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between their geometry and the family of reflexion maps. We also point out some
connexions with symplectic topology.
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1. Introduction

A number of recent works have studied curves and surfaces in affine space from the point of view of a bifurcation of
‘central symmetry’. Some of these concentrate on purely local, or multi-local results—depending on small neighbourhoods of
two or more points [7–9,14]—while others involve more global, topological properties such as the total number of singular
points [4,6]. A closed manifold M , such as a planar ellipse or an ellipsoid in 3-space, which is globally symmetric about
a point O —which has, in other words, global central symmetry—is invariant under reflexion through O . Given p ∈ M , we
can take a neighbourhood U of p in M: its reflexion in O coincides exactly with a neighbourhood of the reflected point
p′ ∈ M . When M no longer has a global centre O we can still consider a chord pp′ joining points p, p′ of M and reflect
the neighbourhood U in the midpoint of this chord: instead of the reflected neighbourhood exactly coinciding with a
neighbourhood of p′ there will be some measurable contact between these two. It turns out that this simple construction
has very close connexions with previous work on bifurcations of central symmetry, helps to explain some of the results of
that work in a simple geometrical way, and opens up a number of interesting avenues for further investigation. It is the
purpose of this article to introduce the ‘contact’ approach, and to give some preliminary results and applications.

Previous work in this area has concentrated on two basic affine constructions, both of which involve the consideration of
chords pp′ of M for which the tangent lines or planes at the endpoints p and p′ are parallel. We shall relax this condition
below, but to see how it arises at all see Fig. 1, left.

The organization is as follows: In Section 2 we motivate the new approach by considering a case studied in some detail
in [8], namely that of surfaces in affine space R3. From Section 3 we apply this approach to a new application, that of a
surface M in affine space R4: the contact map in Section 3, the midpoint map which associates to any pair of points of M
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Fig. 1. Left: E is the ‘half-way equidistant’, having two components, for the two-lobed curve M: it is the locus of midpoints of parallel tangent chords of M
such as pp′ and qq′ . Points outside M and E are the midpoints of zero chords of M , and crossing M this number changes by 1 while crossing E it changes
by 2. (Compare [5].) The union M ∪ E is the bifurcation set of the count of midpoints. Right: for this (convex) M many equidistants are drawn: each one is
the locus of points at a fixed ratio of distance along a parallel tangent chord, the half-way equidistant E being drawn heavily. The cusps on the equidistants
trace out the centre symmetry set (CSS), also known as the Minkowski set. The CSS is also the envelope of parallel tangent chords.

their midpoint in R4 in Section 4 and finally in Section 5 we study ‘vanishing chords’, asking how the geometry of M at p
is related to the contact map for arbitrarily small chords close to p.

2. The contact map for surfaces in RRR3

Consider a surface M given locally by z = f (x, y) in R3, and take M in Monge form, that is f and its first derivatives
with respect to x and y vanish at (0,0).

For given points p = (s, t, f (s, t)) and p′ = (u, v, f (u, v)) on M we reflect a neighbourhood of p on the surface M in
the midpoint of the chord joining p and p′ , and then write down the contact between this reflected surface, which passes
through p′ , and M itself at p′ . The midpoint of the chord is ( 1

2 (s + u), 1
2 (t + v), 1

2 ( f (s, t)+ f (u, v))), and reflecting the point
(s + X, t + Y , f (s + X, t + Y )), close to p, in this midpoint gives

(x, y, z) = (
u − X, v − Y , f (s, t) + f (u, v) − f (X + s, Y + t)

)
. (1)

For fixed s, t, u, v this parametrizes the reflected surface close to p′ . To find the contact with M at p′ we write down an
equation for M , namely f (x, y) − z = 0 and substitute for x, y, z from (1). This gives the contact function

F(s,t,u,v) :
(
R2,0

) → (R,0), F(s,t,u,v)(X, Y ) = f (X + s, Y + t) + f (u − X, v − Y ) − f (s, t) − f (u, v). (2)

Because we are measuring contact it is strictly the contact class of F at X = Y = 0 which we need, but for functions this is
the same as the right-equivalence class, in particular there are two normal forms for A2k−1, namely X2 ± Y 2k . Since (using
subscripts without brackets for partial derivatives)

F X (0,0) = fx(s, t) − fx(u, v), FY (0,0) = f y(s, t) − f y(u, v), (3)

it is clear that F is singular at (0,0) if and only if the tangent planes to M at p and p′ are parallel.
We shall also be interested in s, t, u, v all tending to 0, and we shall ask which singularities of the contact function can

persist as the chords shrink to zero, referring to this as the singularities of vanishing chords: note that the chords need to
be nontrivial, that is they need to have distinct endpoints, so either s �= u or t �= v . Thus we are considering chords whose
midpoints lie very close to M; compare Fig. 1.

Note that we can also put s = t = u = v = 0 in the family, giving

F0(X, Y ) = f (X, Y ) + f (−X,−Y ). (4)

This function measures the contact at the origin between M and the reflexion of M through the origin. It has only terms of
even degree in X and Y . Clearly, F0 is singular at (0,0), that is both F0 X (0,0) and F0Y (0,0) are zero there. Also the hessian
of F0 is zero at the origin, that is F0 has type A3 at least, if and only if fxx f yy = f 2

xy there, that is to say if and only if the

origin is parabolic on M . There are indeed two cases, according as F0 has type A+
3 or A−

3 . In the first case the intersection
of the two surfaces is a single point while in the latter case it is two curves with ordinary tangency. See Fig. 2, left, for the
A−

3 case.
Assuming then that the origin is parabolic, we can take f in the form

f (x, y) = f20x2 + f30x3 + f21x2 y + f12xy2 + f03 y3 + f40x4 + · · · + f04 y4 + · · · ( f20 �= 0), (5)
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Fig. 2. Left: a surface and its reflexion in the origin having A−
3 contact. Right: A−

5 contact.

Fig. 3. Left: the half-way equidistant E at ordinary parabolic points is a smooth surface with boundary along the parabolic curve. Right: at an A∗
2 point the

half-way equidistant acquires a ‘half-cuspidal edge’. This model does not show the surface and the parabolic set has become a straight line.

and then F0 omits all the odd degree terms (and doubles the even degree terms), so that F0 has type A5 at least if and
only if f04 = 0. Provided the origin is not a cusp of Gauss (that is, provided f03 �= 0), the condition f04 = 0 is the condition
for what is called in [9] an ‘A∗

2 point’. (Note that the A2 here refers to a singularity of the height function at the origin, not
to the function F0! Parabolic points are ‘A2-points’ in this sense and cusps of Gauss are ‘A3-points’.)

Proposition 2.1. If the origin is a non-parabolic point of M, then F0 is a Morse function. A parabolic point, not a cusp of Gauss, is of
type A∗

2 only if F0 has type A5 . �
Remarks 2.2. 1. The last condition in the proposition is not quite ‘if and only if’. This is because the precise condition for an
A∗

2 point, as in [9], requires certain open conditions on the odd degree terms of the expansion of f which of course cannot
affect the type of F0 at the origin. However the open conditions on the even degree terms of f which are required by an A∗

2
point guarantee that the contact is of type A5 exactly. Also, while the contact can have type A+

5 or A−
5 , no such distinction

appears in [9].
2. The special A∗

2 parabolic points have a significant impact on the half-way equidistant—the locus of midpoints of
parallel tangent chords—as detailed in [16,9]. See Fig. 3 for an illustration of this distinction. However Proposition 2.1
appears to be the first simple interpretation of the special nature of these points, which are not detected by the usual flat
geometry of a surface in R3.

2.1. Vanishing chords for surfaces in R3

Now let us turn to the family of functions F in (2). As above, (3), F is singular at (X, Y ) = (0,0) if and only if the tangent
planes to M at the points with parameters (s, t) and (u, v) are parallel. In particular, if s = u and t = v then these partial
derivatives are always zero. Eliminating these ‘trivial chords’ is a familiar problem of ‘avoiding the diagonal’. To help in this
we shall change coordinates in F by

s + u = 2a, s − u = 2b, t + v = 2c, t − v = 2d,

so that s = a + b, u = a − b, t = c + d, v = c − d; (6)
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the diagonal s = u, t = v then becomes b = d = 0. We continue to use F for the resulting family,

F(a,b,c,d)(X, Y ) = f (X + a + b, Y + c + d) + f (a − b − X, c − d − Y ) − f (a + b, c + d) − f (a − b, c − d).

The objective in what follows is to determine which singularities of F(a,b,c,d) at X = Y = 0 occur for pairs of distinct points
(that is, b,d not both zero) arbitrarily close to (a,b, c,d) = 0. So we are interested in the contact singularities corresponding
to families of vanishing chords, with distinct endpoints (‘nontrivial chords’), close to the given point, the origin, on M . The
answer, as with Proposition 2.1 for the function F0, will depend on the geometry of M at the origin.

Consider first the map

G : R4,0 → R2,0 given by (a,b, c,d) �→
(

∂ F

∂ X
(0,0),

∂ F

∂Y
(0,0)

)
.

The jacobian matrix of this map at (a,b, c,d) = 0 is(
0 4 f20 0 2 f11
0 2 f11 0 4 f02

)
.

It follows that, if the origin is not parabolic, then this matrix has rank 2 and furthermore b,d can be expressed uniquely
as functions of a and c close to the origin. But we know that G(a,0, c,0) ≡ 0 so these unique functions are in fact b = 0,
d = 0. Thus:

Proposition 2.3. If the origin is a non-parabolic point of M, there is a neighbourhood of (a,b, c,d) = 0 in which F(a,b,c,d) is singular
at (X, Y ) = (0,0) if and only if the chord is trivial: b = d = 0. �

Thus at a non-parabolic point there are no families of nontrivial vanishing chords giving singular contact maps at all. In
a sense this is ‘obvious’ since it says that sufficiently close to a non-parabolic point there are no pairs of distinct points with
parallel tangent planes. But note that excluding the diagonal b = d = 0 was a nontrivial step.

Suppose now that the origin is a parabolic point of M , and write f as in (5). The condition for F X = ∂ F/∂ X at (X, Y ) =
(0,0) to be zero has an expansion about the origin in a,b, c,d-space of the form 0 = 4 f20b +higher order terms, so that this
condition can be solved uniquely for b as a smooth function b = B(a, c,d). But we know that b = d = 0 identically satisfies
this condition, so B(a, c,d) = dB1(a, c,d) for a smooth function B1. Substituting this solution for b into the condition for
FY = ∂ F/∂Y at (X, Y ) = (0,0) the result must be divisible by d since we know that d = 0 (which implies b = 0 now)
identically satisfies this condition. We find in fact that the condition, divided by d, takes the form 0 = 4 f12a+12 f03c+higher
order terms.

Assume now that the origin is not a cusp of Gauss on M . Then f03 �= 0 and we can solve the last condition for c as a
smooth function of a,d, and hence also b as such a function. Let us write

b = dB1(a,d) = d

(
( f 2

12 − 3 f03 f21)a

3 f20 f03
+ h.o.t.

)
, c = C(a,d) = − f12

3 f03
a + h.o.t.,

as the unique solutions obtained in this way. Thus the solutions of ∂ F/∂ X = ∂ F/∂Y = 0 at (X, Y ) = (0,0) take the form

(i) (a,0, c,0), or (ii)
(
a,dB1(a,d), C(a,d),d

)
, intersecting in points (iii)

(
a,0, C(a,0),0

)
. (7)

The set of points (ii) when d �= 0 consists of the ‘genuine’ pairs of distinct points—that is, nontrivial chords—where tangent
planes are parallel; as d → 0 these tend to pairs of repeated points, which are parametrized by (iii). Thus (iii) represents
the parabolic curve on M; more precisely (a, C(a,0)) is a parametrization of the parabolic curve on M .

Proposition 2.4. At a parabolic point O of M, not a cusp of Gauss, the nontrivial vanishing chords giving singular contact maps are
those with a,b, c,d as in (7)(ii). �

We now go on to consider the condition for F to have a non-Morse singularity at X = Y = 0, for points (a,b, c,d) of
type (7)(ii). Let

H̃(a,b, c,d) = (
F X X FY Y − F 2

XY

)
(0,0), and H(a,d) = H̃

(
a,dB1(a,d), C(a,d),d

)
.

Now H(a,0) evaluates H at (a,0, C(a,0),0) and from the definition of F , evaluating at X = Y = 0,

F X X = fxx(a + b, c + d) + fxx(a − b, c − d), F XY = fxy(a + b, c + d) + fxy(a − b, c − d),

FY Y = f yy(a + b, c + d) + f yy(a − b, c − d).

Consequently, putting b = d = 0, we find that H(a,0) = 4( fxx f yy − f 2
xy), evaluated at (a, C(a,0)), and this is zero since, as

remarked above, (a, C(a,0)) is the parabolic curve on M . Thus H(a,0) is identically 0 and this shows H is divisible by d.
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We can go on to show that H is divisible by d2. The definitions of B1 and C are that, at X = Y = 0,

F X
(
a,dB1(a,d), C(a,d),d

) ≡ 0, FY
(
a,dB1(a,d), C(a,d),d

) ≡ 0,

and these equations can be differentiated with respect to d (or indeed a) to obtain other identities. Careful inspection of
∂ B1/∂d and ∂C/∂d shows that these are identically zero when evaluated at (a, C(a,0)). It follows by a direct calculation
that ∂ H/∂d(a,0) is identically zero, which now implies that H(a,d) is divisible by d2: H(a,d) = d2 H1(a,d) for a smooth
function H1. Furthermore, calculation shows that

H(a,d) = d2(64 f04 f20 + h.o.t.).

This now allows us to avoid the diagonal, since that is represented here by d = 0. We conclude that, when the origin is a
parabolic point and not a cusp of Gauss on M , and when f04 �= 0, which means that the origin is not an A∗

2 point in the
notation of [9], there are no nontrivial vanishing chords for which the singularity of F is non-Morse. Hence we have another
geometrical interpretation of A∗

2 points:

Proposition 2.5. Suppose that O is a parabolic point, not a cusp of Gauss, on M. Then the existence of nontrivial chords arbitrarily
close to O (vanishing chords) for which the contact singularity is degenerate (non-Morse) implies that O is an A∗

2 point of M. �
Note that vanishing chords therefore distinguish points of the parabolic curve which are not distinguished by the flat

geometry of the surface M .

Remark 2.6. We shall not pursue the above any further than A∗
2 points. It is clearly of interest to compare higher singularities

of the contact function for vanishing chords with the classification of equidistants undertaken in [9]. This will be done
elsewhere.

3. The contact map F for surfaces in RRR4

We now turn to a new situation, that of a surface in affine space R4. Much of the above analysis can also be carried out
in this situation and we shall summarize the results here. Our references for the flat geometry of surfaces in R4 are [1,12].

Because of the additional complications as compared with R3 we start with the simplest situation of two surface patches
M, N and points a0 = (−1,0,0,0) ∈ M , b0 = (1,0,0,0) ∈ N , with midpoint of the chord a0b0 at the origin. As in Section 2
we consider the contact between the reflexion of M in this midpoint and N at b0. Let the surfaces be in the following form:

M:
{
γ (s, t) = (

p(s, t) − 1,q(s, t), s, t
)}

, N:
{
δ(u, v) = (

f (u, v) + 1, g(u, v), u, v
)}

, (8)

where s, t; u, v are small, and zero at a0,b0 respectively.
The reflexion of M in the origin consists of points (−p(s, t)+ 1,−q(s, t),−s,−t) and to measure the contact of this with

N at b0 we consider the composite (see [11])

R2 R4 R2

(s, t) (−p + 1,−q,−s,−t)

(w, x, y, z)
(

f (y, z) + 1 − w, g(y, z) − x
)
.

This composite is the contact map for the chord a0b0:

F : R2 → R2 where F (s, t) = (
p(s, t) + f (−s,−t),q(s, t) + g(−s,−t)

)
. (9)

It should be noted that, since we are measuring contact between two surfaces in R4, it is the contact class of this map
which is relevant. In particular the corank 1 singularities will be with normal forms (x, y) �→ (x, y2) (fold), (x, y3) (cusp),
(x, y4) (swallowtail). We shall not follow up these cases here except to note two propositions (Propositions 3.1 and 3.2),
the first of which is a straightforward calculation.

Proposition 3.1. The contact map is singular at a0 if and only if the tangent planes at a0 and b0 are ‘weakly parallel’, that is have a
nonzero tangent vector in common. �
3.1. The generating function and its caustic, the CSS

The generating function, as in [7], is the following. Consider two surfaces M, N as in (8). Then the generating function is

F(s, t, u, v, P , λ, Q ) = λ
〈
γ (s, t) − Q , P

〉 + (1 − λ)
〈
δ(u, v) − Q , P

〉
,
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where P is a direction in R4, Q ∈ R4 and 〈 〉 can be interpreted as scalar product or as evaluation of a covector on a vector.
For a given λ, the equidistant is the set of points Q = (Q 1, Q 2, Q 3, Q 4) of the form Q = λa + (1 −λ)b where a,b are points
of M, N respectively at which the tangent planes are weakly parallel. See Fig. 1 for an illustration in R2. As before, λ and
1 − λ give the same equidistant, and λ = 1

2 is then special. The family of equidistants is precisely the set of points{
(λ, Q ): F = ∂F

∂s
= ∂F

∂t
= ∂F

∂u
= ∂F

∂v
= ∂F

∂ P
= 0

}
,

where the last equation represents three equations. The common normal to M and N when s = t = u = v = 0 is
(−qt(0,0), pt(0,0),0,0) = (−q01, p01,0,0), in the notation of Section 3, so we take P = (−q01/p01 + P1,1, P3, P4) as a
local parametrization of P for s, t, u, v small, assuming, as before that p01 �= 0. The ‘base value’ of Q 1 is given by F = 0 and
is (1 − 2λ,0,0,0). The base values of Q 2, Q 3, Q 4 are 0 since the point Q always lies on the chord.

To find the envelope point(s) (Centre Symmetry Set, or CSS point(s)) on the chord a0b0 we need to impose the additional
condition that the matrix of second partial derivatives of F is singular. Write pij for the coefficient of sit j in the Taylor
expansion of p at (0,0), and similarly for q, f , g . The determinant of this matrix, evaluated at s = t = u = v = P1 = P3 =
P4 = 0, Q 1 = 1 − 2λ, Q 2 = Q 3 = Q 4 = 0 comes to

2(1 − λ)3λ3 p01
(
λ( f20q01 − g20 p01 − p20q01 + q20 p01) − q20 p01 + p20q01

)
.

Thus apart from λ = 0,1, which always give CSS points (they are the points of M, N) there is a unique, always real (but
possibly infinite), value of λ on the envelope of chords. The value of λ is

λ = q20 p01 − p20q01

f20q01 − g20 p01 − p20q01 + q20 p01
, i.e. 1 − 1

λ
= f20q01 − g20 p01

p20q01 − q20 p01
. (10)

The condition for the CSS point to be at the midpoint of the chord is that λ = 1
2 and this comes to

g20 p01 − q01 p20 − q01 f20 + q20 p01 = 0,

which, by calculation, is precisely the same as the cusp condition on the contact map. Hence the CSS is closely related to
contact:

Proposition 3.2. The contact map has the type of a cusp (or worse) if and only if the (unique) CSS point on the chord is at the midpoint
of the chord.

Remark 3.3. The generating family F defines the fibre homogeneous Lagrangian variety LF in T ∗R4, which projects onto
critical values of the λ-point map mλ and is described by equations:

∂F
∂s

= 0: λ

〈
∂γ

∂s
, P

〉
= 0; ∂F

∂t
= 0: λ

〈
∂γ

∂t
, P

〉
= 0;

∂F
∂u

= 0: (1 − λ)

〈
∂δ

∂u
, P

〉
= 0; ∂F

∂v
= 0: (1 − λ)

〈
∂δ

∂v
, P

〉
= 0;

∂F
∂ P

= 0: Q = λ(γ − δ) + δ,

and the cotangent bundle lifting, (Q , Q ) ∈ T ∗R4,

Q = ∂F
∂ Q

= −P .

The first four equations define the critical set Cm of λ-point map, i.e. Cm, given by

det

∣∣∣∣∂γ∂s
,
∂γ

∂t
,
∂δ

∂u
,
∂δ

∂v

∣∣∣∣ = 0 (11)

and P belongs to the co-normal bundle of Σm = mλ(Cm) and is homogeneous. After projectivization T ∗R4 → PT ∗R4 we get
a Legendrian variety which is smooth on the maximal strata of Σm and has singularities along Sing Σm.

Singularities of the Legendrian projection of PLF are defined by second derivatives of F and finally the equation

det

(
B At

A 0

)
= (det A)2 = 0,

and

A =
(

λ
∂γ

∂s
, λ

∂γ

∂t
, (1 − λ)

∂δ

∂u
, (1 − λ)

∂δ

∂v

)
which on the basis of (11) says that there are no other singularities of Legendre projection besides Σm .
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4. The midpoint map

There is a construction which is closely related to the contact map described in Section 3. To start with the planar case,
that of a simple closed smooth curve M in the affine plane R2 parametrized by γ , say, consider the map m which associates
to a pair (s, t) of parameter values the midpoint of the chord, 1

2 (γ (s) + γ (t)). This is a map R2 → R2, and its singularities
are closely connected with the half-way equidistant, the centre symmetry set (envelope of parallel tangent chords) and the
contact map. Let us consider just the local map m at a point (s, t), s �= t . Then it is easy to check the following.

Proposition 4.1.

(i) The midpoint map m is singular at (s, t) if and only if the tangents to the curve M are parallel at γ (s) and γ (t), so that the set of
critical values is the half-way equidistant;

(ii) m has a cusp singularity (or worse) if and only if in addition to (i) the (unique) CSS point on this chord is at the midpoint;
(iii) m has a swallowtail singularity (or worse) if and only if in addition to (ii) the CSS is singular at the midpoint;
(iv) m has a lips/beaks singularity (or worse) if and only if in addition to (i) both γ (s) and γ (t) are inflexion points of M.

In the above situation, unlike that of Section 3, swallowtail and lips/beaks arise from distinct phenomena (iii) and (iv).
Note that these will occur generically only in a 1-parameter family of curves.

For a surface M in R4, the midpoint map is a map m : M × M → R4, thus locally a map m : R4 → R4. It is closely related
to the contact map; for example writing down the Jacobian matrix of m it is clear that the corank of m and the corank of
the contact map, as defined locally in (9), are equal and in particular must be 0, 1 or 2. Furthermore it is not difficult to
check the following:

Proposition 4.2.

(i) For a surface in R4 the critical set Σm of m is the set of pairs of points of M at which the tangent planes are weakly parallel; the
critical values form the half-way equidistant.

(ii) The condition for m to have a singularity of type Σ1,1 (or worse), that is for m restricted to Σm to be singular, is the same as the
condition that the contact map have a cusp singularity; see Proposition 3.2.

(iii) When m has exactly type Σ1,1 the image of the critical set of m, that is the half-way equidistant, is a 3-dimensional cuspidal edge.
Its singular set is smooth, and, using the setup as in (8), its slices by hyperplanes given by the third coordinate in R4 equal to a
small constant are cuspidal edges in R3 . �

Remark 4.3. The affine midpoint map is relevant for the construction of the semiclassical Wigner function on symplectic
space which completely describes a quantum state in the classical limit. In this case we deal with a Lagrangian surface L in
R4 endowed with the canonical symplectic structure in Darboux form ω = dy1 ∧ dx1 + dy2 ∧ dx2, ω |L= 0 (see [2, p. 130]).

Now the two pieces M, N of generic L are generated by two independent generating functions G M , and G N (resp.),

M: γ (s, t) =
(

∂G M

∂s
− 1,

∂G M

∂t
, s, t

)
, γ ∗ω = 0,

N: δ(u, v) =
(

∂G N

∂u
+ 1,

∂G N

∂v
, u, v

)
, δ∗ω = 0.

It was shown in [4] that the midpoint map mL lifts to a lagrangian map into cotangent bundle T ∗R4 and its singularities
are singularities of Lagrangian projection, i.e. the following diagram commutes

(T ∗R4,Ω)

π

R2 × R2

ML

mL
(R4,ω)

where Ω is a Liouville symplectic structure of T ∗R4, M∗
LΩ = 0 and a generating Morse family of ML reads as follows

F (x, y,α) = G M(x − α) − G N(x + α) − αy,

where α ∈ R2 is a Morse parameter.

5. Vanishing chords for surfaces in RRR4

As in Section 2.1 we consider a neighbourhood of a point, say the origin O , on a surface N in R4. For chords whose
distinct endpoints both tend to O we ask which singularities can occur for the contact map, defined relative to the chords as
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in Section 3. For a surface in R3 we could identify specific geometrical restrictions on N which allow such vanishing chords
with associated singularities of different types. The types in question for a surface in R4 are fold, cusp and swallowtail. We
cover here the first two of these, and leave the third one for discussion elsewhere.

We begin with some standard facts about surfaces in R4; for more details see [1,3,12]. Let us start with a surface N in
‘Monge form’

N: δ(x, y) = (
f (x, y), g(x, y), x, y

)
where f and g have no constant or linear terms. Specifically,

f (x, y) = f20x2 + f11xy + f02 y2 + · · · , g(x, y) = g20x2 + g11xy + g02 y2 + · · · , (12)

the coefficient of xi y j being in general f i j or gij . Thus unit tangent vectors to N at the origin are of the form
(0,0, cos θ, sin θ). We measure contact between a line �θ through the origin in this direction and N by projecting N or-
thogonally along the direction to the orthogonal 3-space in R4. This gives a map germ R2,0 → R3,0 which is A-equivalent
to hθ : (x, y) �→ ( f (x, y), g(x, y), x sin θ − y cos θ). (To see this, assume sin θ �= 0 and parametrize the orthogonal 3-space by
its first three coordinates. Then the point where the line through ( f , g, x, y) ∈ N in the direction (0,0, cos θ, sin θ) meets this
3-space has coordinates ( f , g, x sin2 θ − y cos θ sin θ, y cos2 θ − x cos θ sin θ). Taking the first three coordinates and dividing
by sin θ �= 0 gives the stated form. If sin θ = 0 then parametrize by the first, second and fourth coordinates.)

The map hθ will generically be stable (A-equivalent to a crosscap). The condition for it to be unstable—that is for the
line to have higher contact with N , which says that the line �θ is in an asymptotic direction at the origin—is obtained as in
[13, p. 341]. Namely, change variables from (x, y) to (u, y) = (x sin θ − y cos θ, y) (assuming again that sin θ �= 0) so that hθ

takes the form say(
a20u2 + a11uy + a02 y2 + · · · ,b20u2 + b11uy + b02 y2 + · · · , u

)
,

where the terms in u2 can be ignored for A-equivalence. The ‘asymptotic direction’ condition is then a11b02 = a02b11. In
our case this comes to

( f20 g11 − f11 g20) cos2 θ + 2( f20 g02 − f02 g20) cos θ sin θ + ( f11 g02 − f02 g11) sin2 θ = 0. (13)

If (13) has two real solutions then the point of N (here taken to be the origin) is called hyperbolic; if there are no real
solutions it is elliptic and if there is a repeated solution it is parabolic. In the hyperbolic and parabolic cases the real
solution(s) are the asymptotic direction(s) at the point of N .

Now we proceed to examine vanishing chords. We choose two points δ(s, t) and δ(u, v) and reflect the surface N in the
midpoint of the chord joining these two points. We write down the contact function between the two surfaces at the point
δ(s, t) say (we could equally well do it at the other point, δ(u, v)). For fixed s, t, u, v the contact function is, for (x, y) close
to (s, t),

(x, y) �→ (
f (u, v) + f (s, t) − f (x, y) − f (u + s − x, v + t − y),

g(u, v) + g(s, t) − g(x, y) − g(u + s − x, v + t − y)
)
.

We want to evaluate this at x = s, y = t so substitute X = x − s, Y = y − t and the function becomes

F (X, Y ) = (
f (u, v) + f (s, t) − f (X + s, Y + t) − f (u − X, v − Y ),

g(u, v) + g(s, t) − g(X + s, Y + t) − g(u − X, v − Y )
)
.

We are interested in the singularity of this at X = Y = 0. In particular we want to know whether, for s, t, u, v all tending to
0, F can have, say, a fold singularity, or a cusp, or some higher singularity. Thus we need to write down conditions for F to
have one of these singularities, as a function of s, t, u, v and of course the Monge coefficients in the functions f and g .

Remark 5.1. Note that F is a 4-parameter family of functions R2 → R2, parametrized by s, t, u, v . As in Section 2 we can
consider the function F0 with s = t = u = v = 0:

F0(X, Y ) = (− f (X, Y ) − f (−X,−Y ),−g(X, Y ) − g(−X,−Y )
)
,

which has corank 2, starting with quadratic terms in both components. Also only even degree terms in the power series
expansions of f , g will appear. This map F0 can be interpreted as the contact between N and its reflexion through the
origin.

In fact the contact type of this function is indeed related to the flat geometry of the surface N at O , giving different
types for a hyperbolic point, a parabolic point, and a special parabolic point very similar to the A∗

2 points which arose in
Section 2. But here we shall concentrate on the vanishing chords and their contact singularities.
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We shall, as in Section 2, use the substitution in (6) to rewrite F as a function, still called F , of a,b, c,d, X, Y . Thus

F(a,b,c,d)(X, Y ) = (
f (a + b, c + d) + f (a − b, c − d) − f (X + a + b, Y + c + d) − f (a − b − X, c − d − Y ),

g(a + b, c + d) + g(a − b, c − d) − g(X + a + b, Y + c + d) − g(a − b − X, c − d − Y )
)
.

5.1. Fold of F for s, t, u, v, or a,b, c,d → 0

The condition for the contact map F above to be singular—at least a fold—at X = Y = 0 is that its Jacobian determinant J
is singular there. This gives a condition say G(a,b, c,d) = 0. The lowest degree terms of G come to

G2(a,b, c,d) = 8
(
( f20 g11 − f11 g20)b

2 + 2( f20 g02 − f02 g20)bd + ( f11 g02 − f02 g11)d
2)

= αb2 + 2βbd + γ d2, say. (14)

Note that these terms exactly mirror (13)3. Since (b,d) represents twice the difference of the parameter values of the
two points this strongly suggests that, in the limit, the chord joining them must be in an asymptotic direction and hence
cannot exist at an elliptic point. We make this precise below.

The key observation is that, writing F = (F1, F2) in terms of a,b, c,d,

∂ F1

∂ X

∣∣∣∣
X=Y =0

= − fx(a + b, c + d) + fx(a − b, c − d),

which is identically zero when b = d = 0, so that this function can be written as bB + dD where B, D are functions of
a,b, c,d. The same applies to the other three partial derivatives F1Y = ∂ F1/∂Y , F2X = ∂ F2/∂ X , F2Y = ∂ F2/∂Y and therefore
G can be expressed as

G(a,b, c,d) = b2(α + α1(a,b, c,d)
) + 2bd

(
β + β1(a,b, c,d)

) + d2(γ + γ1(a,b, c,d)
)
, (15)

for smooth functions α1, β1, γ1 vanishing at a = b = c = d = 0, that is without constant terms.
The condition for G2 = 0 (14) to have real solutions other than b = d = 0 is that its discriminant β2 −αγ is � 0, namely,

as above, that the origin is a hyperbolic or parabolic point of N . Suppose then that the origin is an elliptic point of N . Then
the only real solutions to G2 = 0 are b = d = 0. Choose a neighbourhood U of the origin in a,b, c,d-space small enough
that, for all (a,b, c,d) ∈ U ,(

β + β1(a,b, c,d)
)2

< 4
(
α + α1(a,b, c,d)

)(
γ + γ1(a,b, c,d)

)
.

Then every solution to G(a,b, c,d) = 0 for (a,b, c,d) ∈ U must have b = d = 0. Hence

Proposition 5.2. Suppose that the origin O is an elliptic point of N. Then there is a neighbourhood of O such that no nontrivial chords
both of whose (distinct) endpoints lie in that neighbourhood give a singular contact function. In other words: there are no nontrivial
vanishing chords giving a singular contact function. Or again: there are no nontrivial vanishing chords at whose ends the tangent
planes to N are weakly parallel. �

Suppose now that the origin O is a hyperbolic of N , which amounts to β2 > αγ in the notation above. There will now be
two real solutions to G2 = 0 (14) in the b,d plane, and it is to be expected that these extend to solutions (a,b, c,d) through
a = b = c = d = 0. In this case, the Morse lemma with parameters establishes that there are two families of solutions,
with say d a function of a,b, c, and that these solutions form a set in (a,b, c,d)-space which is locally diffeomorphic to
{(a,b, c,d): d = ±b}.

5.2. Cusp of F

We now ask the question: given a hyperbolic or parabolic point O of N , what is the condition that there exist vanishing
nontrivial chords for which the contact function F has a cusp singularity? The calculations are similar to those above, and
they are sketched below. Again the crucial observation is that the additional criterion for a cusp singularity, beyond that for
a fold, has the form b2(· · ·) + bd(· · ·) + d2(· · ·) = 0 for suitable functions of a,b, c,d in the brackets.

There is no single condition for a cusp of a map F : R2 → R2 at the origin; rather there are two alternative forms which
hold in different circumstances. The precise condition (compare for example [15, Chapter 3] or [10, 5.2]) is that the critical
set of F passes through the origin, is smooth there, and is tangent, with 2-point contact, to the kernel line of the map at
the origin. We shall concentrate here on the conditions that the critical set is smooth and tangent to the kernel line: that is
the ‘cusp or worse’ condition.

3 We thank the referee for pointing out this interesting fact.
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Using J for the Jacobian determinant of F(a,b,c,d)(X, Y ) the additional cusp condition, apart from open conditions, is
(writing partial derivatives as suffices)

J X F1Y − J Y F1X = 0 at X = Y = 0 if F1X , F1Y are not both zero there

and similarly with F2 replacing F1 if F2X , F2Y are not both zero at X = Y = 0. At least one of these conditions will hold
since the cusp has corank 1. Now J = F1X F2Y − F2X F1Y and, as above, at X = Y = 0, F1X (a,0, c,0) and the other three
similar derivatives are identically zero. We deduce that each of the possible cusp conditions, say H(a,b, c,d), has the form
b2(· · ·) + bd(· · ·) + d2(· · ·). In fact calculation shows that we can write either of the cusp conditions in the form

H(a,b, c,d) = b2(A + A1(a,b, c,d)
) + bd

(
B + B1(a,b, c,d)

) + d2(C + C1(a,b, c,d)
)
.

Here A, B, C are real numbers, giving the ‘lowest terms’ of H , so that A1, B1, C1 are smooth functions without constant
terms.

Remark 5.3. There is an especially delicate case here, namely when the quadratic parts of f and g are both squares. The
reason this can affect the calculations is that if, say, the quadratic part of f is a square, then there are points arbitrarily
close to the origin in (a,b, c,d)-space, and away from the diagonal b = d = 0, at which the first cusp condition is invalid
since F1X = F1Y = 0 at X = Y = 0. If both f and g have quadratic parts which are squares then both conditions can be
invalid, but on the other hand at such points the corank of F will be 2 so that F cannot have a cusp singularity. It seems
likely that the condition that the quadratic parts of f , g are not both squares can be removed from the result below, but
we will err on the side of caution.

Consider the quadratic terms of the fold and an appropriate one of the cusp conditions,

Ab2 + Bbd + Cd2 = 0 and αb2 + βbd + γ d2 = 0
(
see (14)

)
.

Calculation shows that, if these share a common root other than b = d = 0, then the origin O is parabolic on the surface N .
We can now apply an argument similar to that in Section 5.1 to show that, assuming the origin is not parabolic on N and
a,b, c,d are sufficiently small, there will be no common solutions to G = 0 and H = 0 other than b = d = 0. Hence:

Proposition 5.4. Suppose that the origin O is a hyperbolic point of N, and that the quadratic parts of f , g are not both squares. Then
there is a neighbourhood of O such that no nontrivial chords, both of whose (distinct) endpoints lie in that neighbourhood, give a
contact function with a cusp singularity or ‘worse’. In other words: there are no nontrivial vanishing chords giving a contact function
with a cusp or ‘worse’. �

The situation when O is a parabolic point is more complex, and depends on subtle properties of the parabolic points
analogous to the A2 versus A∗

2 cases of Section 2.1. This and an investigation of swallowtail points of the contact map, will
appear elsewhere.
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