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 EQUIVARIANT SINGULARITIES OF LAGRANGIAN MANIFOLDS

 AND UNIAXIAL FERROMAGNET*

 STANISLAW JANECZKOt AND ADAM KOWALCZYKt

 Abstract. A classification of typical 3-dimensional Lagrangian singularities with Z2E)Z2 symmetry

 (independent changes of sign in two coordinates) is presented. This provides the finite classification of

 typical and structurally stable local forms of a class of 4-dimensional internal energies with the uniaxial

 ferromagnet symmetry.

 The equivalence relation in the latest classification preserves the basic thermodynamic features of

 internal energies: the symmetry, the internal stability regions and the inequalities of chemical potentials for

 states of the system with respectively equal remaining thermodynamic forces.

 As an example of applications a phenomenological model of the Curie point for an uniaxial ferromagnet

 is presented. This demonstrates an alternative to classical "ad hoc" approaches in phenomenological

 modelling of critical phenomena.

 Key words. uniaxial ferromagnet, Lagrangian singularities, equivariant singularities, critical point, phase

 transition

 AMS(MOS) subject classifications. Primary 57R45, 58C27, 58C28, 80A10, 82A25, 82A60; secondary
 53C57

 Introduction. A geometrical approach to phase transitions as singularities of pro-

 jections of stable Lagrangian submanifolds (modelling the set of equilibrium states)
 onto the space of intensive parameters was discussed by Janeczko [11]. This approach

 was designed to satisfy the laws of thermodynamics and thus to overcome shortcomings

 of the earlier applications of elementary catastrophe theory to phase transitions (see
 Fowler [7] and its critique by Lavis and Bell [19]). In particular, the equivalence

 relations introduced in [11] to classify internal energies do preserve equations of state

 unlike the previous approach [7].
 In the present work we extend the theory to the case of internal energies with

 symmetries of the uniaxial ferromagnet and obtain the classification of these potentials.

 The paper is subdivided as follows. In ? 1 we consider the space of invariant internal

 energies in which we introduce an equivalence relation preserving the basic thermody-

 namic features, i.e., the symmetry, the equality of thermodynamic forces in coexisting

 phases and the internal stability regions. The results of the local classification of the

 structurally stable and typical forms of the thermodynamic potentials are stated in

 Theorems 1.1 and 1.2. In ? 2 we present an example of an application of the formalism.

 The set of isothermal sections of the stability region boundary (bifurcation set) for the

 potentials of the above classification are compared to the family of isothermal boun-
 daries of the hysteresis region for the uniaxial ferromagnet [5], [29], [30]. This leads,

 with the help of the second law of thermodynamics, to the selection of the form
 ("singularity") of internal energy suitable for the description of the Curie region Fig.
 1, cf. [28, p. 67]. The phenomenon of spontaneous magnetization is obtained as a

 feature of one of several typical forms of internal energy. Moreover, this internal energy

 is locally structurally by stable [23], [28], in the sense that any other "sufficiently close"

 form is equivalent to it, i.e., displays the same features. It is established which terms
 of the Taylor's expansion of the internal energy should be considered and which could
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 SINGULARITIES AND UNIAXIAL FERROMAGNET 1343

 T<T Curie -X

 T = TCurie

 T Curie-+

 FIG. 1. Typical cases of isothermal sections of the bifurcation sets for (A3) forms of internal energy. The

 shaded regions consist of points of a 3-fold covering, the other points have at most 1-fold coverings.

 be neglected without losing any qualitative features of the model (see Example 1.1).
 Note that this result could be viewed as an additional justification for Landau's choice

 of the form of thermodynamic potential for an uniaxial ferromagnet [17].
 Section 3 is devoted to the proof of the classification theorems of ? 1. The whole

 problem is translated into the language of symplectic geometry and Lagrangian sin-

 gularities. The main advantage of this formulation is that we may express the

 equivalence between densities of internal energies in terms of a group of transformations
 (Lagrangian equivalences) of the phase space. Then an equivariant modification of
 Arnold's [2] approach to classification of nonsymmetric Lagrangian mappings can be
 applied.

 In relation to some other works in this area it is worth stressing the following

 aspects:

 (i) In the nonsymmetric case the main step in the classification of Lagrangian

 singularities was to show its equivalence to the previously known classifications of

 singularities of functions and their versal unfoldings (elementary catastrophes) [2],
 [10], [33], [3]. In the symmetric case a similar procedure leads to a classification of

 unfoldings of symmetric functions with additional symmetry in the unfolding para-
 meters (see [13]). Thus, unlike in the nonsymmetric case, the classifications like that
 of Wasserman [32], which do not assume any symmetry in the unfolding parameters,
 cannot be utilized for the classification of symmetric Lagrangian singularities.

 (ii) In the space of Lagrangian mappings the equivariant ones form a subset of
 infinite co-dimension. For this reason the results of the nonsymmetric classification
 [2], [3] cannot be used directly in the symmetric case. Using the results of Slodowy
 [25], one may show [12] that some of nonsymmetric versal unfoldings are also versal

 unfoldings in the symmetric case. But, in general, this does not lead to a complete
 classification of symmetric unfoldings and still leaves the question of structural stability
 open [13], [16].

 1. Classification of thermodynamic potentials. On the phenomenological level the

 equilibrium state of an uniaxial ferromagnet with x-axis as the direction of easy

 magnetization is described by four extensive parameters (S, Mx, My, N) = (entropy,
 magnetizations in the x- and y-directions, mole number) and four conjugated intensive

 parameters or thermodynamic forces (T, Hx, Hy, L ) = (Yl, - - *, y4) (temperature mag-
 netic fields in the x- and y-direction, chemical potential). All thbrmodynamic informa-
 tion concerning the ferromagnet could be extracted from a (homogeneous of the first
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 1344 S. JANECZKO AND A. KOWALCZYK

 order) function U = U(S, M,, My, N) describing the internal energy of the system.
 In the region of interest the mole number N is positive, so the internal energy could

 be written in the form

 U = N.* u (N ' NX Y = N, U "(Xl, X2, X3)

 where u is called mole internal energy and x1, X2, X3 (denoted also by S, Mx, My) are
 usually called mole entropy and respective mole magnetizations. Because of the
 limitations of the mathematical formalism (see ? 3) we are forced to assume that mole
 internal energy u is a C' function. The function u satisfies the following symmetry
 condition

 (1.1) U(X1, X2, X3) = U(X1, EX2, 8X3)

 for any E, 8 = i 1 and (xl, x2, X3) c D3. This condition expresses the symmetry properties
 of the uniaxial ferromagnet with respect to the choice of the sign of the x- or y-axis

 [13]. Thus the function u is an invariant of the group G:= Z2?Z2 y {(E, 8); ?, 8 = I1}
 of transformations D3, (?, 6): (X1, X2, X3) -> (X1, EX2, 8X3). We denote by CG(3) the set
 of all such functions.

 In equilibrium the following equations of state are satisfied [5], [27]:

 aU au
 (1.2) Yi =a a=x'

 aU au
 (1.3) Y2 = - =a'

 aU au
 (1.4) Y3 = aaM =x

 aU 3 au

 (1.5) Y4=- aN Xi-i '
 and the condition of internal stability also must be fulfilled [5], [27]:

 (1.6) The matrix d2u [a ] is positive definite.

 For a mole internal energy u denote by Vu the transformation

 ( au au au E\ 3.
 aXl' aX2' ax3

 Note that Vu is G-equivariant, i.e., Vu o g = g o Vu for any g c G. Let us denote by Fu
 the mole Gibbs potential:

 (1.7) aUu:= u - xi FU u ~ x,axi

 for x = (xi) c D3.
 DEFINITION 1.1. We say two mole internal energies, u, u7 c CG(3), are equivalent

 if there exists a pair, say k) and fr, of G-equivariant diffeomorphisms of D3 such that
 the following conditions are satisfied:

 (i) o Vu = Vu7o f,

 (ii) if Vu(x) = Vu(x') then Fu(x) - Fu(x') = Fa (frx) - Fa(qfrx'),
 (iii) the matrix d2u is positive definite at x if and only if d2z' is positive definite

 at qfr(x).
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 SINGULARITIES AND UNIAXIAL FERROMAGNET 1345

 We say that u and iu are weakly equivalent if (i), (ii) and the weaker version of

 (iii) with "semidefinite" (i.e., det (d2u) = 0) substituting "positive definite" holds true.

 Similarly we define a local weak equivalence of mole internal energies or, in other

 words, of their germs, (u, x0) and (iu, x0). In this case we assume the Z0 = +fr(x0) and

 that the above requirements are satisfied in an open neighborhood of x0. In our

 considerations below we always assume x0 to be a G-invariant point, i.e., of the forms

 XO = (XO, ,0).
 Let us introduce a transformation,

 (1.8) z: R3 -> R3 (X1, X2, X3) -> (X1, X2, X3).

 Obviously F - z c C'(3) if F c C'(3). From Schwarz's Theorem [24] it results
 that any functions belonging to CG is of that form.

 It is natural to introduce topology of uniform convergence or C' Whitney's
 topology on CG(3). All our results presented below could be easily modified to be
 valid with respect to any of these topologies. But to avoid unnecessary complications
 in proofs we use neither of them. Instead we follow a simple definition characterizing
 magnitude of perturbation of a function in CG(3).

 DEFINITION 1.2. Let 8: RSt -> RI be a continuous, positive valued function and
 U E CG(3). A function u'c CG(3) is called 8-close to u (or just close) if there exist

 functions F, F' c C'(3) such that u = F o z and u' = F' o z and the difference (F - F')
 and all its partial derivatives up to order 3 are bounded by 8 on Rl3.

 Now we are prepared to introduce a fundamental notion of local structural stability.

 DEFINITION 1.3. A germ of mole internal energy, (u, x0), u c CG(3), is said to be
 structurally stable (weakly structurally stable) if for any u E CG(3) sufficiently close to
 u there exists a point x0 such that (iu, x0) is equivalent (weakly equivalent, respectively)
 to (u, x0).

 The following three theorems summarize the results of the classification of struc-
 turally stable and typical local forms of the mole internal energy.

 First, given a G-invariant point x0 c Rl3 we introduce three disjoint subsets Al(xo),
 A2(xo) and A3(xO) in the space of the germs (u, x0) mole internal energies u c CG(3).
 Each of these sets is defined by one of the following conditions:

 (Al) F11F2F3?0 at x0, or
 (A2) Fl?=0 and F111F2F3?0 at x0, or

 (A3) Fi,=0 and FI11F Fli(F2li- F,Fii) 0 0 at x0 for i=2, j =3 or vice versa,

 where F c C (3) is a function such that u = F o z with z given by (8) and Fj, Fij, etc.,
 denote the partial derivatives aF/axj, a2F/axiaxj, etc.

 THEOREM 1.1. A germ (u, xo) of mole internal energy u E CG(3) at a G-invariant
 point is structurally stable if and only if it satisfies one of the above conditions (A1)-(A3).

 THEOREM 1.2. Any structurally stable germ of mole internal energy from CG(3) at
 a G-invariant point is equivalent to a germ (u, 0) of one of the following normal forms:

 (A1 ) u (x) = i(X2 + X2 + X2),

 (A2)~~~~~~~ u(x) = x31 i (X2 + X32)), (A2) 2 3

 (A3) U (X) = ?IX i ((X1 + X2)2 + X2).

 THEOREM 1.3. Let 8: R 3-> R+ be a continuous positive valued function. For any
 U E CG(3) there exists u7 E CG(3) which is 8-close to u and such that any germ (u7, x0) at
 a G-invariant point xo Ec R3 is structurally stable.
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 1346 S. JANECZKO AND A. KOWALCZYK

 In other words, any germs of a typical function (or mole internal energy) from
 CG(3) at a G-invariant point is equivalent to one of the normal forms of Theorem 1.2.

 The results of this section can be summarized as follows. We consider internal

 energies describing a thermodynamic system with symmetries of the uniaxial ferromag-
 net. We treat all energies giving the "same thermodynamics" (in the sense of Definition
 1.1) as equivalent and then we consider those energies which are insensitive to small
 variations (structurally stable in the sense of Definition 1.3). We are then able to show
 that near fixed points of the symmetry (x2 = X3 = 0-axis) such energies can take only
 three distinct forms, Al, A2 and A3 (given, up to an equivalence, by Theorem 1.2).
 Moreover, any internal energy structurally unstable at a fixed point can be reduced,
 using an arbitrary small perturbation, to a form belonging to one of the structurally

 stable classes (A,)-(A3).
 Remark 1.1. For points of lRl which are not G-invariant the list of stable forms

 is longer than that given in Theorem 1.2 [16]. Thus each stable germ (ui, x) mole of

 internal energy u E CC(3) at x = (xl, Z2, 0), or x = (xj, 0, -3) where x- 0, Z2 ? 0 is
 equivalent to the germs of u at (0, 1, 0) of one of the following four normal forms:

 (Al ) ~~~~u (x) = f:(Xl2 + (2-1)2 + x32), (Al) X 3

 (A2) u (x) = x3 ((x2- 1)2 + x2),

 (A3) u(x) = ?(x2- 1)4 (xl + (x2 1)2)2+x3,

 (D4) u(x) = ?X3 ?x(x2-1)2+ (x32+ )2.

 Similarly, the following five germs at (0, 1, 1) are normal forms of stable mole internal
 energy at points x = (xl, x2, x3), x2x3 0:

 (Al) u(x) = ?(X2+ (x2 - 1)2+ (x3 - 1)2),

 (A2) u(x) = ?(4+((x2- 1)2+ (x31 )2)),

 (A3) u(x) = ?(x2- 1)4 (xI + (x2- 1)2)2+ (X3 - 1)2,

 (A4) ~~~u(x) = +XI+ (X3 +x 1)2 + (X2 +x 1)2, (A4) 1 1X_ 1X

 (D4) u(x) = ?x3 (x2-1)2+ (4+x3-1)2.

 Below we give an example showing how small "higher order" perturbation can

 change the properties of a structurally unstable mole internal energy dramatically.
 EXAMPLE 1.1. Consider a family of mole internal energies:

 u68 (S, M) = M2S3 + ?M6 +s7.

 First note that for ? = 8 = 0 there is no stable states of the system (i.e., d2uoo is nowhere
 positive definite). Now consider u?0 for ? > 0. Figures 2(a), (b) show distribution of
 eigenvalues of d2u6o near M = 0, s = 0 and the image of the transformation Vu60 near
 H = 0, t = 0. Now for every point (H, t) belonging to the shaded regions in Fig. 2(b)
 there exists exactly one stable state of the system. Note that for smaller e the regions
 become bigger. In this sense, the smaller the perturbation, (i.e., ?) the more dramatic

 the change of the properties of u,0 in comparison to uoo.
 For u?, ?, 8 > 0 we observe even bigger changes. The internal stability regions

 are shown as shaded areas in Fig. 2(c). In Fig. 2(d) the image of Vu66 is sketched. We
 observe that for any (H, t), t> 0 there exists a stable state of a system and that for
 every (H, t) in the cross-hatched regions even two such states are present.
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 FIG. 2. Distributions of eigenvalues of d 2u68 near M = 0, s = 0 and the image of internal stability regions
 near H = 0, t = 0 given by V u68 for different values of E and 8: in Figs. 2(a) and 2(b) for E > 0 and a = 0 and
 in Figs. 2(c) and 2(d) for E, 8 > 0, respectively.

 2. Application to uniaxial ferromagnet. In experiments with a ferromagnet the

 parameters that are controlled are the three intensive ones: the temperature Yi= T,
 both magnetic fields Y2 = Hx, y3 = Hy and one extensive parameter, the mole number
 N (we consider here a small single domain crystal). The values of the remaining
 extensive parameters, S, Mx, Hy, are established by the response of the system and
 they could be derived with the help of the principle of minimum energy [5].

 Let us now consider the equivalence described in Definition 1.1. Condition (i)
 assures the following natural requirement is satisfied: two states differing by the values
 of the extensive parameters only always correspond to a pair of states with the same

 property. In the presence of sufficient fluctuations for a given control point (T, Hx, Hy)
 the system chooses the state with the lowest chemical potential A or, in other words,
 the lowest density of Gibbs energy Iu [5], [19], [28]. In particular, necessary condition
 for phase transition of the first order is equality of the Gibbs energies in two phases
 for a given (T, Hx, Hy) point. In this respect the differences of chemical potentials
 between different phases of the system over the same point in the control space are
 of major interest. Condition (ii) of Definition 1.1 assures that these differences are
 preserved by the structural equivalences. Condition (iii) assures the preservation of
 internal stability regions. Finally, the equivariance of / and d preserves the symmetry
 of the system.

 In order to describe the explicit form of the internal energy density, given by
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 1348 S. JANECZKO AND A. KOWALCZYK

 Theorems 1.1-1.3, it is convenient to introduce the following notation. We denote by
 mre r = 1, 2, ... , the set of all C'-functions a(x1, X2, X3) vanishing at 0 E Rl3 together
 with all their partial derivatives of order 1, 2, * * r- 1. It is customary to denote ml
 by m.

 From Theorem 1.1 we immediately obtain the next corollary.

 COROLLARY 2.1. The form of the structurally stable G-invariant mole internal energy

 u(S, Mx, My) in a neighborhood of the point (SO, 0,0 , To 0,0 ) is as follows:

 u(S, M, My) = TO(S - So) + a2M + a3 My+a(S-S)2

 (2.1) + a12(S - x + a22 x + aIAS - y

 + a23M 2M + a33 M + a (S - So, M2x M2) + const,

 where a E m3 and the constants ai, aij satisfy one of the following conditions:

 (A1) a2a3a1j $ 0,

 (A2) a11=0 and a2a3a33a/dS3$0 at (So,0,0),

 (A3 ) a2 = 0 and a3ajja12(al2 -4aj1a22) # 0,

 (A3) a3 = 0 and a2aj1a13(a13-4aj1a33) #0 .

 To study the bifurcation set and other properties of mole of internal energy

 u(s, Mx, My) it is convenient to consider the associated equations of state as the
 (Lagrangian [2]) mapping Vu, which has in our case the following form:

 3 (, xu(au a au u

 The boundary of the stability region of u [27] or the set of critical points of Vu is
 given by the condition

 _____a u __ (Vu) =
 (2.2) i d2uI det L.2S M My)] d(S, Mx My)

 The image of the above set given by the transformation Vu will be called the
 bifurcation set of u.

 We recall now experimental data in order to characterize the bifurcation set of
 the uniaxial ferromagnet and then obtain a structurally stable local form of its internal
 energy that would reproduce the experimentally observed behavior. The experimental
 bifurcation set (or, the critical surface, according to Thomas [30]) is scheduled in Fig.
 3 (see [18], [29]). This surface with cusp-like edges divides the space of intensive
 parameters into two regions marked by "1X" and "2X". The number ("1" or "2")
 indicates the number of different stable states of the system that can exist for a given

 point (T, Hx, Hy) in the respective region.
 For u of the form (Al), the bifurcation set is empty while in the case of (A2) it

 forms a regular surface. Hence, neither of these two forms is suitable as a mole internal

 energy in the Curie region.
 Now let us consider u of the form (A3). First note that the Hessian d2u at (SO, 0, 0)

 is in this case diagonal with 0, a3 and all on the main diagonal. Thus the necessary
 condition for the existence of stable states in the neighborhood of (T0, 0, 0) is

 (2.3) a11>0, a3>0.
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 Hy

 T

 T~~~~~~

 FIG. 3. The experimental bifurcation set (critical surface) for an uniaxial ferromagnet. Here Tc is the
 Curie temperature.

 T

 (T,OHO0)

 (TO0,Q,Q)
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 (b)

 T T

 (TO,o,~~~~~~~~~~~~~T0Oo

 (c) (d)

 FIG. 4. Bifurcation setsforfour different cases of u of theform (A3 ): (a) sgn (a12'6) = -1, sgn (al2A) =-1;
 (b) sgn (aI2A) = -1, sgn (al2A) = +1; (c) sgn (aI2A) = 1, sgn (al2A) = 1; (d) sgn (al2s) = 1, sgn (a12A) = -1.
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 1350 S. JANECZKO AND A. KOWALCZYK

 In Fig. 4, we sketch the bifurcation sets for the mole internal energy (A3,) satisfying

 conditions (2.3) and for four different combinations of sgn (a128) and sgn (al2A) where

 (2.4) 3:= a12-4ajja22

 (2.5) A:= a13a12-2a1ja23

 In the remaining case (A3) the bifurcation set is as in Fig. 4(a), (b) but with axis

 H. and Hy interchanged. By inspection we find that only the bifurcation set shown
 on Fig. 4(a) corresponds to the experimental one. Thus u must be of the form (A3,)

 with the conditions (2.3) and

 (2.6) To= T,, a128 < 0 and a12A < 0.

 First we observe that the boundary of the stability region (Id2uI = 0) divides the
 space of extensive parameters into two domains "S"' and "Si", with "S+ containing
 the semi-axis My = M, = 0, S > Sc (see Fig. 5). If a128 < 0, for each point (T, Hx, Hy)
 from "2X" there exist two points in "S+" and one point in "Si" which are translated

 by Vu onto (T, Hx, Hy). Similarly Vu transforms exactly one point belonging to the
 region "St" onto each point in "I" (note how the circle in the plane My = 0 in Fig.
 5(a) is mapped by Vu). Thus, to have two stable states of the systems for each ( T, H , Hy)
 belonging to the regions "2X" and one such state for each (T, Hx, HY) "1" the matrix
 d2u must have all positive eigenvalues in the region "St" near (Sc, 0, 0). Since condition
 (2.3) assures that at least two eigenvalues are positive (near (Sc, 0, 0)), all three
 eigenvalues will be positive if

 (2.7) Id2uI = 8a11[al2a3(S - Sj) + a12a13(S - S +)2+6a3a22M + a23M ]
 +a3al2M2+O3(S-SC,M, M)

 is positive in "St". Using (2.3) we see immediately that Id2uI > O in "St+". if

 (2.8) a12 > O

 The following corollary summarizes the results of the above discussion.

 COROLLARY 2.2. The structurally stable mole internal energy u(S, Mx, My) for
 uniaxial ferromagnet near the Curie point, with x-easy axis, must be of the form (A3 ) of

 Corollary 2.1 (with To and So being the temperature and entropy at Curie point) and
 must satisfy the following conditions:

 (2.9) a11>0, a12>0, a3>0,

 (2.10) 8 = a12-4aj1a22 < 0,

 (2.11) A = a13a12-2a11a23 < 0.

 2.1. Spontaneous magnetization H = 0. If we set s = S - Sc, t = T - Tc, with Sc and
 Tc being entropy and temperature at the Curie point, respectively, then the fundamental
 equation of a iuniaxial ferromagnet takes the form:

 u = u(s, Mx, My) = a1s2+ a3M + a12sM + a13sM + a22Mx

 + a23 M2x y+ a33 My + a (s, M2X My)

 with a Em3 and aij satisfying conditions (2.9)-(2.11).
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 ii1x t

 H5

 t

 Hx

 FIG. 6. Equilibrium states for Hy = 0.

 2.3. The line of points of continuous phase transition. This line coincides with the

 line of the cusp points (I2 on Fig. 5(b)) and is given by the following equations:

 t=2als+al2 M2 + ca,(s, 0, M2),

 0 = a12s + a23 M2 + a,2(s, 0, M2),

 Hy = 2a3 My+ 2a13sMy + 4a33 M3 + 2My,a3(S, 0, M2).

 After some simple calculations we obtain:

 A H 2 +(H). t = (2a3 )2 a12 o(H

 Hence, in the case when A <0, a12> 0 we obtain the line of the shape qualitatively
 compatible with experiment [30], [31].

 We would like to add (without proof) the following.
 Remark 2.1. The structurally stable local form of mole internal energy reproducing

 the experimentally observed behavior near points P and P' in Fig. 3 is (D4) (see
 Remark 1.1).

 3. Classification of equivariant Lagrangian singularities. In ? 1 we have introduced

 equivalent mole internal energies. But for an effective classification we need the
 equivalence itself: a type of operator which for a given internal energy would create
 another one equivalent to it. This would enable the process of subsequent simplifications

 leading to normal forms. In this section these goals are achieved by a simple geometriz-

 ation which establishes:

 (i) The correspondence between mole internal energy or equations of state
 (1.2)-(1.3) and the elements of an (open) subset of the space of proper Lagrangian

 submanifolds of the phase space.
 (ii) A correspondence between weak equivalences of mole internal energy and

 elements of the group of equivariant Lagrangian equivalences of the phase space.

 3.1. Basic definitions. All objects in this Section are assumed to be C'. By Cx(n)
 we denote the ring of smooth functions Rn n- R, by W(n) the ring of germs of functions
 from C'(n) at 0 E Wan and by mk(n) the ideal in W(n) consisting of all germs vanishing
 at 0 together with all their partial derivatives up to the order k-1. To simplify the
 notation we denote functions from C?'(n) and their germs at 0 by the same symbols
 (although for germs at x #0 we use the notation (F, x)). The ideal in W(n) generated
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 SINGULARITIES AND UNIAXIAL FERROMAGNET 1353

 by F12, * Fm c W(n) is denoted by (F1, F2, , Fm). Partial derivatives aF/axi,
 a2Flaxi axj, etc., of function F are denoted by Fi, Fij, etc.; their values at 0 by f, fj,
 etc.

 Let (X1, X2, X3, YI, Y2, Y3) be a fixed coordinate system in RO6. Let w 2 Z dxi A dyi
 be a symplectic form. With respect to these coordinates, rr(x, y):= y is the second

 projection. The group G=Z2?3Z2 operates on DR6 as follows (E, 8):(x,y) ->

 (X1, "x2, 8X3, Y1, UY2, 5Y3)-
 Any 3-dimensional C' submanifolds L c R6 which is Lagrangian and G-invariant

 (i.e., the pull-back of W2 vanishes on L and g(L) = L for all g c G) is called LG-manifold.
 Examples of LG-manifolds are submanifolds of DR6 of the form

 (3.1) Lu ={(x, y): y =}

 with u c C'(3), i.e., the submanifold given by equations of state (1.2)-(1.4). The
 function u(x) is called the generatingfunction of L.

 Since we are interested in local properties of LG-manifolds near G-invariant
 points we consider germs (L, m), where L is a LG-manifold and m is a G-invariant
 point of the form (x1, 0, 0, Yi, 0, 0).

 By LG-equivalence we mean a symplectic diffeomorphism D: R 6 1 R6 preserving
 fibration iT and commuting with the action of G on DR6, i.e., a mapping ": D6 R6 such
 that FD * a2 = W2, g o FD = "F o g for any g c G and rr o F(ir-1{y}) is a "singleton". Note
 that the group of LG-equivalences acts transitively on the set of G-invariant points
 of R6.

 Two LG-manifolds (or germs of LG-manifolds) are called LG-equivalent if there
 exists an LG-equivalence which carries one onto the other.

 LEMMA 3.1. Any germ (L, m) of an LG-manifold L at a G-invariant point m is

 LG-equivalent to a germ (L1, 0) of LG-manifold L1 with a generatingfunction u C CG(3).
 Proof. Applying, if necessary, the translation (x, y) -- (x - xo, y - yo) and a transfor-

 mation (x, y) -- (x - Ay, y) for suitable A c RO [2] we reduce the proof to the case that
 L has a generating germ u(x). As L is G-symmetric the equations

 U,2(X1, X2, X3) = -U,2(X1, -X2, X3), U3(X1, X2, X3) = -U3(X1, X2, -X3)

 hold. Now by integration we get U(X1, X2, X3) = U(X1, EX2, 5X3) for E, 8 = T1. Q.E.D.

 3.2. LG-equivalences and equivalences of germs. Following Zakalyukin [33] any
 Lagrangian equivalence (D could be identified with a pair (4, y), where 4): R 3-- R3 iS
 a smooth diffeomorphism and y c C'(3), in the following way: if (D: (x, y) -> (X, Y),
 then Y=(4)y), X=(*) - l(x+ay/ay). In the equivariant case F>(D), y) is an LG-
 equivalence if and only if 4 is an equivariant diffeomorphism and y C C G(3). Sufficiency
 can be checked directly. For necessity note that r = ir o (D, and since rT R6 -- R3 is an
 equivariant transformation, 4 must be also. Now consider the composition T o (D where
 T is an LG-equivalence determined by (-l1, 0). Obviously T o (D: (x, y) -> (x + dy/dy, y)

 is an LG-equivalence and irx o T o FD o i, where rx: (x, y) - x and i,: y - (0, y), is an
 equivariant transformation R 3- R of the form y -- ay/ly. Thus similarly as in the proof
 of Lemma 3.1 we establish that y c CG(3).

 For typical Lagrangian manifold Lu of the forms (3. 1) the covering rT I Lu Lu - 1R3
 is finite. Thus there exists a family of functions (Gibbs potentials) {Fa}, where each
 Fa is a smooth function on an open subset Va c R, such that

 L = closure U { QOay)}
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 The functions {F, } are routinely obtained in thermodynamics by Legendre transforma-
 tions of internal energy u, i.e., by elimination of x-variables from the density of the

 Gibbs potential Fu given by (1.7), by means of equations (1.2)-(1.4). Using the above
 explicit characterizations of LG-equivalence PD by the pair (4, y) it is easy to find that

 L:= (F(Lu) has a family of Gibbs potentials {r,,F} of the form [23] Fa = (F, - y) o 4)1
 each defined on V. = 4)(Va).

 The condition Id2uI =0 at x in terms of the geometry means that projection
 ILu Lu -> L R3 has a singular point at (x, au/dx). Since 4 o X Lu = T o ID I Lu, for LG-
 equivalence F = (4), y) the diffeomorphism PD maps singular points of IT jLu onto

 singular points of 7rTI '(Lu). Thus we obtain the next proposition.
 PROPOSITION 3.1. Two mole internal energies from CG(3) are weakly equivalent if

 and only if corresponding Lagrangian submanifolds of the form (3.1) are LG-equivalent.
 Remark. The above considerations prove Proposition 3.1 only in the case when

 the covering I Lu : Lu -- R3 is finite, but the proof can be generalized.

 3.3. An infinitesimal condition for germ of d(3). Taking advantage of Lemma 3.1

 we may restrict our attention to the germs at 0 E 6 of LG-manifolds which possess
 generating functions of the form u(x) = F o z(x) with F E C%(3).

 DEFINITION 3.1. Let x, x be two points of R' and; = z(x), = z(x). Two germs
 (F, {) and (F, ;) of functions from C%(3) are called equivalent (LG-equivalent) if the
 germs (F o z, x) and (F o z, x), are equivalent (weakly equivalent). The germ (F, ;) is
 called stable (LG-stable) if (F o z, ;) is stable (weakly stable).

 DEFINITION 3.2. The germ F E W(3) is called infinitesimally LG-stable if for every

 germ a E W(3) there exists decomposition

 3

 (3.2) a(x) = F1(x)h1(x) + c0+ c1X1 + E (xiF'(x)hi(x) +xiFi(x)ci)
 i==2

 with hi E W(3) and ci E R.
 Remarks. (i) Condition (2) is an equivariant form of the infinitesimal stability

 condition for Lagrangian mappings [2]. More precisely: let L c R6 be a Lagrangian

 manifold with generating function u c W(3). First, Arnold [2] defines: a germ (L, 0)
 or, equivalently, the Lagrangian map x -- au/ax as being infinitesimally stable if for
 every ,3 E W (3) there exists a Hamiltonian H(x, y) on R6 of the form

 3

 H(x, y) = E ai(y)xi + b(y),

 where a,, b E W(3), such that

 a x)

 Next by application of the Malgrange-Mather theorem [4], [9], [20], we obtain the
 following condition: for every a E W(3) there exists a decomposition

 3lau
 a (x)=E hi (x) + cix) + cO

 where hic E(3), ciER.
 If we just add the requirement that u, H and /3 in (*) are G-invariant and then

 apply the Equivariant Division Theorem [22] we obtain (3.2) as an equivalent form

 of (*).
 PROPOSITION 3.2. A germ Fe W(3) is infinitesimally LG-stable if and only if one

 of the following conditions are satisfied:
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 (A0) f1 0 ?,

 (A1) f1=O, f2f3fll$O,

 (A2) f1=f11=O and f2f3flll#O?,

 (A3t) f1 =f2 = 0 and f3fllfl2(fl2-f11f22) #0,

 (A3-) f1 =f3 = 0 and f2filfl3(fl3 -f1If33) 00.
 Proof. Necessity: It is straightforward to check that one of these conditions must

 be fulfilled if (3.2) is satisfied mod m3. Sufficiency: For a c W(3) we show how to define

 germs hi and constants ci satisfying (3.2).
 CASE (A0). It is enough to take h1 = a/F1, h2-=h3O, c0=a(O), c =O for i= 1,

 2, 3. So, from now on, let us assume f, = 0.
 CASE (A1). Let (A1) be satisfied, ai, Uic W(3) be such that a(x)=

 a(0) +E3 xiai(x), FI(x) =E3 xiUi(x). Then UJ(O) =f1 $ 0, F,2(0) =f2 0, F,3(0) =f3 $
 0. Hence co= a(0), c1 = c2 = c3 = 0, h1 = a1/ U1, h2 = (a2- U2h,)/F 2, h3=
 (a3- U3h,)/F 2 satisfy (3.1).

 CASE (A2). Let (A2) be satisfied and Ui, ai cW(3) be such that F1(x)=
 x2 UU(x aX) ++ + + ().A xI U1(x) + x2 U2(X)+ x3 U3(x), a(x)= a(0) +x1a,(O) IxaI(x) + x2a2(x) + x3a3(x). As
 U1(O)=ff110 , F2(0)=f2O0, F3(0)=f3#O it suffices to put co=a(0), c1=a,1(0),
 h, = a1/ U1, h2 = (a2- U2h1)/F2, h3 = (a3- U3h1)/F,3.

 CASE (A3,) (for (A3,) the procedure is similar). Assume that conditions (A3,) are

 satisfied. The germ (at 0 e R 3) of

 f3(x) = a(x) - cO- cIxI - C2F2(x)x2+ F(x)(g0+ g1X + g2X2)

 belongs to the ideal ( I, Xx2, IX29, x29 X3) provided that co = a(0) and constants c1,
 c2, g0, g9 , g2 satisfy the following system of linear equations (solvable iff flA2(f12 -
 fllf22) # 0):

 a,1(0) =f1Igo +cI,

 a,2(0) =A12g0,

 a,11(O) =fIIgo++2f11gII,

 a,12(O) =f112g0+f12g1 +f11g2+f12C2,

 a,22(0) =A112g0 +12g2 +f22c2 .
 Now consider germs Uij, f3i such that-

 F i(x) = x1 UiJ1(xI) + x2 Ui2(x1, x2) + x3 UiL3(x1, x2, x3),

 for i= 1, 2 and

 ,t3(x) =3l,(x) + x3x2 X2(x)+ x 3(x)+ + X 4 4(x)+x3 (x).

 Let germs k1, k2, k3, h2 W (3) be the solutions of the following system of linear

 equations (with germ coefficients):

 /13= Ullkl,

 82 = U12k, + + U11k3+ U?h2,

 A3 = U1 1 k2 + UI2k3 + 2 U21 U22h2,

 4 U32k +U22h2

 The above equations are solvable since the system determinant at 0 is equal to

 f1(f 2-f11f22)2 0. It can be easily checked that the germ y(x)
 ,8(x)-FI(x )(xX2kl(x)+x2 k2(x)+xIx2k3(x))-x2F 2(x)h2(x) belongs to the ideal (X3)
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 in W(3), i.e., it is of the form y(x) = x3y'(x), where y' E W(3). Finally we observe that
 c0, c1, C3, h2(x) defined as above, C3:= 0 and

 hl(x) :=g0+ g1X + g2X2+ 1 2 f2(X) + X1X2f3(X),

 h3(x):= y'(x)/F2 (X),

 satisfy (3.2). Q.E.D.

 3.4. Germs of typical generating functions u = F o z. Consider a manifold J2(RD3, R)

 of all 2-jets of functions from C'(3) [9] with a coordinate system (xi,f*jf*Jf!)
 corresponding to (xi, F(x), Fj(x), Fj(x)). Let M1 be a submanifold of J2(R3, R)
 defined by X2 = x3 = 0 and with f*, f*, f* satisfying the second part of condition (A1)
 from Proposition 3.2 (f* need not be zero!). Submanifolds M2, M3, and M3 are
 defined analogously with conditions (A2), (A3,) and (A3), respectively, replacing (A1).
 The codimensions of M1, M2, M3,, M3, are 2, 3, 3 and 3, respectively. The subset of
 those 2-jets at x = (xl, 0, 0), xl c R, which does not belong to U Mi is a finite union of
 submanifolds of codimension four. Thus from Thom's transversality theorem [4], [9],
 the following proposition results.

 PROPOSITION 3.3. For typical function Fc C'(3) all germs (j2F)(xl, 0,0 ) belong
 to U Mi.

 Denote Wi, for i = 1, 2, 3', 3", the subset of all germs F c W(3) satisfying condition
 (Ai) of Proposition 3.2 together with F(O) = F1(0) =0 (for such a germ F the point
 0 E 6 belongs to the manifold LFOZ). Using an appropriate translation in R6 we easily
 obtain the following.

 PROPOSITION 3.4. Let FcE C (3), x0= (x1,0,0)ER3 and i c {1, 2, 3', 3"}. If
 (j2F)(xo) c Mi, then the germ (F, xo) is LG-equivalent to a germ from Wi.

 3.5. Inf-homotopic germs. Our present aim is to find classes of LG-equivalent

 germs in Wi. For this purpose we introduce the next definition.
 DEFINITION 3.3. Let J be an open interval in R. A smooth function on R J,

 F(x, t) = F(x, t) = F,(x), is called inf-homotopy if all germs (Fe, 0) belong to the same
 class Wi (note that F(0, t) = (aF/at)(O, t) = 0 for any inf-homotopy F(x, t)). The germs
 Fa, Fb, a, b c J, are called inf-homotopic.

 PROPOSITION 3.5. Any germ from Wi is inf-homotopic to one of thefollowingforms:

 (g1)~~~~~~ F= +X3 +2x3
 (V2) F=?xI?x2?x3,

 (') F = +X2 i )2i

 ( "3) F = +X32 i (liX)2 iX

 Proof. We will prove only the case W3 . Conditions sgnf1I = ? 1, sgn f2 = ? 1, sgn f3 =
 ?1 and sgn (f2l2 -flIf22) = ? 1, divided the 4-dimensional space of coefficients (f11, f12,
 f3, f22):= (FII, F,12, F,3, F22)10 into sixteen open convex regions. So, if germs F',
 F"i W3 correspond to the same region, the following function

 F(x, t) := tF'(x) + ( 1-t)F"(x)

 is an inf-homotopy between them. It is straightforward to check that to each of these

 sixteen regions belongs one of the forms given by (M) which completes the
 proof. Q.E.D.
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 PROPOSITION 3.6. Let F(x, t), (x, t) c R x J, be an inf-homotopy, S(x, t):=
 F(z(x), t) and to e J be a fixed point. Then there exists an open neighborhood U x I of
 (0, to) and a smooth function ai(x, t), b(x, t) on R3 x R, with compact supports, such that

 (3.3) aj(x, t) =-(0, t) for t G I,
 ax,

 and

 (3.4) -at (x, t) = H (x, a (x, t), t for (x, t) E U x I,

 where

 3

 (3.5) H(x, y, t) = a1(z(y), t)x, + E ai(z(y), t)xiyi + b(z(y), t)
 2

 for (x, y, t) G R3x R3x R.

 Proof. Assume to= 0. From the proof of Proposition 3.2 it follows that every germ
 a E W(4) has a decomposition

 a(x, t)=F,l(x, t)hl(x, t)+cl(t)xl+co(t)
 (3.6) 1

 + E [xiF 2(x, t)hi(x, t)+xiFi(x, t)ci(t)]
 i=2

 with ci E $(1), hi E W(4). Substituting ci(t) = ci(0) + tc*~(t) (i = 0, 1, 2, 3) and
 3

 i=2

 we obtain

 a(x, t) = F11(x, t)hl(x, t)+ cl(O)xl+ co(O)
 3

 + E xiF 2(x, t)hi(x, t)+xiF i(x, t)ci(0)+th(x, t).
 i=2

 From the Malgrange-Mather Preparation Theorem ([4], [9], [20]) applied to the germ
 g: (R4, 0) - (R4, 0), where

 g (x, t) = (F 1 (x, t), 4X2 F 2(X, t), 4X3 F 2 (X, t), t)

 for (x, t) E R3 x R, the existence of the following decomposition results:

 aF 3
 (3.7) - (,t) = a, o g(x, t)xl + E 2ai o g(x, t)xiFi(x, t) + b o g(x, t),

 at i=2

 with ai, b E $(4) (we may take for these germs representatives with compact supports).
 Now, if we consider equation (3.7) at (z(x), t) and observe that g(z(x), t)=
 (z(aS/ax)(x, t), t), we easily get (3.4).

 It remains to show (3.3). In the case W2 we have F,1(0, t) = F,11(0, t) =0 and

 F,111(0, t) # 0. Taking derivatives a/lax and a2/ax 2 of (7) at (0, t) we obtain 0= a,(0, t)
 and 0 = b, 1(0, t)F1 1(0, t), thus (3.3) results.

 In the case W3 we have F,1(0, t) = F2(0, t) =0, and F12(0, t) #0. Taking the
 derivative a/ax2 of (3.7) at (0, t) we have 0= bj(0, t) - F,12(0, t), so bj(0, t) = 0. Now
 differentiation of (3.7) with respect to x, at (0, t) yields 0= aj(0, t).

 For W, we have F,1(0, t) = 0 F,11(0, t), so taking a/lax of (3.7) at (0, t) we get

 0 = aj(0, t) + b,j(0, t)F,11(0, t).
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 Hence, if a1(O, t) = 0, then b, 1(O, t) = 0. Thus it is enough to show that the decomposition
 (3.7) with a1(O, t) = 0 is always possible. As the jacobian ag/a(x, t) # 0 at (x, t) = (0, 0),
 there exists X1 c W(4) such that x1 = X1 o g(x, t). If we set a*(z, t):= a1(z, t) - a1(O, t)

 and b*(z, t):= b(z, t) + a1(O, t)X1(z, t), we may substitute a* and b* into (3.7) for a,
 and b, respectively. As a*(O, t) = 0, this completes the proof. Q.E.D.

 3.6. LG-equivalences of inf-homotopic germs. Let F(x, t), S(x, t), H(x, y, t) =

 H,(x, y), etc., be as in Proposition 3.6. We assume to = 0 and I = (-e, E) for simplicity.
 Let us consider a time-dependent Hamiltonian vector field on 6

 30aH a aH a
 XHt = Z - (x, y, t)---(x y t)-

 ayi axi* axi ayi

 as well as the vector field XH = a/at + XH on R x R. The vector field XH, has the global
 flow gt, t c RO (i.e., there exists the smooth mapping (x, y, t) (x, y, t) c R 3 x x3 X R

 gt(x, y) c R3 x R3 such that (d/dt)g,(x,y)=XH(g,(x,y)) and go(x,y)=(x,y) for
 (x, y) c R3x R3). This results from (i) compactness of supports of ai and b, (ii) the

 independence of "y"-component of XH, from x (so y(t) could be found independently
 of x), (iii) linearity of "x"-component of XH, with respect to x.

 LEMMA 3.2. g, is a LG-equivalence for every t c RO.
 Proof. Since C4H = C + dH A dt is an invariant form of X [1], g, is a symplecto-

 morphism for every t.

 Take o- C G. As H,(x, y) = H, o o-(x, y), o-o XH = XH o o- and

 d - o gt-gt o O-) = 00 XH - XH 0 '= 0

 for every t c R. Hence o- o gt = gto o- holds for every t c R since go = idR6.

 Finally gt preserves the fibration iT because the "y"-component of XH, is indepen-
 dent of x. Q.E.D.

 Let us define a mapping ID: R (3 , E) -- 6 as ?(x, t) = Dt(x) := (x, (du/dx)(x, t))
 and let a LG-manifold D(R3 X {t}) = {(x, (du/dx)(x, t))} be denoted by Lt.

 LEMMA 3.3. gt is a LG-equivalence of the germs (Lo 0) and (Lt, 0) for I ti <
 Proof. First we show that gt(LO) = Lt. It could be checked by simple calculation

 that the vector

 d 3 aHt a(? a 2ut a
 A(x t) d t (X) -XH, (?,t(x)) =E dy' (?(DtX)) (di i X d(x) dt i=1 ayi axi axi axj ~~~~~a yj

 is tangent to Lt at the point Dt(x) for every (x, t) c R 3x R. Let B(x, t) be a smooth
 vector field on R3x R and let ', 0 < E' < E, be a number such that

 ?*(B(x, t)) = A(x, t) for every (x, t) E R3 X (-E', E')

 where 'D denotes the tangent map to D:R 3 x RR 6 6. Denote by hs the flow of
 -B(x, t) + a/at on 3x R (assumed to be defined globally, for simplicity). Then

 hs (R3x{t})= R3x{t+s} for s, te R.

 Let us define kt: R -> R , t E R, by the formula

 kt(x) := (D(ht(x, O)).

 It is easily checked that (d/dt)kt(x) = XH, (kt(x)) and ko(R 3) = Lo. Hence, we obtain
 by the uniqueness theorem for first order differential equations that kt = gt, and

 gt(LO) = kt(R 3) = Lt for Itl < E'.
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 To complete the proof it suffices to notice that g(O, 0) = (0, 0) e R3xR3 since

 XH,(O, O) = O (by (3.3) and (3.5), and g0(O, 0) = (O, O)). Q.E.D.
 Since LG-equivalences preserve the boundary of the stability region (see ? 3.2),

 the above LG-equivalences g, (Lemma 3.3) preserve (by continuity) the regions
 characterized by different spectra (= differences between the numbers of positive and

 negative eigenvalues) of the Hessian d 2F(z(*), t) = [a2F(z, t)/8xi axj]. Thus from the
 above lemmas we obtain the following.

 PROPOSITION 3.7. Any two inf-homotopic germs in F(3) are equivalent.

 3.7. Normal form of LG-stable germs. It is easily verified that for any Fe C'(3)
 the mapping j2F: DR - J2(R3, R) is transversal to Mi, i = 1, 2, 3', 3". Hence ifj2F(x) E M1,
 for every function F sufficiently close to F E C'(3) there exists a point x E DR close to
 x such that j2F(x) E Mi. Thus (F, x) and (F, x) are equivalent to two mutually inf-
 homotopic germs in Wi, and thus they are equivalent. Finally we obtain the following.

 PROPOSITION 3.8. Anygerm (F, x), whereFE C'(3), x = (xl, 0,0), andj2F(x) E M
 is stable.

 Theorem 1.1 results from Propositions 3.3, 3.4 and 3.8. Theorems 1.2 and 1.3 can
 be proved immediately if we add the following proposition.

 PROPOSITION 3.9. Any stable germ (F, x0) where F E C'(3) and xo = (x01, 0,0 ), is
 equivalent to the germ at 0 El R3 of one of the following normal forms:

 (A2)~~~~~~~~~~~~~
 (Al) F = +(xi + X2 + X3),

 (A2) F=IX (X2+x3)9

 (A3) F= ?x2?((x2+x1)2+X3).

 Proof. By Propositions 3.3, 3.4, 3.5, 3.7, 3.8 it is sufficient to show equivalences
 which carry forms of Proposition 3.5 onto the above normal forms. This could be

 easily achieved by equivalences of the form (x, y) -> (a1ixi +,iyj, yi) for suitable ai,
 ,8ej-1,0,1}. Q.E.D.
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