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Logarithmic structure of the generalized bifurcation set

by S. JANECZKO (Warszawa)

Abstract. Let G : C"" xC" — C be a holomorphic family of functions. If A ¢ C"xC",
7 : C" x C" — C" is an analytic variety then
QA(G) = {(z,u) € C" x C" : G(-,u) has a critical point in AN ' (u)}
is a natural generalization of the bifurcation variety of G. We investigate the local structure

of Q4(@) for locally trivial deformations of Ag = 7 1(0). In particular, we construct an
algorithm for determining logarithmic stratifications provided G is versal.

1. Introduction. Motivation of this paper lies in theoretical questions in
optics where a central role is played by isotropic, Lagrangian and coisotropic
varieties in a symplectic space. The geometrical framework convenient for
investigations of these varieties is based mainly on the action of symplectic
relations (cf. [4]).

Let 2 = (T*RF x T*R"™, m5wr» — mfwgr) be a product symplectic space.
Lagrangian submanifolds of (2 (symplectic relations) act on subsets of
(T*R*, wgk) preserving their symplectic properties. In this way one can
investigate the symplectic projections mgn»|g : S — R™ using the representa-
tion of S as the image under a symplectic relation L C {2 of a subset A of
the zero-section of T*R¥, i.e.

S=L(A) ={peT'R" : 3pea (p,p) € L}

For practical purposes one seeks to classify germs of the projections 7= |g
and describe the structure of the corresponding variety of critical values.
Assuming that L is generated by a smooth function G : R¥ x R® — R we
easily find that this variety is defined as a generalized bifurcation diagram

QA(G) ={q € R" : G(-,q) has a critical point belonging to A}.

In this paper we study the generalized bifurcation varieties of complex
analytic families G using the technical tools of the theory of singularities

1991 Mathematics Subject Classification: Primary 58C27, 58F14; Secondary 57R45,
53A04.
Key words and phrases: bifurcations, singularities, logarithmic stratifications.

[187]



188 S. Janeczko

of functions on varieties (cf. [3]). In Section 2 we provide the classification
scheme of such varieties and introduce the notion of logarithmic stratifica-
tion. In Section 3 we adapt to our A-bifurcation varieties the method for
construction of logarithmic vector fields which is well known for the standard
bifurcation and discriminant varieties (cf. [2,14]). The specific algorithm ex-
plicitly calculating the tangent vector fields to @ 4(G) and the representative
examples of A-bifurcation varieties are discussed in Section 4.

2. Classification of generalized bifurcation varieties. Let O, be
the ring of germs of holomorphic functions at 0 € C™. Let (4,0) C (C™,0)
be the germ of a reduced analytic subvariety of C" at 0:

A={xeC":F(x)=0}, FeO,.

The group of germs of diffeomorphisms ¢ : (C™,0) — (C™,0) which preserve
A is denoted by G4. If J4 denotes the ideal in O,, consisting of germs of
functions vanishing on A, then for ¢ € G, the induced isomorphism ¢* :
0,, — O,, preserves J,.

Two function-germs g1, g2 : (C",0) — (C,0) are called G4-equivalent if
there is a diffeomorphism ¢ € G4 with g1 0 ¢ = g2 [3, 10].

We obtain elements of G4 by integrating vector fields tangent to A.

DEFINITION 2.1. We denote by =4 the O,-module of logarithmic vector
fields for A, i.e. holomorphic vector fields on (C™,0), which, if considered as
derivations, say v : O, — O,, satisfy

v.hedJy forall he Jy.

Modules of holomorphic vector fields of this type are discussed in [11].

A function-germ ¢ : (C",0) — (C,0) is k-Ga-determined if for all
g : (C"0) — (C,0) with the same k-jet as g the germs g and g are
Ga-equivalent. Given a germ h : (C",0) — (C,0), a germ G : (C*xC",0) —
(C,0) is called a deformation of h if G(x,0) = h(z). Formally we look on a
deformation of h as a pair (G,r). Given two deformations (H,r), (G, q) of
h, a morphism (®,1) : H — G between them is defined as follows:

1. &:(C"xCr,0) — (C™ x C9,0) has the form &(z,u) = (¢(z,u),u)
with ¢(-,0) = idcn and ¢(-,u) € G4 for all u near 0 € C".
2. 1:(C",0) — (C9,0) is such that
G(p(x,u), () = H(z,u).
A deformation (G, q) of h is G,-versal if for any unfolding (H,r) of h
there is a morphism (2,1) : H — G.

Two deformations of h are equivalent if there exists a morphism between
them which is an isomorphism.
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Let U C (C™,0) be an open, sufficiently small subset of C™. We can also
consider the sheaf Oy of holomorphic functions on U, and the sheaf Dery
of holomorphic vector fields on U, together with its subsheaf = 4. Following
[11] we introduce the logarithmic stratification of U determined by =4.

DEFINITION 2.2. Let {A, : a € I} be a stratification of U with the
following properties:

1. Each stratum A, is a smooth connected immersed submanifold of U
and U = J,¢; Aa-

2. If x € A, then T, A, coincides with Z4(z).

3. If A, Ag are two distinct strata with A, meeting the closure Ag of
Ag, then A, is contained in the boundary 94z of Ag.

Then {A, : a € I} is called a logarithmic stratification of A and A, is a
logarithmic stratum.

For any variety A and sufficiently small U there always exists a unique
logarithmic stratification of U.

The aim of this note is to construct the logarithmic stratification for
generalized bifurcation varieties, and so to construct an appropriate module
of logarithmic vector fields =4.

Let g : (C",0) — (C,0), g € O,,. We define the Jacobi ideal of g by

Ap(g) ={v.g:v e E }.

If As(g) D mE, then g is (k + 1)-Ga-determined, i.e. for all g : (C",0) —
(C,0) with the same (k + 1)-jet as g the germs g, g are Gs-equivalent. Here
m,, is the maximal ideal of O,,. As in the usual singularity theory setting
[1] a deformation (G,r) of g is Ga-versal if and only if

oG oG
87’&1(1',0),. <y aiur(l',o)

span O,,/A4(g).
We know (cf. [2]) that if the set-germ
{reC":vg(z)=0foralveZ,}

at 0 is {0} or empty then g has a Gs-versal deformation. If the number
= dimc O,,/A(g) is finite, then it is called the multiplicity of g on A at 0,
and is also denoted by pa(g).

Let (G,r) be a deformation of g.

DEFINITION 2.3. The analytic variety
QA(G) ={u e C": G(-,u) has a critical point on A}
is called the A-bifurcation variety of the family G.
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Define
oG
EA(G) = {(.’L’,U) eC"xC": Oz (.’IZ‘,’U,) = 07 F(m) = 0}7

where A = F~1(0), F € O,,. Then we see that
Qa(G) = m(Xa(Q)),
where m,. : C" x C" — C".

EXAMPLE 2.4. As a natural example we consider the simplest A-bifurca-
tion varieties corresponding to singularities of functions on regular bound-
aries (cf. [1]). Let A = {(y,z) € C"™ 1y =0}, 2 = (21,...,7,). It is easy
to check that for By and Cj singularities Q4 (G) are smooth hypersurfaces.
For the Fj singularity

G(y,z,u) = y* + 23 + uioy + ugy + uzz
the A-bifurcation variety Q4(G) is the Whitney cross cap
3u® + uzui = 0.
By straightforward calculations we prove that for unimodal, corank one

boundary singularities of smallest codimension p = 6:

Fio: Gy, r,u) = 2° + b’y + y® + urwy® + ugwy + uzy? + uaz + usy,

Kyo:Gy,z,u) = ot + axy + y? + w12ty + uex® + usyr + ugx + usy,
the A-bifurcation varieties are:

1. The trivial extension of the Whitney cross cap variety in the case F7 .
2. The generalized Whitney cross cap (cf. [1], Section 9.6), given in the
following parametric form:
2

up =8, up=t, uz=w, ug=—4x> -2tz us=—(a+s)z?—wz.
For simplest unimodal, corank two boundary singularity of type Lg:
G(y,z,u) = 239 + 25 + yx1 + ayxs + u1yTe + UoxT + UsT1 + UsT + UsY,
the A-bifurcation variety Q4(G) is parametrized in the form
UL =S8, U =t, ug = —2x1T2 —2x1t, Uy = —x%—?)xg, U5 = —IT1 — STo — a2

and is an opening of the X2-Boardmann singular mapping C* — C*.

3. Logarithmic vector fields. We denote by Sing(X'4(G)) the singular
part of X4 (G). Then X4 (G)—Sing(X 4(G)) decomposes into analytic strata
Y3(G), a € I. We consider the family of mappings 7' = 7| xa(q). Critical
points of these mappings are described by an extra n equations:

82G/8x28x]
rank < OF )0z, )(x,u) < n.
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We denote by I = I'(7&) the set of critical values of the mapping 7¢.
Now we assume that (G, r) is a G4-versal deformation of g. Let go, ...
..,gu—1 be a basis of the quotient space O,/As(g) with go = 1
and g; € m,. Then by the equivalence of deformations we get a miniver-
sal deformation of ¢ € m2 (with minimal number of deformation para-
meters u), i.e.

G(z,u) = Zuzgz(x) +g(z).

Now we have the following

PROPOSITION 3.1. If £ € 2, (q) then § is m.-liftable, i.e. there exists a

germ of a holomorphic vector field 5 on C" x C" which is tangent to X 4(G)
at 0 and

Eom, = dm, of.
Proof. We see that £ lifts by m,. at every point u € C" outside

7 (Sing(X4(G))) U Uyer I to a holomorphic vector field £ on C™ x C”
tangent to X4 (G) and defined off a set of codimension 2 in C" x C", namely

C" x m(Sing(X4(G) U | I
acl

By Hartog’s extension theorem [9], £’ extends to a holomorphic vector field
¢ tangent to X4(G). m

Now following the methods introduced in [3, 14] we give an algorithm
for construction of the module Zg () of vector fields for versal G. This
algorithm is a generalization of a similar one constructed in [7] for vector
fields tangent to the usual bifurcation varieties.

By Proposition 3.1, to obtain elements of =g, () we have to construct
all m,-lowerable vector fields E tangent to X4 (G).

Now we define the ideal

oG oG
JEA(G) = <a$l(x7u)""7axn(‘r’u)’F(aj)>On+r-

Then the germ of the vector field
- 0 d 0
= E [ E R iy )] On T
‘ i—1 ’ O ’ j=1 k Ou; P € On

at 0 € C™ x C", which is tangent to X4 (G), has the property

~( 0G ,
(1) 5((91:(«737”)) €Js,q, t=1,...,n,

(2) 5<F(x)) € Jx,6)-



192 S. Janeczko
LEMMA 3.2. Let
T 8 _
§= Z%‘(U)a, § € EZq,0)-
i=1 v

The vector field {e Ex,(q) 18 alifting of & if and only if for some B; € Op
and v; € E4, 0 =1,...,n, we have

n G — g
(3) > Biv; 5y, (&) )+ > aju) EISEON(SE
j=1 E j=1 !

where G is G4 -versal,

G(z,u) = Zuzgz(x) +g(z).

Proof. By straightforward check of the conditions (1) and (2). =

Now we use the arguments working for the bifurcation and discriminant
sets. Consider the ideal

EA(G) = (Ui.G>On+,«

in O, 4., where v; are generators of = 4. Since G is G4-versal, by the prepa-
ration theorem the quotient module

A= 0,1, /AAG)

is a free O,-module generated by 1,g1,...,g9,—1. In fact, take 7(z,u) — wu,
and look on A as an O,,,-module. Then A is a finite O,-module if and only
if A/(7*m,)A is finite over C. We see that

A/(m*m,)A 2 Oy /((0,.G) + MmOy i)
= 0, /(v.G(,0))0, = {1,91,...,9u—1}c-

Thus for any h € O, 4, we can write

n p—1
(4) h(z,u) = Zﬂi(w, uw)(v;.G)(z,u) + Z aj(u)g;(z) + au)

for some (; € Opqr,a; € O, and « € O,..
Now we have the basic result.

THEOREM 3.3. Let h € Oy, and suppose that

oh .
T%(x,u)eJEA(G), t1=1,...,n.
Then the vector field

" 0
€ = ZQZ(U)877
i=1 v
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where a;, 1 < i < p— 1, are defined in (4) and o;, @ > u, are arbitrary
holomorphic functions from O, is tangent to the A-bifurcation variety of
the family G.

Proof. Take h in the form (4). For derivatives of h we have

2
Zaj +Zﬂfa (0.6 Z ()50 @

and by assumptions this belongs to Jx ,(g). We also have

- 0
> 8 (0,.6) zm( © ) mod(s, @)
j=1 ’

So by Lemma 3.2 we obtain the lifting formula (3) for the vector field & =
S, @;0/0u;, which is tangent to Q4(G). =
One can also obtain the converse, which results immediately from the

proof of Theorem 3.3.

COROLLARY 3.4. Let £ = i, a;(u)0/0u; be a tangent vector field to
QA(G). Then for some h € Op 4,

n p—1
(5) h= Zﬁ,(?)ZG) + Z a;4g; + «,
i=1 Jj=1

where ; € Opyr, a € O, and Oh/0x; € Jx, ().

Proof. Take h in the form (5), where
pn—1

Z/BZ’U'L + Z g~ € Ena6)-

Then by a simple check we find that 8h/8mi €Js, ) ™

One can easily check that the space of germs h € O,4, such that
Oh/0xi(x,u) € Jg, (@), @ = 1,...,n, is an O,-module, which we denote
by Hea.

4. An algorithm. Now we present an algorithm which is useful in ob-
taining all tangent vector fields to Q4 (G). We see that

(F) Tz + A%(G) € He.
Since A4(g) contains some power of the maximal ideal m,,, also the space

0, Jo og
A2(g) + (F)Ja(g)’ Ja(g) = <8x1""’8xn’F< )>7

is finite-dimensional with C-basis, say, {f1,..., [~}
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By the preparation theorem {f;}¥| also generates
On—i—r
AX(G) +(F) s, )

as an O,-module.
Now any element h € Hqg can be written in the form
N n
oG oG
h(z,u) = Z@‘(U)fi(iﬁ) + Z ﬁi,j(xau)%(%u)%(%u)
i=1 ! J

1,j=1

+ Z vi(z, u)%(m, w)F(x) + vo(z,u)F(z)?,
i=1 '

where 3; j,7i, Y0 € On4r and we seek elements ¢; € O, such that

N
ofi .
¢i(u)7€JAG7 ]-Sjén
; oz; 2a(G)

We show how to work with this approach and algorithm in several concrete
cases.

4.1. Let A = {(y,z) € C"*' : y =0}, z = (x1,...,2,). Then for some
g € Opy1 and the versal unfolding G of g we have

dg 0Og dg
A =(y=—=,—,...,— )Opi1,
A(g) <y6y’8x1’ ’8$n>0 +1

~ oG oG oG
AA(G) = <y8y’ 87371’ ce M>On+1+m

0G 0G 0G
JEA(G) = <8y7 871‘17 ) 8xnay>0n+1+r'

As an example we take the simplest nontrivial case of type Fy (cf. [7]):
gly,x) = y* +°.
Then G(y, z,u) = y? + 2° + w12y + usy + usw and
A%(G) = (29 + yuz + wizy, 32° + ury + us),
I, = (u2 + urz, 32° + ug, y),
and also the quotient space
0243
A(G) +(y) I, @)

is generated by {1, z,y, 2%, 23, 2y} as an O3-module.
We see that the functions

h(y, z,u) = oy (u) +ag(u)z +az(w)z? + oy (u)2® + as(u)y + aszy +(y, o, u)
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with
as(u) + ag(u)z € Jx, (q),
as(u) + 2a3(u)r + 3ay(u)z? € Iz, (@)
) € A%4(G) + (Y54

form the space Hg.

Now it is easy to calculate the basis of vector fields tangent to Q. (G)
(cf. [7]):

Vi = u%;; + 6u288u3’
Vo = Ulail +U28(327
Va=—uj— + 2u3i,
8’LL1 811,3
Vi =3ug— — ul“Bia
0 8’&2

which satisfy the relation —uqVy 4+ ugVy — 3us V3 = 0.

4.2. In the case of A singular our algorithm leads to quite complicated
calculations. We show only some steps of the procedure which make clear
the differences with the nonsingular case.

Let A = {(z,y) € C*: F(z,y) = 2> —y* = 0}. The module =, of vector
fields tangent to A is generated by

0 0 L 20
& —23:%—1—33;8—3/, & =3z 3y +2ya$.

We consider the simplest non-Morse function g(z,y) = 23 + y?. Its Jacobi
ideal is

0

Ax(g) = (%y,2° + °)
and a versal deformation is
G(z,y,u) = 2° + y* + uyzy® + usry + uzar® + ugy® + usz + upy.

The corresponding A-bifurcation variety Q4(G) is described by the equa-
tions

32° + ury® + ugy + 2uzz + us = 0,
2y + 2urzy + uzx + 2ugy +ug = 0
together with 23 — 3% = 0.
The quotient space
Oa46
Ap(G) + (a3 — y2) Iz, @)
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is generated by {1, Ty, .172, Ty, yQa :E37 ny’ :Ey2, y3’ $2y27 $y37 y4} as an 06‘
module. The functions
h(z,y,u) = ao(u) + ar(u)z + az(u)y + as(u)a® + aa(u)zy + as(u)y?
+ ag(u)z® + ar(u)z®y + ag(u)zy® + ag(w)y® + aio(u)z?y?
+ Oéll(u)IZ/S + al?(u)y4 + ¢($, Y, ’LL)
with
a1 (u) + 2a3(u)z + ag(u)y + 3ag(u)? + 207 (u)zy
+ ag(u)y® + 2010(u)2y® + +ar1 (w)y® € JI2.(G)s
o (1) + ag(u)x + 205 (u)y + ar(u)z? + 2as(u)zy
+ 3ag(u)y? + 2a10(w)2®y + 3an1 (u)zy? + dags(u)y® € I, ()
b e AL(G) + (2° = y*) s, o)
form the space He.

Remarks. 1. If g is a Morse singularity on A singular then the
A-bifurcation variety Q4(G) is diffeomorphic to the product A x CF for
some k € NU {0}.

2. Let G(z,u) be a germ of a holomorphic family of functions. Let
Ap C C" be a germ of a complex space. We consider a deformation of
Ay, i.e. a family of varieties 7 : A — C” with 771(0) = Ag. As a natural gen-

eralization of a A-bifurcation variety of G we have the A-bifurcation variety
of G defined by

Q;(G) = {(x,u) eC"xC": gg

(z,u) =0, (z,u) € 7 *(u), i = 1,...,n}.

If A is the versal deformation of Ay (cf. [8, 5]) we may use the normal forms
of A to consider the parametrized groups (deformations of groups) u —
Gi- A, = 7~ (u) acting on families G. In case of families of hypersurfaces,
A'is given by the holomorphic function F : (C" x C",0) — (C,0), A, = {z €
C": F(-,u) = 0}. So the classification problem of A-varieties is reduced to
the classification of map-germs (F,G) : (C* x C",0) — C? with right and
modified left equivalences (cf. [13]).
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