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Abstract. The topological type function for stationary probability density of stable stochastic dynamical 
systems is introduced. The corresponding bifurcation diagrams in the case of one dichotomic noise are 
derived. Examples encountered in physics and chemistry are given. 

1. Introduction 

Many systems of physical interest can be described by the following Langevin equation 
[2, 5, 15, 8], 

5c = f ( x )  + g(x)u( t ) ,  (1) 

where u(t) is the external noise and f ( x ) ,  g(x)  are deterministic vector fields. The main 
interest of recent bifurcation theory [3, 7, 13] has been to determine bifurcation 
diagrams and the corresponding structural changes in these types of systems with 
additional parameters. For the generic, finitely-determined models of singularity theory 
[4, 16, 13], these catastrophe sets are well known and their relevance for the under- 
standing of various physical, chemical and biological systems has been exhaustively 
proved in a number of recent results [13, 3, 7, 16]. 

It appears, however, that in a realistic laser system [5], or various open or semi-open 
chemical or thermodynamical systems, random internal fluctuations play an important 
role [8, 9]. It is necessary to include in the model the stochastic component of the noise. 
Stochasticity of some control parameters of the ordinary dynamical models tends to 
completely change bifurcation diagrams. Their use is an important physical branch of 
the theory of stochastic processes (see, e.g. [ 15, 1, 12, 11]). Abstracting from the con- 
crete physical models, we see that the structure of these stochastic bifurcation sets is 
interesting, even for the theory itself. In this Letter, we try to investigate the bifurcation 
sets for a class of one-dimensional stochastic dynamical systems, coming from standard 
singularity theory, with Markovian dichotomic noise. We do not pretend to give a 
complete description of such systems, but only to check some interesting examples and 
the universal mathematical problems suggested by them. In fact, the Letter only deals 
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with dichotomic fluctuations imposed on the systems under consideration, which is a 
serious restriction. 

2. Dynamical Systems in the Stochastic Control Space 

Let u(t) be a stochastic process [6, 12]�9 Precisely, it is defined by a system of probability 
densities, 

P(u(t)), P(u(tl), u(t2)), . . . ,  e(u(tl),  . . . ,  u(t,)) . . . .  , (2) 

for the ordered sequences of the time points, tl < t 2 < ... < t, < . . . .  By the standard 
formula for the conditional probabilities of random variables, say 4, r/, i.e. 
e(•, 4) = P(r/)e(~ I ~/), we can write 

P(u(t~), u(t2)) = P(u(tl))P(u(t2) I u(tl)) , 

P(u(tl), u(t2), u(t3)) 

= e(u(tl),  u(t2))e(u(t3)l u(t~), u(t2)) 

= P(u(t~))e(u(t2) I U(tl))P(u(t3) f u(tl), u(t2)), 

e ( u ( t l  ) . . . . .  u ( t . ) )  

= P ( u ( t l ) ) P ( u ( t 2 ) l  u ( t l ) ) P ( u ( t 3 ) l  u ( t l ) ,  u ( t 2 ) )  

. . .  e ( u (  t . )  l U( t l  ), . . . , u ( t .  _ 1)). (3) 

The Markovian stochastic process is characterized by the following simplifying con- 
dition (for its interpretation see, e.g., [15, 6]), 

e(u(t~)lU(tl) . . . .  , u(tl,_ 1)) = e(u(tk) lu(t~- 1)), 

for all possible ordered points t 1, . . . ,  t~,. We see that for the Markovian processes, the 
system (3) is determined by P(u(t)) and conditional probabilities P(u(t) lu(t')), t > t' 
(so-called transitional probabilities). For the purpose of this Letter, we consider a 
dichotomic Markov process (also called the telegraphic noise [ 1, 10]) u(t). This type of 
process takes two possible values, a and - a (a > 0 is called an amplitude of the process) 
with the transition rates, from a to - a  and vice-versa, equal to y/2. Let P_+ (t) dgf 
Probability {u(t) = + a}, then the temporal evolution of P• (t), which characterizes the 
process completely, is given by the following equation (Master Equation [15]), 

d ( P + ( t ) ' ~ =  - 2 (  1, 
~ \ P  (t)] _ - \ P _  ( t ) ] "  (4) 

If P+(O)=�89 then u(t) is a stationary process with the correlation function 
(u( t )u( t ' ) )  = a 2 exp( -  7 It - t' l) and the mean value equal to zero, (u( t ) )  = 0 (for 
detailed information, we refer to [15, 1, 11]). 
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Let us consider in general a parametrized stochastic dynamical system with one 
internal variable x [15], 

k = - g r a d x V ( x ,  ~, u l ( t  ) . . . . .  u , ( t ) )  = F ( x ,  ~, u l ( t  ) . . . . .  u,( t)) ,  (5) 

where V is a smooth function; V: R x Rk x R n --,~, Ul(t ) . . . . .  u, ( t )  are independent 
stochastic processes and fi -= (fi~ . . . . .  ilk) e [Rk are deterministic control variables (like- 
wise the 2-parameter in the Verhulst model &population dynamics [ 11 ], p. 1235) of the 
system. We allow (5) to be a general nonlinear system. Because of its simplicity (this 
is a one-dimensional system) and extensive use in applications [ 1, 8, 10], we restrict our 
considerations to the Markovian dichotomic noises ul (t) . . . . .  u,(t) .  In this concrete case 
(usually an approximation of the real situation [ 1 ]), we have that the general stochastic 
system (5) is equal to one with stochastic variables entering linearly, i.e. 

N 

2 = f ( x , - ~ )  + ~ g,(x,  ~)wi( t  ) , (6) 
i = 1  

where w,.(t) are, not necessary independent, stochastic variables also representing 
dichotomic processes as multiplicatively composed initial ones. In fact, for one 
dichotomic noise we have immediately the form (6), i.e. 

F ( x ,  ~, u(t)) 

= �89 ~, a) + F ( x ,  -~, - a)) + u(t) 1 (F(x,-fi ,  a) - F ( x ,  -~, - a ) ) .  
2a 

By induction with respect to the number of telegraphs in F, we easily find the general 
form of(6). 

DEFINITION. Let U l ( t  ) . . . .  , u,( t )  be dichotomic Markov noises (also called the 
telegraphic noises, or simply, telegraphs, cf. [ 15]). Let the potential function V depend 
on ~e  R" and {u;(t)}7= 1 as well, in the following way: 

V(x ,  u, ul(t ) . . . . .  Un(l)) = V(x ,  Ul + Ul(/) . . . .  , ~n + Un(l))" 

Then (5) is called the stochastic dynamical system with telegraphically fluctuating 
control parameters. 

For the deterministic dynamical system of type (5), its stationary surface (i.e. the set 
of zeroes of the corresponding field F)  gives the basic information about the slow 
dynamics appearing in various dynamical models of physical systems [13, 16]. The 
general nonlinear system of type (5) can be very complicated with regard to its stationary 
properties. However, the theory of singularities [3, 4], by removing some very small 
class of'pathological' (unstable) systems, provides complete information about the local 
stationary properties of typical nonlinear systems. 

Let us recall some necessary facts from the standard singularity theory. Let 
2 = -gradxV(x, u) be a dynamical system with smooth potential V: ~" x E k ~  JR. We 
say that this system is stable iff at each point (x o, Uo)e IR" x [R ~, the following holds: 
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the quotient ring ~ . + k / J ( V )  is generated by {(O/Oui)V(x, u)}~ffi 1 as an ~k-mOdule 
(cf. [4]). Here by ~ . + k  C ~.+k(~k) we denote the maximal ideal of the ring ~.+k of 
germs at (Xo, uo) (uo, respectively) of smooth functions ~.+k, (Xo, UO)--' R and we 
denote by J(V) the corresponding ideal generated by {(O/Oxj) V(x, u)}]= 1. It appears that 
for structurally stable systems (by the Malgrange preparation theorem [4]), in a 
neighbourhood of each point (Xo, uo) , the system is equivalent (in its stationary 
dynamics) to the one given in the following form: 

(7) 

where we assume that (x o, Uo) -- (0, 0) and h~(x) are smooth functions generating the 
following space 

~ . / J ( g )  [4, 13]. 

The stable potentials for one-dimensional dynamical systems are completely classified 
(see, e.g., [ 13]) in all dimensions of control space, i.e. 

A~,+,,Sc = - g r a d x (  xu+2+ i=l~UiXlt-i+l) ' ~<-~k .  (8) 

Comparing the form of the above potentials to the stochastic one (6) with telegraphically 
fluctuating control parameters, we are encouraged also to restrict ourselves to con- 
sideration of dynamical systems with stable potentials (7). It suggests that we also 
consider additional stochastic noises entering additively in the deterministic parameters 
(u,). 

Thus, in what follows, we assume our stochastic dynamical system to be recon- 
structed from a stable (7) deterministic one by switching on the respective telegraphs 
(i.e. dichotomic noises) associated to each control parameter, the values of which are 
treated as the fluctuating centers of external forces. Thus we have 

2 =  -gradx x,~ + t ~x , i 
where the functions he(x) are determined by the stable deterministic potential V at the 
neighbourhood of each point (x, ~). 

We now recall some notions indispensable for characterization of the stationary 
stochastic solutions of Equation (5) [ 15]. Let us consider, for simplicity, the Langevin 
equation (1). For some stochastic solution x(t) of this equation, we can write the 
corresponding Liouville equation [6, 12], 

p(x,  t) = - - -  f ( x )p ( x ,  t) - u(t) -s g(x)p(x ,  t ) ,  (9) 
3t xd dx 
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fulfilled by the probability densityp(x, t) = b(x - x(t)) .  Let u(t) be a dichotomic Markov 
noise. Then the main statistical information about x( t )  is provided by an average 
<p(x,  t)> over all realizations of u(t) according to Equation (4). This average splits into 
two parts, denoted by P+ (x, t) and P (x, t), respectively (2"-parts for n independent 
dichotomic noises). Combining Equations (9) and (4), we obtain the evolution equations 
for e+(x ,  t), P ( x ,  t) (Master Equations [15]), 

--Ot P + (x, t) = - --Ox f ( x ) P  + (x, t) - a--ox g ( x ) P  + (x, t) - 

P + (x, t) + ~ P (x, t) 
2 2 - ' 

-- e (x , t )=  - - -  f ( x ) P _ ( x , t ) + a  g ( x ) P _ ( x , t ) +  
at - ~x ~x  

+_7 e + ( x , t ) _  7 p (x,t) 
2 2 - ' 

(10) 

where P_+ (x, t) denotes the so-called joint probability density for x at time t and 
u(t) = + a (a > 0). By straightforward generalization of Equations (10) to the system 
endowed with n dichotomic noises [15, 9], we obtain the corresponding master 
equations for 2" joint probability densities. 

PROPOSITION 2.1. For the generic stochastic system (5) with u~(t) being independent 
dichotomic noises (i = 1 . . . .  , n), with amplitudes a~ > O, i.e. 

<ui(t)u,(t')> = a 2 e x p ( - z  I t -  t' I ) ,  u2i(t) = a~, 

the corresponding system of  equations for  the joint stationary probability densit&s, considered 
in the comptexified domain, reduces to a system o f  equations with regular singularities [ 3, 5 ]. 

Proof. A stochastic solution of (5), in the case of dichotomic noises ui(t), is charac- 
terized by its joint probability density Pt(x ,  u, t), I = ( i l , . . . ,  i~),/j = + 1. We recall the 
evolution equations for the dichotomic noises u;(t); 

1 (p(i) P(~_)) (t) d er Ye 
dt 2 

1 
_d p t ~ ( t )  = ~i ( e r  - P t  ~) (t) , 
dt 2 

where i = 1 . . . .  , n (cf. (4)). Thus, the evolution o f P t ( x  , ~, t) is governed by the following 
master equation [ 15, 9], 

Px(x, ~, t) = - ~ F (x ,  ~, A z ) P j ( x  , -~, t) - ~ , Ot Ox ~ (e I  - Px:) (x, u, t ) ,  (11) 
j =  

where I: = ( i l , . . . ,  - ij . . . . .  i , )  and A/is a value of u(t) = ( u  1 (t) . . . . .  u,(t))  corresponding 
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to multi-indice/, i.e. A, = (izal . . . .  ,i,,a,,). By( l l ) ,  we obtain an equation for the 
stationary joint probability density Pz(x, -u), namely, 

1 ~ b(~ _~6)(x,~)=0.  (12) - -  F(x ,  ~, A,)P,(x, ~) + 7 
ax 2 J 

Let us introduce an order into the set c,5indices/(say, ( +,  +. . . ) ,  ( - ,  +. . . ) ,  ( +, - . . . )  
etc.), then we can write 

d e f  _ - -  
P(x, ~) = B(x, u)e(x,  ~) , 

as a column vector. Thus, for P, on the basis of(12), we have the following equation 

P(x ,~)  B (x ,~ ) f f ( x ,~ ) ,  (13) 
Ox 

where B(x,-~) = TH-I (x ,  ~), H is a matrix function with F(x,-u, AI) entries on the 
diagonal, 

( H - ' ( x , ~ ) ) , x =  bsK/F(x, '~,aj) and TxJ= -s 

Taking into account the form of B(x, ~), on the basis of the Thorn transversality 
lemma [4, 14], we see that for generic ~e  ~k, (13) has only regular singularities. 

On the basis of Proposition 2.1, one can use the theory of singularities of ordinary 
differential equations [3] and analyze the behaviour of a physically admitted solution 
ff in the neighbourhood of singular points (for the generic stochastic system without 
parameters, see [5]). 

In the case of one dichotomic noise, we can take the new functions 

e.(x, (x, + P_(x, 

Pst(x, ~)~fP+  (x, ~) + P_(x ,  ~) (14) 

and transform master equations (10) into the new form 

- -  f ( x ,  U)Pst(X, U) + a - -  g(x, u)Q~t(x, u) = 0 ,  
Ox Ox 

0 0 
Ox f (x ,  ~)Qst(x, ~) + a Ox g(x, K)Pst(x, u) + yQ~t(x, u) = 0 (15) 

where 

f ( x ,  ~) = F(x,  ~, a) + F(x, ~, - a )  , 1 (F(x,  ~, a)  - F(x ,  fi, - a ) ) .  g(x ,  -a) = 

P s t ( X ,  U )  is expressed by the stationary solutions of (11) and can be interpreted as the 
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stationary probability density of x parametrically depending on ~ (for the notation and 
physical meaning of Pst(x,~) see [10], p. 378). We easily see that the master 
equation (15) for the stationary probability density Pst(x, ~), has the following general 
solution (see, e.g., [10, 11]), 

( ) ( I x (  l 1 ) ) Pst(X, u)  = N 1 1 exp ? + dx' , 
e+(x,  fi) F_(x,-fi) - 2  F + ( x , K )  e _ ( x ' , K )  

(16) 

where F+ (x, fi) = F(x, fi, + a) and the stochastic dynamics is governed by two poten- 
tials V+ (x, K) = V(x, u, + a). Thus, one can completely characterize the topological 
structure of the support of the stationary probability density [5, 10]. The method of this 
analysis is based on the observation [5] that to make physical sense of P+ and P_ ,  it 
is required that they are not negative functions. We easily see that this is fulfilled if and 
only if F+ and F have the opposite signs. 

Let Xo be a finite critical point of one of the potentials V+, i.e. minimum of order 2i, 
or inflection point of order 2i + 1 (which we denote by (2i + 1) + if this is a nondecreasing 
�9 + '  or nonincreasing' - '  function in the neighbourhood of x o, including i = 0). Verifying 
the Lebesgue integrability of(16) in the critical point Xo after straightforward calcu- 
lations, we obtain the following proposition. 

PROPOSITION 2.2. (A) In the case of one dichotomic Markov noise, the following 
configurations of potentials V + , V ,  with at most one having a critical point xo,form (at Xo) 
the support boundary point (s.b.p. for short): 

1. x o is a right s.b.p, if V+ and V_ (or in the inverse order) are of order 2i or (2i + 1)_ 
and (1)+ respectively (we denote these two configurations by R 2i+ l, RZi). 

2. x o is a left s.b.p, if V+ and V (or in the inverse order) are of order 2i or (2i + 1)+ 
and (1)_ respectively (we denote these configurations by L 2t+ 1, L 2~). 

(B) With the assumptions of part (A), and assuming that the potentials V + , V are in 
the general position [14], we have that the only support boundary points which can appear 
have the type R 2, or L 2, with the corresponding index of divergence 

 st_ ' 1) 

3. Stochastic Bifurcation Sets for Stable Dynamical Systems 

Let us consider the following stochastic system 
ju 

5c = F(x,-a, u(t)) = f ( x )  + ~ (ui + viu(t))gi(x), (17) 
i ~ l  

where F is a universal unfolding of f [ 13] with the/~-dimensional control space, and 
v e S ~'- ~ is a direction of the dichotomic fluctuation u(t). 

REMARK 3.1. The bifuration set of stationary points of (17), in the deterministic case, 
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corresponds to the discriminant set (catastrophe s e t -  generalized swallowtail [3]) of 
F. Investigation of the catastrophe sets for controlled dynamical systems is one of the 
aims of the bifurcation theory or catastrophe theory [ 14]. Applying the stochastic noise 
to control parameters, the nature of the dynamical system is drastically changed but the 
bifurcation set (diagram) for the stationary probability is still very important in the 
stochastic analysis of the system [ 11 ]. In this section, we investigate the bifurcations of 
(17) with dichotomic Markov noise and connect them to the standard catastrophe set 
of the corresponding deterministic system. 

Now we can use formulae (16) and completely analyze the bifurcations of the 
topological structure of the domain of Pst as well as its divergence exponents on the 
boundaries. Let us consider F• (x, ~) = F(x, ~, + a), with fixed parameters v ~ S ~'- 1, 
a ~ ff~ +. We define 

Xi• = {~ E U; number of zeroes of  F_+ (., ~), i.e., # ( ~  -- 

= (x 'F~:(x ,  ~) = 0}) is equal i}, (18) 

where by U we denote the space of control parameters. 
Obviously we have the canonical stratifications: 

p-+l /z+l  
~ =  u x"+= u X J .  

i = o  j = o  

To each Xk +- e O f  we can associate + 1 ( - 1) if it is a local minimum or inflection point 
of the potential V+ (if it is a local maximum of V• respectively). We denote this function 
by sgn x~ .  Now we are ready to define the following integer-valued function 

Z: U ~ N u  {0}, 

~ ( (u )=min{~  ~ ( l + s g n x k + ) '  1 ~ } k=, 2 k=l (1 + s g n x ; )  , (19) 

where ~ ~ ~2"+ n ZJ_. 
By straightforward calculations for the Ak-singularities of (17) [3], we have the 

following proposition 

PROPOSITION 3.2. (A) For a generic stochastic system (17) and sufficiently small a > 0 
the function Z defines the topological type of support of Pst. The value of Z measures the 
number of connected components of the support. Z is equal to zero if and only if  Pst is not 
defined at all. Discontinuities of Z define the points of the bifurcation diagram for the 
corresponding system. 

(B) The function Z is also a differential invariant of the stochastic dynamical system, i.e. 
it does not depend on isomorphic changes of unfoldings [4]. 

Now we describe the bifurcation diagrams for the concrete perturbations of the fold 
and cusp [ 13 ] catastrophes. Let us consider the following system (the fold catastrophe) 

Jc = x 2 - (~ + u(t)) = -grad~V. 
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Geometrical analysis of the pairs of potentials V+, V_ gives immediately the supports 
for integrable (thus, physically acceptable) stationary probability densities. The topo- 
logical type function for this system is following 

0, ~ < a ,  

X(~)-- 1, ~>~a.  

Thus, ~ = a is a bifurcation point - the shifted one corresponding to the deterministic 
fold catastrophe. 

Let us now consider the system (17) on the plane, # = 2, with two orthogonal 
directions of fluctuations Vl = (0, 1) and v2 = (1, 0), i.e. 

5c= - x  3 - ~ l x - ( u 2  + u ( t ) )  and s  - x  3 - ( f i l  + u ( t ) ) x - u 2 ,  

respectively, (i.e. modelled on the cusp catastrophe). The corresponding stratifications 
of U (cf. [ 13]) are as follows 

V 1 : I) 2"  

x'_+. {a I > o} z'_+: {A~ > o} 

z~+.{a ' = o} z~+: {a~ = o} _ • 

where 

1 l 1 1 
A ~ = ~ ( ~ 2 + . ) 2 + ~ ,  A ~ = ~ 2 + ~ ( ~ , + a )  3. 

The topological type functions have the following form 

1, ~eZ~+ k . . ) ~  1_ , 

They are illustrated in Figures l(a), (b). The configurations of potentials corresponding 
to the points a, r, 7 of control space are illustrated in Figure 2, (a), (fl), (2), respectively. 
The corresponding bifurcation set B for the first perturbation vl is described parametri- 
cally by the following formulae 

(ul, u2) = ( -  3s2, T 2s3 + a) ,  for s >~ (a/2)  1/3 . 

R E M A R K  3.3. In the case of unstable systems, which are always induced from stable 
ones by appropriate morphisms, say F o (1)(x, ~) [4], the function Z gives only an upper 
bound for the topological type of support. As an example of such a system, we can 
take the Verhulst chemical reaction equation [ 11 ], 

5r = F ( x ,  ~, u(t))  = - x  2 + x ( ~  + u ( t ) ) ,  

where the deterministic F is induced from the stable fold singularity F ( x ,  ~)  = - x  2 + 
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by the morph i sm 

�9 (x, ~) = (x - ~- ~-2,  ~u, ~u 1, 

i.e. F = F o ~ .  W e  easily check that  Z(fi) -= 1 bu t  the exis tence of  an  integrable  Pst only  

occurs  for fi >~ 0. 
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