirmation is given by 
definition in this subsection. We recall that ν̃(x) = f(x)−P . We have the following:
||f(x)−P ||
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2
((

f̃(x) − P
)
· ν̃(x)

)
ν̃(x) + P

= 2
((

(f(x) − P ) − ||f(x) − P ||2
2 (f(x) − P ) · ν(x)ν(x)

)
· f(x) − P

||f(x) − P ||

)
f(x) − P

||f(x) − P || + P

= 2
(
||f(x) − P || − ||f(x) − P ||

2

)
f(x) − P

||f(x) − P || + P

= f(x) − P + P = f(x). �
3.3. Proof that 

(
f̃(x) − P

)
· ν̃(x) �= 0 for any x ∈ N

For any x ∈ N , we have the following:

(
f̃(x) − P

)
· ν̃(x) =

(
f̃(x) − P

)
· f(x) − P

||f(x) − P ||

=
(
f(x) − ||f(x) − P ||2

2(f(x) − P ) · ν(x)ν(x) − P

)
· f(x) − P

||f(x) − P ||

=
(

(f(x) − P ) − ||f(x) − P ||2
2(f(x) − P ) · ν(x)ν(x)

)
· f(x) − P

||f(x) − P ||

= ||f(x) − P || − ||f(x) − P ||
2

= ||f(x) − P ||
2 �= 0. �

3.4. Proof that the equality ||f̃(x) − P || = ||f̃(x) − f(x)|| holds for any x ∈ N

f̃(x) − P = (f(x) − P ) − ||f(x)−P ||2
2(f(x)−P )·ν(x)ν(x), so the following holds for any x ∈ N :

∥∥∥f̃(x) − P
∥∥∥2

=
(
f̃(x) − P

)
·
(
f̃(x) − P

)
=

(
(f(x) − P ) − ||f(x) − P ||2

2(f(x) − P ) · ν(x)ν(x)
)
·
(

(f(x) − P ) − ||f(x) − P ||2
2(f(x) − P ) · ν(x)ν(x)

)
= ||f(x) − P ||2 − ||f(x) − P ||2 + ||f(x) − P ||2

4 ((f(x) − P ) · ν(x))2

= ||f(x) − P ||2

4 ((f(x) − P ) · ν(x))2

=
∥∥∥f̃(x) − f(x)

∥∥∥2
. �

4. Application 1: generalization of the Cahn–Hoffman vector formula

Let (g, ν) : N → Rn+1 × Sn be a frontal. We assume that NSg is not empty. Let P be a point of NSg. 
Then, by Corollary 2, the mapping 

(
f̃ , ν̃

)
: N → Rn+1 × Sn defined by

f̃(x) = 2g(x) − P − ||g(x) − P ||2
ν(x),
(g(x) − P ) · ν(x)
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ν̃(x) = g(x) − P

||g(x) − P ||

is a frontal and the unique negative pedal of g relative to P . Set γ(x) = ||g(x) − P ||. Then, by using 
ν̃ : N → Sn and γ : N → R+, g(x) − P can be expressed as follows:

g(x) − P = γ(x)ν̃(x).

Hoffman and Cahn showed the following [9] under the assumption that N is the unit sphere Sn and 
ν̃ : Sn → Sn is the identity mapping, and under the identification Rn+1 = Tν̃(x)R

n+1 = Tν̃(x)S
n ⊕Rν̃(x).

Theorem 2 (Cahn–Hoffman vector formula [9]). For any x ∈ Sn, the following equality holds:

f̃(x) − g(x) = ∇γ(x) ⊕ 0ν̃(x),

where ∇γ(x) is the gradient vector of γ at x with respect to the normal coordinate system of Sn around x. 
We generalize Theorem 2 as an application of Theorem 1 in the following.

Theorem 3. Let (g, ν) : N → Rn+1 × Sn be a frontal and let P be a point of NSg. Suppose that ν̃ is 
non-singular at x. Then, the following equality holds:

f̃(x) − g(x) =
(
(Jν̃(x))−1

)t

∇γ(x)⊕0ν̃(x),

where 
(
(Jν̃(x))−1

)t

denotes the transposed matrix of the inverse of the Jacobian matrix of ν̃ with respect 
to an arbitrary local coordinate system around x ∈ N and the normal coordinate system around ν̃(x) ∈ Sn. 
Theorem 3 yields Theorem 2 but also the following.

Corollary 3. Let (g, ν) : N → Rn+1 × Sn be a frontal and let P be a point of NSg. Suppose that ν̃ is 
non-singular at x. Then, x is a singular point of γ if and only if f̃(x) = g(x) is satisfied.

Proof of Theorem 3.

f̃(x) = f(x) − ||f(x) − P ||2
2(f(x) − P ) · ν(x)ν(x),

so it follows that:

f(x) − f̃(x) = ||f(x) − P ||2
2(f(x) − P ) · ν(x)ν(x)

= 4γ2(x)
4γ(x) (ν̃(x) · ν(x))ν(x)

= γ(x)
ν̃(x) · ν(x)ν(x)

= γ(x)
ν̃(x) · ν2(x) (ν1(x) ⊕ ν2(x)) ,

where ν(x) = ν1(x) ⊕ ν2(x) and ν1(x) ∈ Tν̃(x)S
n, ν2(x) ∈ Rν̃(x).

The technique employed by [20] is used in order to represent ν1, ν2 in terms of γ and ν̃. f(x) − P =
2γ(x)ν̃(x), so for any v ∈ TxN ,
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dfx(v) = 2γ(x)dν̃x(v) ⊕ 2dγx(v)ν̃(x),

where γ(x)dν̃x(v) ∈ Tν̃(x)S
n and dγx(v)ν̃(x) ∈ Rν̃(x). Thus, the Jacobian matrix Jf of f at x with respect 

to an arbitrary local coordinate system around x ∈ N and the direct product of the normal coordinate 
system and R around f(x) = 2γ(x)ν̃(x) has the following form, where Jν̃(x) denotes the Jacobian matrix 
of ν̃ at x and (∇γ(t))t is the transposed vector of the gradient of γ at x.

Jf(x) =
(

2γ(x)Jν̃(x)
2 (∇γ(x))t

)
.

Let J̃ ν̃(x) and |Jν̃|(x) be the cofactor matrix of the Jacobian matrix Jν̃(x) and the Jacobian determinant 
of ν̃ at x, respectively. Moreover, let O be the n × 1 zero vector. Multiplying the matrix:

(
− (∇γ(x))t , 1

)(
J̃ ν̃(x) O

Ot γ(x)|Jν̃|(x)

)

with the Jacobian matrix Jf(x) from the left-hand side yields the following, where En denotes the n × n

unit matrix.

(
− (∇γ(x))t , 1

)(
J̃ ν̃(x) O

Ot γ(x)|Jν̃|(x)

)(
2γ(x)Jν̃(x)
2 (∇γ(x))t

)

=
(
− (∇γ(x))t , 1

)(
2γ(x)|Jν̃|(x)En

2γ(x)|Jν̃|(x) (∇γ(x))t

)
= (0, . . . , 0).

Hence we have the following.

Lemma 4.1. Suppose that |Jν̃|(x) �= 0. Then, we have the following:

ν1(x) = −
(
J̃ ν̃(x)

)t

∇γ(x)/||ν(x)||

ν2(x) = |Jν̃|(x)γ(x)ν̃(x)/||ν(x)||.

It should be noted that in order to show that ||ν(x)|| �= 0, the assumption that “|Jν̃|(x) �= 0” is used.
Set h(x) = 2g(x) − f̃(x). Then, by elementary geometry, we have:

h(x) − P = f(x) − f̃(x)

= γ(x)
ν̃(x) · ν2(x) (ν1(x) ⊕ ν2(x))

= 1
|Jν̃|(x)

(
−
(
J̃ ν̃(x)

)t

∇γ(x) ⊕ |Jν̃|(x)γ(x)ν̃(x)
)

= − 1
|Jν̃|(x)

(
J̃ ν̃(x)

)t

∇γ(x) ⊕ (g(x) − P ).

f̃(x) − g(x) = g(x) − h(x) = (g(x) − P ) − (h(x) − P ), so we have:

f̃(x) − g(x) = 1 (
J̃ ν̃(x)

)t

∇γ(x)⊕0ν̃(x)=
(
(Jν̃(x))−1

)t

∇γ(x)⊕0ν̃(x). �
|Jν̃|(x)
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5. Application 2: opening the Gauss mapping of the anti-orthotomic

The application in Section 4 is a result obtained only at a non-singular point of ν̃. In this section, as a 
second application of Theorem 1, we investigate the results that can be obtained even at a singular point 
of ν̃. The following definitions are required for the investigation in this section.

Definition 3 ([13]). Let f = (f1, . . . , fn) : (Rn, 0) → (Rn, 0) be an equidimensional C∞ map-germ.

(1) Let Ω1
n denote the En-module of 1-forms on (Rn, 0). Then, the En-module generated by dfi (i = 1, . . . , n)

in Ω1
n is called the Jacobi module of f and denoted by Jf , where dh denotes the exterior differential of 

h for a function-germ h : (Rn, 0) → R.
(2) The ramification module of f (denoted by Rf ) is defined as the f∗ (En)-module comprising all function-

germs γ such that dγ belongs to Jf .

Definition 4 ([13]). Let ϕ : (Rn, 0) → (Rn, 0) be an equidimensional C∞ map-germ and let δ : (Rn, 0) →
(R, 0) be a C∞ function-germ. Then, the map-germ (ϕ, δ) : (Rn, 0) → (Rn × R, (0, 0)) is called an opening 
of ϕ if δ ∈ Rϕ.

Theorem 4. Let (f, ν) : N → Rn+1×Sn be a frontal. Let x0 ∈ N and P ∈ Rn+1 satisfy (f(x0) −P ) ·ν(x0) �= 0. 
Then, (f − P ) : (N, x0) → Rn+1 is an opening of the Gauss map-germ ν̃ = f−P

||f−P || : (N, x0) → Sn of its 
anti-orthotomic f̃ : (N, x0) → Rn+1.

The optical meaning of an anti-orthotomic is straightforward according to Theorem 4. By definition, we 
have the following corollary.

Corollary 4. Let (g, ν) : N → Rn+1×Sn be a frontal. Let x0 ∈ N and P ∈ Rn+1 satisfy (g(x0) −P ) ·ν(x0) �= 0. 
Then, (g − P ) : (N, x0) → Rn+1 is an opening of the Gauss map-germ ν̃ = g−P

||g−P || : (N, x0) → Sn of its 
negative pedal f̃ : (N, x0) → Rn+1.

Proof of Theorem 4. Let V ⊂ Sn be a sufficiently small open neighborhood of ν̃(x0) and let h =
(h1, . . . , hn) : V → Tν̃(x0)S

n be a normal coordinate system at ν̃(x0). Let U be a sufficiently small open 
neighborhood of x0 such that U ⊂ ν̃−1(V ) and set ν1(x) = (ν1,1(x), . . . , ν1,n(x)) for any x ∈ U . More-
over, for any i (1 ≤ i ≤ n), set ν̃i = hi ◦ ν̃. ν : N → Sn is the Gauss mapping of f : N → Rn+1 and 
f(x) − P = 2γ(x)ν̃(x), so we have:

n∑
i=1

ν1,iγdν̃i + ||ν2||dγ = 0.

(f(x0) − P ) · ν(x0) �= 0, so it follows that ν2(x0) �= 0. Thus, we have

dγ = − 1
||ν2||

n∑
i=1

ν1,iγdν̃i ∈ J
ν̃
. �

Again, we consider the frontal (f̃ , ̃ν) : R → R2 × S1 given in Example 2. We recall that the image 
f̃(R) is the square S with vertexes (1, 1), (−1, 1), (1, −1), (−1, −1). Let P = (p1, p2) be a point such that 
−1 < p1, p2 < 1. Then, P belongs to NS f̃ . Let f : R → R2 be the orthotomic of f̃ relative to P . Theorems 1
and 4 reduce the construction of the image of f to elementary geometry, which is explained as follows (see 
Fig. 5). By the construction of ν̃, if t belongs to the union of closed intervals:
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Fig. 5. Drawing f(R) for the given square f̃(R).

⋃
n∈Z

([8n + 1, 8n + 2] ∪ [8n + 3, 8n + 4] ∪ [8n + 5, 8n + 6] ∪ [8n + 7, 8n + 8]) ,

then t must be a singular point of ν̃. Thus, by Theorem 4, t must be a singular point of f , so each of 
f([8n + 1, 8n + 2]), f([8n + 3, 8n + 4]), f([8n + 5, 8n + 6]), and f([8n + 7, 8n + 8]) must be one point. By 
definition, the one point must be the mirror image of P , as follows:

Lemma 5.1.

f([8n + 1, 8n + 2]) = (2 − p1, p2), f([8n + 3, 8n + 4]) = (p1, 2 − p2),

f([8n + 5, 8n + 6]) = (−2 − p1, p2), f([8n + 7, 8n + 8]) = (p1,−2 − p2).

By the construction of f̃ , we have:

f̃([8n, 8n + 1]) = (1,−1), f̃([8n + 2, 8n + 3]) = (1, 1),

f̃([8n + 4, 8n + 5]) = (−1, 1), f̃([8n + 6, 8n + 7]) = (−1,−1).

By assertion (4) in Theorem 1, the following holds.

Lemma 5.2.

||f̃(t) − f(t)|| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(p1 − 1)2 + (p2 + 1)2 (if 8n ≤ t ≤ 8n + 1),√
(p1 − 1)2 + (p2 − 1)2 (if 8n + 2 ≤ t ≤ 8n + 3),√
(p1 + 1)2 + (p2 − 1)2 (if 8n + 4 ≤ t ≤ 8n + 5),√
(p1 + 1)2 + (p2 + 1)2 (if 8n + 6 ≤ t ≤ 8n + 7).

By the construction of ν̃, we have the following.

Lemma 5.3.

(1) f([8n, 8n + 1]) is exactly the hemicircle centered at f̃([8n, 8n + 1]) = (1, −1) with boundary f([8n +
7, 8n + 8]) = (p1, −2 − p2) and f([8n + 1, 8n + 2]) = (2 − p1, p2) that does not contain P .

(2) f([8n + 2, 8n + 3]) is exactly the hemicircle centered at f̃([8n + 2, 8n + 3]) = (1, 1) with boundary 
f([8n + 1, 8n + 2]) = (2 − p1, p2) and f([8n + 3, 8n + 4]) = (p1, 2 − p2) that does not contain P .
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(3) f([8n + 4, 8n + 5]) is exactly the hemicircle centered at f̃([8n + 4, 8n + 5]) = (−1, 1) with boundary 
f([8n + 3, 8n + 4]) = (p1, 2 − p2) and f([8n + 5, 8n + 6]) = (−2 − p1, p2) that does not contain P .

(4) f([8n + 6, 8n + 7]) is exactly the hemicircle centered at f̃([8n + 6, 8n + 7]) = (−1, −1) with boundary 
f([8n + 5, 8n + 6]) = (−2 − p1, p2) and f([8n + 7, 8n + 8]) = (p1, −2 − p2) that does not contain P .

For the precise shape of the pedal g : R → R2 of f̃ relative to P , we simply shrink f(R) by 50 percent 
with respect to P .

It appears that the method proposed by Herring [8] is similar to our method, but his method seems to 
rely on a thermodynamical consideration of atoms, whereas our method requires no physical considerations. 
After the given shape is realized as the image of the frontal f̃(R), by applying Theorem 1 and Theorem 4, 
only elementary geometry is needed. Thus, in any physical situation, if the same square is given, then the 
γ-plot for the square must have the same shape.

6. Application 3: a criterion for fronts

Definition 5. A germ of the frontal (f, ν) : (N, x0) → Rn+1 × Sn is called a germ of front (or front-germ) if 
(f, ν) is non-singular at x0.

Given a frontal (f, ν) : N → Rn+1 × Sn, if (f, ν) : (N, x) → Rn+1 × Sn is a germ of front for any x ∈ N , 
then (f, ν) is called a front. A front is also called a wave-front. For further details of fronts, please refer to 
[2,3].

Theorem 5. Let (f, ν) : N → Rn+1×Sn be a frontal and let x0 be a point of N . Then, for any point P ∈ Rn+1

such that (f(x0) − P ) · ν(x0) �= 0, the following are equivalent, where 
(
f̃ , ν̃

)
: (N, x0) → Rn+1 × Sn is the 

anti-orthotomic germ of f relative to P .

(1) (f, ν) : (N, x0) → Rn+1 × Sn is a front-germ.
(2)

(
f̃ , ν̃

)
: (N, x0) → Rn+1 × Sn is a front-germ.

(3)
(
f, f̃

)
: (N, x0) → Rn+1 ×Rn+1 is non-singular.

Theorem 5 answers the question posed by Honda and Teramoto ([11]). Theorem 5 yields the following 
corollaries.

Corollary 5. Let (g, ν) : N → Rn+1×Sn be a frontal and let x0 be a point of N . Then, for any point P ∈ Rn+1

such that (g(x0) − P ) · ν(x0) �= 0, the following are equivalent, where 
(
f̃ , ν̃

)
: (N, x0) → Rn+1 × Sn is the 

negative pedal germ of g relative to P .

(1) (g, ν) : (N, x0) → Rn+1 × Sn is a front-germ.
(2)

(
f̃ , ν̃

)
: (N, x0) → Rn+1 × Sn is a front-germ.

(3)
(
g, f̃

)
: (N, x0) → Rn+1 ×Rn+1 is non-singular.

Corollary 6. Let (f, ν) : N → Rn+1 × Sn be a frontal. Let two points x0 ∈ N and P ∈ Rn+1 satisfy 
(f(x0) − P ) · ν(x0) �= 0. Let (f̃ , ̃ν) : N → Rn+1 × Sn be the anti-orthotomic of f relative to P . If x0 is 
not contained in Sing(f̃) ∩ Sing(ν̃), then the map-germ f : (N, x0) → Rn+1 is a front-germ, where for a 
C∞ mapping ϕ : X → Y , Sing(ϕ) denotes the singular set of ϕ. In particular, if f̃ : (N, x0) → Rn+1 is 
non-singular, then f : (N, x0) → Rn+1 must be a front-germ.
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Corollary 7. Let (g, ν) : N → Rn+1 × Sn be a frontal. Let two points x0 ∈ N and P ∈ Rn+1 satisfy 
(g(x0) − P ) · ν(x0) �= 0. Let (f̃ , ̃ν) : N → Rn+1 × Sn be the negative pedal of g relative to P . If x0 is not 
contained in Sing(f̃) ∩ Sing(ν̃), then the map-germ g : (N, x0) → Rn+1 is a front-germ. In particular, if 
f̃ : (N, x0) → Rn+1 is non-singular, then g : (N, x0) → Rn+1 must be a front-germ.

Corollary 8. Let (f̃ , ̃ν) : N → Rn+1 × Sn be a frontal. Let two points x0 ∈ N and P ∈ Rn+1 satisfy 
(f̃(x0) − P ) · ν̃(x0) �= 0. Let (f, ν) : N → Rn+1 × Sn be the orthotomic of f̃ relative to P . If x0 is not 
contained in Sing(f) ∩ Sing(ν), then the map-germ f̃ : (N, x0) → Rn+1 is a front-germ.

Corollary 9. Let (f̃ , ̃ν) : N → Rn+1 × Sn be a frontal. Let two points x0 ∈ N and P ∈ Rn+1 satisfy 
(f̃(x0) − P ) · ν̃(x0) �= 0. Let (g, ν) : N → Rn+1 × Sn be the pedal of f̃ relative to P . If x0 is not contained 
in Sing(g) ∩ Sing(ν), then the map-germ f̃ : (N, x0) → Rn+1 is a front-germ.

Proof of Theorem 5. (2) ⇔ (3) is simply a corollary of Theorem 4. (1) ⇒ (3) is trivial. Thus, in order 
to complete the proof, it is sufficient to show that (3) ⇒ (1). Suppose that (f, f̃) is non-singular. Then, 
(f, f − f̃) is non-singular. By the assumption that (f(x0) − P ) · ν(x0) �= 0, it follows that the projection 

π : dx0(f − f̃)(Ker(dx0f)) → Tν(x0)S
n is injective. Therefore, (f, ν) =

(
f, f−f̃

||f−f̃ ||

)
: (N, x0) → Rn+1 × Sn is 

non-singular. �
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