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Logarithmic structure of the generalized bifurcation set

by S. Janeczko (Warszawa)

Abstract. Let G : Cn×Cr → C be a holomorphic family of functions. If Λ ⊂ Cn×Cr,
πr : Cn × Cr → Cr is an analytic variety then

QΛ(G) = {(x, u) ∈ Cn × Cr : G(·, u) has a critical point in Λ ∩ π−1r (u)}

is a natural generalization of the bifurcation variety of G. We investigate the local structure
of QΛ(G) for locally trivial deformations of Λ0 = π−1r (0). In particular, we construct an
algorithm for determining logarithmic stratifications provided G is versal.

1. Introduction. Motivation of this paper lies in theoretical questions in
optics where a central role is played by isotropic, Lagrangian and coisotropic
varieties in a symplectic space. The geometrical framework convenient for
investigations of these varieties is based mainly on the action of symplectic
relations (cf. [4]).

Let Ω = (T ∗Rk ×T ∗Rn, π∗2ωRn −π∗1ωRk) be a product symplectic space.
Lagrangian submanifolds of Ω (symplectic relations) act on subsets of
(T ∗Rk, ωRk) preserving their symplectic properties. In this way one can
investigate the symplectic projections πRn |S : S → Rn using the representa-
tion of S as the image under a symplectic relation L ⊂ Ω of a subset Λ of
the zero-section of T ∗Rk, i.e.

S = L(Λ) = {p ∈ T ∗Rn : ∃p̄∈Λ (p, p) ∈ L}.
For practical purposes one seeks to classify germs of the projections πRn |S
and describe the structure of the corresponding variety of critical values.
Assuming that L is generated by a smooth function G : Rk × Rn → R we
easily find that this variety is defined as a generalized bifurcation diagram

QΛ(G) = {q ∈ Rn : G(·, q) has a critical point belonging to Λ}.
In this paper we study the generalized bifurcation varieties of complex

analytic families G using the technical tools of the theory of singularities
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of functions on varieties (cf. [3]). In Section 2 we provide the classification
scheme of such varieties and introduce the notion of logarithmic stratifica-
tion. In Section 3 we adapt to our Λ-bifurcation varieties the method for
construction of logarithmic vector fields which is well known for the standard
bifurcation and discriminant varieties (cf. [2, 14]). The specific algorithm ex-
plicitly calculating the tangent vector fields to QΛ(G) and the representative
examples of Λ-bifurcation varieties are discussed in Section 4.

2. Classification of generalized bifurcation varieties. Let On be
the ring of germs of holomorphic functions at 0 ∈ Cn. Let (Λ, 0) ⊂ (Cn, 0)
be the germ of a reduced analytic subvariety of Cn at 0:

Λ = {x ∈ Cn : F (x) = 0}, F ∈ On.

The group of germs of diffeomorphisms φ : (Cn, 0)→ (Cn, 0) which preserve
Λ is denoted by GΛ. If JΛ denotes the ideal in On consisting of germs of
functions vanishing on Λ, then for φ ∈ GΛ the induced isomorphism φ∗ :
On → On preserves JΛ.

Two function-germs g1, g2 : (Cn, 0) → (C, 0) are called GΛ-equivalent if
there is a diffeomorphism φ ∈ GΛ with g1 ◦ φ = g2 [3, 10].

We obtain elements of GΛ by integrating vector fields tangent to Λ.

Definition 2.1. We denote by ΞΛ the On-module of logarithmic vector
fields for Λ, i.e. holomorphic vector fields on (Cn, 0), which, if considered as
derivations, say v : On → On, satisfy

v.h ∈ JΛ for all h ∈ JΛ.

Modules of holomorphic vector fields of this type are discussed in [11].
A function-germ g : (Cn, 0) → (C, 0) is k-GΛ-determined if for all

g̃ : (Cn, 0) → (C, 0) with the same k-jet as g the germs g and g̃ are
GΛ-equivalent. Given a germ h : (Cn, 0)→ (C, 0), a germ G : (Cn×Cr, 0)→
(C, 0) is called a deformation of h if G(x, 0) = h(x). Formally we look on a
deformation of h as a pair (G, r). Given two deformations (H, r), (G, q) of
h, a morphism (Φ, l) : H → G between them is defined as follows:

1. Φ : (Cn × Cr, 0) → (Cn × Cq, 0) has the form Φ(x, u) = (φ(x, u), u)
with φ(·, 0) = idCn and φ(·, u) ∈ GΛ for all u near 0 ∈ Cr.

2. l : (Cr, 0)→ (Cq, 0) is such that

G(φ(x, u), l(u)) = H(x, u).

A deformation (G, q) of h is GΛ-versal if for any unfolding (H, r) of h
there is a morphism (Φ, l) : H → G.

Two deformations of h are equivalent if there exists a morphism between
them which is an isomorphism.
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Let U ⊂ (Cn, 0) be an open, sufficiently small subset of Cn. We can also
consider the sheaf OU of holomorphic functions on U , and the sheaf DerU
of holomorphic vector fields on U , together with its subsheaf ΞΛ. Following
[11] we introduce the logarithmic stratification of U determined by ΞΛ.

Definition 2.2. Let {Λα : α ∈ I} be a stratification of U with the
following properties:

1. Each stratum Λα is a smooth connected immersed submanifold of U
and U =

⋃
α∈I Λα.

2. If x ∈ Λα then TxΛα coincides with ΞΛ(x).
3. If Λα, Λβ are two distinct strata with Λα meeting the closure Λβ of

Λβ , then Λα is contained in the boundary ∂Λβ of Λβ .

Then {Λα : α ∈ I} is called a logarithmic stratification of Λ and Λα is a
logarithmic stratum.

For any variety Λ and sufficiently small U there always exists a unique
logarithmic stratification of U .

The aim of this note is to construct the logarithmic stratification for
generalized bifurcation varieties, and so to construct an appropriate module
of logarithmic vector fields ΞΛ.

Let g : (Cn, 0)→ (C, 0), g ∈ On. We define the Jacobi ideal of g by

∆Λ(g) = {v.g : v ∈ ΞΛ}.

If ∆Λ(g) ⊃ mk
n, then g is (k + 1)-GΛ-determined, i.e. for all g̃ : (Cn, 0) →

(C, 0) with the same (k+ 1)-jet as g the germs g, g̃ are GΛ-equivalent. Here
mn is the maximal ideal of On. As in the usual singularity theory setting
[1] a deformation (G, r) of g is GΛ-versal if and only if

∂G

∂u1
(x, 0), . . . ,

∂G

∂ur
(x, 0)

span On/∆Λ(g).
We know (cf. [2]) that if the set-germ

{x ∈ Cn : v.g(x) = 0 for all v ∈ ΞΛ}

at 0 is {0} or empty then g has a GΛ-versal deformation. If the number
µ = dimCOn/∆Λ(g) is finite, then it is called the multiplicity of g on Λ at 0,
and is also denoted by µΛ(g).

Let (G, r) be a deformation of g.

Definition 2.3. The analytic variety

QΛ(G) = {u ∈ Cr : G(·, u) has a critical point on Λ}

is called the Λ-bifurcation variety of the family G.
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Define

ΣΛ(G) =
{

(x, u) ∈ Cn × Cr :
∂G

∂xi
(x, u) = 0, F (x) = 0

}
,

where Λ = F−1(0), F ∈ On. Then we see that

QΛ(G) = πr(ΣΛ(G)),

where πr : Cn × Cr → Cr.
Example 2.4. As a natural example we consider the simplest Λ-bifurca-

tion varieties corresponding to singularities of functions on regular bound-
aries (cf. [1]). Let Λ = {(y, x) ∈ Cn+1 : y = 0}, x = (x1, . . . , xn). It is easy
to check that for Bk and Ck singularities QΛ(G) are smooth hypersurfaces.
For the F4 singularity

G(y, x, u) = y2 + x3 + u1xy + u2y + u3x

the Λ-bifurcation variety QΛ(G) is the Whitney cross cap

3u2 + u3u
2
1 = 0.

By straightforward calculations we prove that for unimodal, corank one
boundary singularities of smallest codimension µ = 6:

F1,0 : G(y, x, u) = x3 + bx2y + y3 + u1xy
2 + u2xy + u3y

2 + u4x+ u5y,

K4,2 : G(y, x, u) = x4 + ax2y + y2 + u1x
2y + u2x

2 + u3yx+ u4x+ u5y,

the Λ-bifurcation varieties are:

1. The trivial extension of the Whitney cross cap variety in the case F1,0.
2. The generalized Whitney cross cap (cf. [1], Section 9.6), given in the

following parametric form:

u1 = s, u2 = t, u3 = w, u4 = −4x3 − 2tx, u5 = −(a+ s)x2 − wx.
For simplest unimodal, corank two boundary singularity of type L6:

G(y, x, u) = x2
1x2 + x3

2 + yx1 + ayx2 + u1yx2 + u2x
2
1 + u3x1 + u4x+ u5y,

the Λ-bifurcation variety QΛ(G) is parametrized in the form

u1 = s, u2 = t, u3 = −2x1x2−2x1t, u4 = −x2
1−3x2

2, u5 = −x1−sx2−ax2

and is an opening of the Σ2-Boardmann singular mapping C4 → C4.

3. Logarithmic vector fields. We denote by Sing(ΣΛ(G)) the singular
part of ΣΛ(G). Then ΣΛ(G)−Sing(ΣΛ(G)) decomposes into analytic strata
Σα
Λ(G), α ∈ I. We consider the family of mappings παr = πr|ΣαΛ(G). Critical

points of these mappings are described by an extra n equations:

rank
(
∂2G/∂xi∂xj
∂F/∂xj

)
(x, u) < n.
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We denote by Γαr = Γ (παr ) the set of critical values of the mapping παr .
Now we assume that (G, r) is a GΛ-versal deformation of g. Let g0, . . .

. . . , gµ−1 be a basis of the quotient space On/∆Λ(g) with g0 = 1
and gi ∈ mn. Then by the equivalence of deformations we get a miniver-
sal deformation of g ∈ m2

n (with minimal number of deformation para-
meters u), i.e.

G(x, u) =
µ−1∑
i=1

uigi(x) + g(x).

Now we have the following

Proposition 3.1. If ξ ∈ ΞQΛ(G) then ξ is πr-liftable, i.e. there exists a
germ of a holomorphic vector field ξ̃ on Cn×Cr which is tangent to ΣΛ(G)
at 0 and

ξ ◦ πr = dπr ◦ ξ̃.
P r o o f. We see that ξ lifts by πr at every point u ∈ Cr outside

πr(Sing(ΣΛ(G))) ∪
⋃
α∈I Γ

α
r to a holomorphic vector field ξ̃′ on Cn × Cr

tangent to ΣΛ(G) and defined off a set of codimension 2 in Cn×Cr, namely

Cn × πr(Sing(ΣΛ(G))) ∪
⋃
α∈I

Γαr .

By Hartog’s extension theorem [9], ξ̃′ extends to a holomorphic vector field
ξ̃ tangent to ΣΛ(G).

Now following the methods introduced in [3, 14] we give an algorithm
for construction of the module ΞQΛ(G) of vector fields for versal G. This
algorithm is a generalization of a similar one constructed in [7] for vector
fields tangent to the usual bifurcation varieties.

By Proposition 3.1, to obtain elements of ΞQΛ(G) we have to construct
all πr-lowerable vector fields ξ̃ tangent to ΣΛ(G).

Now we define the ideal

JΣΛ(G) =
〈
∂G

∂x1
(x, u), . . . ,

∂G

∂xn
(x, u), F (x)

〉
On+r.

Then the germ of the vector field

ξ̃ =
n∑
i=1

βi
∂

∂xi
+

r∑
j=1

γj
∂

∂uj
, βi, γj ∈ On+r,

at 0 ∈ Cn × Cr, which is tangent to ΣΛ(G), has the property

ξ̃

(
∂G

∂xi
(x, u)

)
∈ JΣΛ(G), i = 1, . . . , n,(1)

ξ̃(F (x)) ∈ JΣΛ(G).(2)
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Lemma 3.2. Let

ξ =
r∑
i=1

αi(u)
∂

∂ui
, ξ ∈ ΞQΛ(G).

The vector field ξ̃ ∈ ΞΣΛ(G) is a lifting of ξ if and only if for some βi ∈ On+r

and vi ∈ ΞΛ, i = 1, . . . , n, we have

(3)
n∑
j=1

βjvj

(
∂G

∂xi
(x, u)

)
+
µ−1∑
j=1

αj(u)
∂gj
∂xi
∈ JΣΛ(G),

where G is GΛ-versal ,

G(x, u) =
µ−1∑
i=1

uigi(x) + g(x).

P r o o f. By straightforward check of the conditions (1) and (2).

Now we use the arguments working for the bifurcation and discriminant
sets. Consider the ideal

∆̃Λ(G) = 〈vi.G〉On+r

in On+r, where vi are generators of ΞΛ. Since G is GΛ-versal, by the prepa-
ration theorem the quotient module

A = On+r/∆̃Λ(G)

is a free Or-module generated by 1, g1, . . . , gµ−1. In fact, take π(x, u)→ u,
and look on A as an On+r-module. Then A is a finite Or-module if and only
if A/(π∗mr)A is finite over C. We see that

A/(π∗mr)A ∼= On+r/(〈vi.G〉+ mrOn+r)
∼= On/〈vi.G(x, 0)〉On ∼= {1, g1, . . . , gµ−1}C.

Thus for any h ∈ On+r we can write

(4) h(x, u) =
n∑
i=1

βi(x, u)(vi.G)(x, u) +
µ−1∑
j=1

αj(u)gj(x) + α(u)

for some βi ∈ On+r, αi ∈ Or and α ∈ Or.
Now we have the basic result.

Theorem 3.3. Let h ∈ On+r and suppose that
∂h

∂xi
(x, u) ∈ JΣΛ(G), i = 1, . . . , n.

Then the vector field

ξ =
r∑
i=1

αi(u)
∂

∂ui
,
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where αi, 1 ≤ i ≤ µ − 1, are defined in (4) and αi, i ≥ µ, are arbitrary
holomorphic functions from Or, is tangent to the Λ-bifurcation variety of
the family G.

P r o o f. Take h in the form (4). For derivatives of h we have

∂h

∂xi
(x, u) =

n∑
j=1

∂βj
∂xi

(vj .G) +
n∑
j=1

βj
∂

∂xi
(vj .G) +

µ−1∑
j=1

αj(u)
∂gj
∂xi

(x)

and by assumptions this belongs to JΣΛ(G). We also have
n∑
j=1

βj
∂

∂xi
(vj .G) =

n∑
j=1

βjvj

(
∂G

∂xi

)
mod(JΣΛ(G)).

So by Lemma 3.2 we obtain the lifting formula (3) for the vector field ξ =∑r
i=1 αi∂/∂ui, which is tangent to QΛ(G).

One can also obtain the converse, which results immediately from the
proof of Theorem 3.3.

Corollary 3.4. Let ξ =
∑r
i=1 αi(u)∂/∂ui be a tangent vector field to

QΛ(G). Then for some h ∈ On+r,

(5) h =
n∑
i=1

βi(viG) +
µ−1∑
j=1

αjgj + α,

where βi ∈ On+r, α ∈ Or and ∂h/∂xi ∈ JΣΛ(G).

P r o o f. Take h in the form (5), where
n∑
i=1

βivi +
µ−1∑
j=1

αj
∂

∂uj
∈ ΞΣΛ(G).

Then by a simple check we find that ∂h/∂xi ∈ JΣΛ(G).

One can easily check that the space of germs h ∈ On+r such that
∂h/∂xi(x, u) ∈ JΣΛ(G), i = 1, . . . , n, is an Or-module, which we denote
by HG.

4. An algorithm. Now we present an algorithm which is useful in ob-
taining all tangent vector fields to QΛ(G). We see that

〈F 〉JΣΛ(G) + ∆̃2
Λ(G) ⊂ HG.

Since ∆Λ(g) contains some power of the maximal ideal mn, also the space

On
∆2
Λ(g) + 〈F 〉JΛ(g)

, JΛ(g) =
〈
∂g

∂x1
, . . . ,

∂g

∂xn
, F (x)

〉
,

is finite-dimensional with C-basis, say, {f1, . . . , fN}.
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By the preparation theorem {fi}Ni=1 also generates
On+r

∆̃2
Λ(G) + 〈F 〉JΣΛ(G)

as an Or-module.
Now any element h ∈ HG can be written in the form

h(x, u) =
N∑
i=1

φi(u)fi(x) +
n∑

i,j=1

βi,j(x, u)
∂G

∂xi
(x, u)

∂G

∂xj
(x, u)

+
n∑
i=1

γi(x, u)
∂G

∂xi
(x, u)F (x) + γ0(x, u)F (x)2,

where βi,j , γi, γ0 ∈ On+r and we seek elements φi ∈ Or such that
N∑
i=1

φi(u)
∂fi
∂xj
∈ JΣΛ(G), 1 ≤ j ≤ n.

We show how to work with this approach and algorithm in several concrete
cases.

4.1. Let Λ = {(y, x) ∈ Cn+1 : y = 0}, x = (x1, . . . , xn). Then for some
g ∈ On+1 and the versal unfolding G of g we have

∆Λ(g) =
〈
y
∂g

∂y
,
∂g

∂x1
, . . . ,

∂g

∂xn

〉
On+1,

∆̃Λ(G) =
〈
y
∂G

∂y
,
∂G

∂x1
, . . . ,

∂G

∂xn

〉
On+1+r,

JΣΛ(G) =
〈
∂G

∂y
,
∂G

∂x1
, . . . ,

∂G

∂xn
, y

〉
On+1+r.

As an example we take the simplest nontrivial case of type F4 (cf. [7]):

g(y, x) = y2 + x3.

Then G(y, x, u) = y2 + x3 + u1xy + u2y + u3x and

∆̃2
Λ(G) = 〈2y2 + yu2 + u1xy, 3x2 + u1y + u3〉,

JΣΛ(G) = 〈u2 + u1x, 3x2 + u3, y〉,
and also the quotient space

O2+3

∆̃2
Λ(G) + 〈y〉JΣΛ(G)

is generated by {1, x, y, x2, x3, xy} as an O3-module.
We see that the functions

h(y, x, u) = α1(u)+α2(u)x+α3(u)x2 +α4(u)x3 +α5(u)y+α6xy+ψ(y, x, u)
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with
α5(u) + α6(u)x ∈ JΣΛ(G),

α2(u) + 2α3(u)x+ 3α4(u)x2 ∈ JΣΛ(G),

ψ ∈ ∆̃2
Λ(G) + 〈y〉JΣΛ(G)

form the space HG.
Now it is easy to calculate the basis of vector fields tangent to QΛ(G)

(cf. [7]):

V1 = −u2
1

∂

∂u2
+ 6u2

∂

∂u3
,

V2 = u1
∂

∂u1
+ u2

∂

∂u2
,

V3 = −u1
∂

∂u1
+ 2u3

∂

∂u3
,

V4 = 3u2
∂

∂u1
− u1u3

∂

∂u2
,

which satisfy the relation −u1V4 + u3V1 − 3u2V3 = 0.

4.2. In the case of Λ singular our algorithm leads to quite complicated
calculations. We show only some steps of the procedure which make clear
the differences with the nonsingular case.

Let Λ = {(x, y) ∈ C2 : F (x, y) = x3− y2 = 0}. The module ΞΛ of vector
fields tangent to Λ is generated by

ξ1 = 2x
∂

∂x
+ 3y

∂

∂y
, ξ2 = 3x2 ∂

∂y
+ 2y

∂

∂x
.

We consider the simplest non-Morse function g(x, y) = x3 + y2. Its Jacobi
ideal is

∆Λ(g) = 〈x2y, x3 + y2〉
and a versal deformation is

G(x, y, u) = x3 + y2 + u1xy
2 + u2xy + u3x

2 + u4y
2 + u5x+ u6y.

The corresponding Λ-bifurcation variety QΛ(G) is described by the equa-
tions

3x2 + u1y
2 + u2y + 2u3x+ u5 = 0,

2y + 2u1xy + u2x+ 2u4y + u6 = 0

together with x3 − y2 = 0.
The quotient space

O2+6

∆̃Λ(G) + 〈x3 − y2〉JΣΛ(G)
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is generated by {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x2y2, xy3, y4} as an O6-
module. The functions
h(x, y, u) = α0(u) + α1(u)x+ α2(u)y + α3(u)x2 + α4(u)xy + α5(u)y2

+ α6(u)x3 + α7(u)x2y + α8(u)xy2 + α9(u)y3 + α10(u)x2y2

+ α11(u)xy3 + α12(u)y4 + ψ(x, y, u)

with

α1(u) + 2α3(u)x+ α4(u)y + 3α6(u)x2 + 2α7(u)xy
+ α8(u)y2 + 2α10(u)xy2 + +α11(u)y3 ∈ JΣΛ(G),

α2(u) + α4(u)x+ 2α5(u)y + α7(u)x2 + 2α8(u)xy
+ 3α9(u)y2 + 2α10(u)x2y + 3α11(u)xy2 + 4α12(u)y3 ∈ JΣΛ(G),

ψ ∈ ∆̃2
Λ(G) + 〈x3 − y2〉JΣΛ(G)

form the space HG.

Remarks. 1. If g is a Morse singularity on Λ singular then the
Λ-bifurcation variety QΛ(G) is diffeomorphic to the product Λ × Ck for
some k ∈ N ∪ {0}.

2. Let G(x, u) be a germ of a holomorphic family of functions. Let
Λ0 ⊂ Cn be a germ of a complex space. We consider a deformation of
Λ0, i.e. a family of varieties π : Λ̃→ Cr with π−1(0) = Λ0. As a natural gen-
eralization of a Λ-bifurcation variety of G we have the Λ̃-bifurcation variety
of G defined by

QΛ̃(G) =
{

(x, u) ∈ Cn×Cr :
∂G

∂xi
(x, u) = 0, (x, u) ∈ π−1(u), i = 1, . . . , n

}
.

If Λ̃ is the versal deformation of Λ0 (cf. [8, 5]) we may use the normal forms
of Λ̃ to consider the parametrized groups (deformations of groups) u →
GΛ̃u , Λ̃u = π−1(u) acting on families G. In case of families of hypersurfaces,
Λ̃ is given by the holomorphic function F : (Cn×Cr, 0)→ (C, 0), Λu = {x ∈
Cn : F (·, u) = 0}. So the classification problem of Λ̃-varieties is reduced to
the classification of map-germs (F,G) : (Cn × Cr, 0) → C2 with right and
modified left equivalences (cf. [13]).

References

[1] V. I. Arno ld, S. M. Guse in-Zade and A. N. Varchenko, Singularities of Dif-
ferentiable Maps, Vol. 1, Birkhäuser, Boston, 1985.
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