Logarithmic structure of the generalized bifurcation set

by S. Janeczko (Warszawa)

> Abstract. Let $G: \mathbb{C}^{n} \times \mathbb{C}^{r} \rightarrow \mathbb{C}$ be a holomorphic family of functions. If $\Lambda \subset \mathbb{C}^{n} \times \mathbb{C}^{r}$, $\pi_{r}: \mathbb{C}^{n} \times \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ is an analytic variety then
> $\quad Q_{\Lambda}(G)=\left\{(x, u) \in \mathbb{C}^{n} \times \mathbb{C}^{r}: G(\cdot, u)\right.$ has a critical point in $\left.\Lambda \cap \pi_{r}^{-1}(u)\right\}$
is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_{\Lambda}(G)$ for locally trivial deformations of $\Lambda_{0}=\pi_{r}^{-1}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.

1. Introduction. Motivation of this paper lies in theoretical questions in optics where a central role is played by isotropic, Lagrangian and coisotropic varieties in a symplectic space. The geometrical framework convenient for investigations of these varieties is based mainly on the action of symplectic relations (cf. [4]).

Let $\Omega=\left(T^{*} \mathbb{R}^{k} \times T^{*} \mathbb{R}^{n}, \pi_{2}^{*} \omega_{\mathbb{R}^{n}}-\pi_{1}^{*} \omega_{\mathbb{R}^{k}}\right)$ be a product symplectic space. Lagrangian submanifolds of Ω (symplectic relations) act on subsets of $\left(T^{*} \mathbb{R}^{k}, \omega_{\mathbb{R}^{k}}\right)$ preserving their symplectic properties. In this way one can investigate the symplectic projections $\left.\pi_{\mathbb{R}^{n}}\right|_{S}: S \rightarrow \mathbb{R}^{n}$ using the representation of S as the image under a symplectic relation $L \subset \Omega$ of a subset Λ of the zero-section of $T^{*} \mathbb{R}^{k}$, i.e.

$$
S=L(\Lambda)=\left\{p \in T^{*} \mathbb{R}^{n}: \exists_{\bar{p} \in \Lambda}(\bar{p}, p) \in L\right\}
$$

For practical purposes one seeks to classify germs of the projections $\left.\pi_{\mathbb{R}^{n}}\right|_{S}$ and describe the structure of the corresponding variety of critical values. Assuming that L is generated by a smooth function $G: \mathbb{R}^{k} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ we easily find that this variety is defined as a generalized bifurcation diagram

$$
Q_{\Lambda}(G)=\left\{q \in \mathbb{R}^{n}: G(\cdot, q) \text { has a critical point belonging to } \Lambda\right\}
$$

In this paper we study the generalized bifurcation varieties of complex analytic families G using the technical tools of the theory of singularities

[^0]of functions on varieties (cf. [3]). In Section 2 we provide the classification scheme of such varieties and introduce the notion of logarithmic stratification. In Section 3 we adapt to our Λ-bifurcation varieties the method for construction of logarithmic vector fields which is well known for the standard bifurcation and discriminant varieties (cf. [2, 14]). The specific algorithm explicitly calculating the tangent vector fields to $Q_{\Lambda}(G)$ and the representative examples of Λ-bifurcation varieties are discussed in Section 4.
2. Classification of generalized bifurcation varieties. Let \mathcal{O}_{n} be the ring of germs of holomorphic functions at $0 \in \mathbb{C}^{n}$. Let $(\Lambda, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ be the germ of a reduced analytic subvariety of \mathbb{C}^{n} at 0 :
$$
\Lambda=\left\{x \in \mathbb{C}^{n}: F(x)=0\right\}, \quad F \in \mathcal{O}_{n}
$$

The group of germs of diffeomorphisms $\phi:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ which preserve Λ is denoted by \mathcal{G}_{Λ}. If J_{Λ} denotes the ideal in \mathcal{O}_{n} consisting of germs of functions vanishing on Λ, then for $\phi \in \mathcal{G}_{\Lambda}$ the induced isomorphism ϕ^{*} : $\mathcal{O}_{n} \rightarrow \mathcal{O}_{n}$ preserves J_{Λ}.

Two function-germs $g_{1}, g_{2}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are called $\mathcal{G}_{\Lambda^{-}}$equivalent if there is a diffeomorphism $\phi \in \mathcal{G}_{\Lambda}$ with $g_{1} \circ \phi=g_{2}[3,10]$.

We obtain elements of \mathcal{G}_{Λ} by integrating vector fields tangent to Λ.
Definition 2.1. We denote by Ξ_{Λ} the \mathcal{O}_{n}-module of logarithmic vector fields for Λ, i.e. holomorphic vector fields on $\left(\mathbb{C}^{n}, 0\right)$, which, if considered as derivations, say $v: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}$, satisfy

$$
v . h \in J_{\Lambda} \quad \text { for all } h \in J_{\Lambda} .
$$

Modules of holomorphic vector fields of this type are discussed in [11].
A function-germ $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is k - \mathcal{G}_{Λ}-determined if for all $\widetilde{g}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ with the same k-jet as g the germs g and \widetilde{g} are $\mathcal{G}_{\Lambda^{-}}$-equivalent. Given a germ $h:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$, a germ $G:\left(\mathbb{C}^{n} \times \mathbb{C}^{r}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is called a deformation of h if $G(x, 0)=h(x)$. Formally we look on a deformation of h as a pair (G, r). Given two deformations $(H, r),(G, q)$ of h, a morphism $(\Phi, l): H \rightarrow G$ between them is defined as follows:

1. $\Phi:\left(\mathbb{C}^{n} \times \mathbb{C}^{r}, 0\right) \rightarrow\left(\mathbb{C}^{n} \times \mathbb{C}^{q}, 0\right)$ has the form $\Phi(x, u)=(\phi(x, u), u)$ with $\phi(\cdot, 0)=\operatorname{id}_{\mathbb{C}^{n}}$ and $\phi(\cdot, u) \in \mathcal{G}_{\Lambda}$ for all u near $0 \in \mathbb{C}^{r}$.
2. $l:\left(\mathbb{C}^{r}, 0\right) \rightarrow\left(\mathbb{C}^{q}, 0\right)$ is such that

$$
G(\phi(x, u), l(u))=H(x, u) .
$$

A deformation (G, q) of h is \mathcal{G}_{Λ}-versal if for any unfolding (H, r) of h there is a morphism $(\Phi, l): H \rightarrow G$.

Two deformations of h are equivalent if there exists a morphism between them which is an isomorphism.

Let $U \subset\left(\mathbb{C}^{n}, 0\right)$ be an open, sufficiently small subset of \mathbb{C}^{n}. We can also consider the sheaf \mathcal{O}_{U} of holomorphic functions on U, and the sheaf Der_{U} of holomorphic vector fields on U, together with its subsheaf Ξ_{Λ}. Following [11] we introduce the logarithmic stratification of U determined by Ξ_{Λ}.

Definition 2.2. Let $\left\{\Lambda_{\alpha}: \alpha \in I\right\}$ be a stratification of U with the following properties:

1. Each stratum Λ_{α} is a smooth connected immersed submanifold of U and $U=\bigcup_{\alpha \in I} \Lambda_{\alpha}$.
2. If $x \in \Lambda_{\alpha}$ then $T_{x} \Lambda_{\alpha}$ coincides with $\Xi_{\Lambda}(x)$.
3. If $\Lambda_{\alpha}, \Lambda_{\beta}$ are two distinct strata with Λ_{α} meeting the closure $\bar{\Lambda}_{\beta}$ of Λ_{β}, then Λ_{α} is contained in the boundary $\partial \Lambda_{\beta}$ of Λ_{β}.

Then $\left\{\Lambda_{\alpha}: \alpha \in I\right\}$ is called a logarithmic stratification of Λ and Λ_{α} is a logarithmic stratum.

For any variety Λ and sufficiently small U there always exists a unique logarithmic stratification of U.

The aim of this note is to construct the logarithmic stratification for generalized bifurcation varieties, and so to construct an appropriate module of logarithmic vector fields Ξ_{Λ}.

Let $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0), g \in \mathcal{O}_{n}$. We define the Jacobi ideal of g by

$$
\Delta_{\Lambda}(g)=\left\{v . g: v \in \Xi_{\Lambda}\right\} .
$$

If $\Delta_{\Lambda}(g) \supset \mathbf{m}_{n}^{k}$, then g is $(k+1)-\mathcal{G}_{\Lambda}$-determined, i.e. for all $\tilde{g}:\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ with the same $(k+1)$-jet as g the germs g, \widetilde{g} are \mathcal{G}_{Λ}-equivalent. Here \mathbf{m}_{n} is the maximal ideal of \mathcal{O}_{n}. As in the usual singularity theory setting [1] a deformation (G, r) of g is \mathcal{G}_{Λ}-versal if and only if

$$
\frac{\partial G}{\partial u_{1}}(x, 0), \ldots, \frac{\partial G}{\partial u_{r}}(x, 0)
$$

$\operatorname{span} \mathcal{O}_{n} / \Delta_{\Lambda}(g)$.
We know (cf. [2]) that if the set-germ

$$
\left\{x \in \mathbb{C}^{n}: v . g(x)=0 \text { for all } v \in \Xi_{\Lambda}\right\}
$$

at 0 is $\{0\}$ or empty then g has a \mathcal{G}_{Λ}-versal deformation. If the number $\mu=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / \Delta_{\Lambda}(g)$ is finite, then it is called the multiplicity of g on Λ at 0 , and is also denoted by $\mu_{\Lambda}(g)$.

Let (G, r) be a deformation of g.
Definition 2.3. The analytic variety

$$
Q_{\Lambda}(G)=\left\{u \in \mathbb{C}^{r}: G(\cdot, u) \text { has a critical point on } \Lambda\right\}
$$

is called the Λ-bifurcation variety of the family G.

Define

$$
\Sigma_{\Lambda}(G)=\left\{(x, u) \in \mathbb{C}^{n} \times \mathbb{C}^{r}: \frac{\partial G}{\partial x_{i}}(x, u)=0, F(x)=0\right\}
$$

where $\Lambda=F^{-1}(0), F \in \mathcal{O}_{n}$. Then we see that

$$
Q_{\Lambda}(G)=\pi_{r}\left(\Sigma_{\Lambda}(G)\right)
$$

where $\pi_{r}: \mathbb{C}^{n} \times \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$.
EXAMPLE 2.4. As a natural example we consider the simplest Λ-bifurcation varieties corresponding to singularities of functions on regular boundaries (cf. [1]). Let $\Lambda=\left\{(y, x) \in \mathbb{C}^{n+1}: y=0\right\}, x=\left(x_{1}, \ldots, x_{n}\right)$. It is easy to check that for B_{k} and C_{k} singularities $Q_{\Lambda}(G)$ are smooth hypersurfaces. For the F_{4} singularity

$$
G(y, x, u)=y^{2}+x^{3}+u_{1} x y+u_{2} y+u_{3} x
$$

the Λ-bifurcation variety $Q_{\Lambda}(G)$ is the Whitney cross cap

$$
3 u^{2}+u_{3} u_{1}^{2}=0
$$

By straightforward calculations we prove that for unimodal, corank one boundary singularities of smallest codimension $\mu=6$:

$$
\begin{aligned}
& F_{1,0}: G(y, x, u)=x^{3}+b x^{2} y+y^{3}+u_{1} x y^{2}+u_{2} x y+u_{3} y^{2}+u_{4} x+u_{5} y \\
& K_{4,2}: G(y, x, u)=x^{4}+a x^{2} y+y^{2}+u_{1} x^{2} y+u_{2} x^{2}+u_{3} y x+u_{4} x+u_{5} y
\end{aligned}
$$

the Λ-bifurcation varieties are:

1. The trivial extension of the Whitney cross cap variety in the case $F_{1,0}$.
2. The generalized Whitney cross cap (cf. [1], Section 9.6), given in the following parametric form:

$$
u_{1}=s, \quad u_{2}=t, \quad u_{3}=w, \quad u_{4}=-4 x^{3}-2 t x, \quad u_{5}=-(a+s) x^{2}-w x
$$

For simplest unimodal, corank two boundary singularity of type L_{6} :

$$
G(y, x, u)=x_{1}^{2} x_{2}+x_{2}^{3}+y x_{1}+a y x_{2}+u_{1} y x_{2}+u_{2} x_{1}^{2}+u_{3} x_{1}+u_{4} x+u_{5} y
$$

the Λ-bifurcation variety $Q_{\Lambda}(G)$ is parametrized in the form
$u_{1}=s, u_{2}=t, u_{3}=-2 x_{1} x_{2}-2 x_{1} t, u_{4}=-x_{1}^{2}-3 x_{2}^{2}, u_{5}=-x_{1}-s x_{2}-a x_{2}$ and is an opening of the Σ^{2}-Boardmann singular mapping $\mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$.
3. Logarithmic vector fields. We denote by $\operatorname{Sing}\left(\Sigma_{\Lambda}(G)\right)$ the singular part of $\Sigma_{\Lambda}(G)$. Then $\Sigma_{\Lambda}(G)-\operatorname{Sing}\left(\Sigma_{\Lambda}(G)\right)$ decomposes into analytic strata $\Sigma_{\Lambda}^{\alpha}(G), \alpha \in I$. We consider the family of mappings $\pi_{r}^{\alpha}=\left.\pi_{r}\right|_{\Sigma_{\Lambda}^{\alpha}(G)}$. Critical points of these mappings are described by an extra n equations:

$$
\operatorname{rank}\binom{\partial^{2} G / \partial x_{i} \partial x_{j}}{\partial F / \partial x_{j}}(x, u)<n
$$

We denote by $\Gamma_{r}^{\alpha}=\Gamma\left(\pi_{r}^{\alpha}\right)$ the set of critical values of the mapping π_{r}^{α}.
Now we assume that (G, r) is a \mathcal{G}_{Λ}-versal deformation of g. Let g_{0}, \ldots $\ldots, g_{\mu-1}$ be a basis of the quotient space $\mathcal{O}_{n} / \Delta_{\Lambda}(g)$ with $g_{0}=1$ and $g_{i} \in \mathbf{m}_{n}$. Then by the equivalence of deformations we get a miniversal deformation of $g \in \mathbf{m}_{n}^{2}$ (with minimal number of deformation parameters u), i.e.

$$
G(x, u)=\sum_{i=1}^{\mu-1} u_{i} g_{i}(x)+g(x)
$$

Now we have the following
Proposition 3.1. If $\xi \in \Xi_{Q_{\Lambda}(G)}$ then ξ is π_{r}-liftable, i.e. there exists a germ of a holomorphic vector field $\widetilde{\xi}$ on $\mathbb{C}^{n} \times \mathbb{C}^{r}$ which is tangent to $\Sigma_{\Lambda}(G)$ at 0 and

$$
\xi \circ \pi_{r}=d \pi_{r} \circ \widetilde{\xi}
$$

Proof. We see that ξ lifts by π_{r} at every point $u \in \mathbb{C}^{r}$ outside $\pi_{r}\left(\operatorname{Sing}\left(\Sigma_{\Lambda}(G)\right)\right) \cup \bigcup_{\alpha \in I} \Gamma_{r}^{\alpha}$ to a holomorphic vector field $\widetilde{\xi}^{\prime}$ on $\mathbb{C}^{n} \times \mathbb{C}^{r}$ tangent to $\Sigma_{\Lambda}(G)$ and defined off a set of codimension 2 in $\mathbb{C}^{n} \times \mathbb{C}^{r}$, namely

$$
\mathbb{C}^{n} \times \pi_{r}\left(\operatorname{Sing}\left(\Sigma_{\Lambda}(G)\right)\right) \cup \bigcup_{\alpha \in I} \Gamma_{r}^{\alpha}
$$

By Hartog's extension theorem [9], $\widetilde{\xi}^{\prime}$ extends to a holomorphic vector field $\widetilde{\xi}$ tangent to $\Sigma_{\Lambda}(G)$.

Now following the methods introduced in $[3,14]$ we give an algorithm for construction of the module $\Xi_{Q_{\Lambda}(G)}$ of vector fields for versal G. This algorithm is a generalization of a similar one constructed in [7] for vector fields tangent to the usual bifurcation varieties.

By Proposition 3.1, to obtain elements of $\Xi_{Q_{A}(G)}$ we have to construct all π_{r}-lowerable vector fields $\widetilde{\xi}$ tangent to $\Sigma_{\Lambda}(G)$.

Now we define the ideal

$$
J_{\Sigma_{\Lambda}(G)}=\left\langle\frac{\partial G}{\partial x_{1}}(x, u), \ldots, \frac{\partial G}{\partial x_{n}}(x, u), F(x)\right\rangle \mathcal{O}_{n+r}
$$

Then the germ of the vector field

$$
\widetilde{\xi}=\sum_{i=1}^{n} \beta_{i} \frac{\partial}{\partial x_{i}}+\sum_{j=1}^{r} \gamma_{j} \frac{\partial}{\partial u_{j}}, \quad \beta_{i}, \gamma_{j} \in \mathcal{O}_{n+r}
$$

at $0 \in \mathbb{C}^{n} \times \mathbb{C}^{r}$, which is tangent to $\Sigma_{\Lambda}(G)$, has the property

$$
\begin{align*}
\widetilde{\xi}\left(\frac{\partial G}{\partial x_{i}}(x, u)\right) & \in J_{\Sigma_{\Lambda}(G)}, \quad i=1, \ldots, n \tag{1}\\
\widetilde{\xi}(F(x)) & \in J_{\Sigma_{\Lambda}(G)} \tag{2}
\end{align*}
$$

Lemma 3.2. Let

$$
\xi=\sum_{i=1}^{r} \alpha_{i}(u) \frac{\partial}{\partial u_{i}}, \quad \xi \in \Xi_{Q_{A}(G)} .
$$

The vector field $\widetilde{\xi} \in \Xi_{\Sigma_{\Lambda}(G)}$ is a lifting of ξ if and only if for some $\beta_{i} \in \mathcal{O}_{n+r}$ and $v_{i} \in \Xi_{\Lambda}, i=1, \ldots, n$, we have

$$
\begin{equation*}
\sum_{j=1}^{n} \beta_{j} v_{j}\left(\frac{\partial G}{\partial x_{i}}(x, u)\right)+\sum_{j=1}^{\mu-1} \alpha_{j}(u) \frac{\partial g_{j}}{\partial x_{i}} \in J_{\Sigma_{\Lambda}(G)} \tag{3}
\end{equation*}
$$

where G is \mathcal{G}_{Λ}-versal,

$$
G(x, u)=\sum_{i=1}^{\mu-1} u_{i} g_{i}(x)+g(x) .
$$

Proof. By straightforward check of the conditions (1) and (2).
Now we use the arguments working for the bifurcation and discriminant sets. Consider the ideal

$$
\widetilde{\Delta}_{\Lambda}(G)=\left\langle v_{i} \cdot G\right\rangle \mathcal{O}_{n+r}
$$

in \mathcal{O}_{n+r}, where v_{i} are generators of Ξ_{Λ}. Since G is \mathcal{G}_{Λ}-versal, by the preparation theorem the quotient module

$$
A=\mathcal{O}_{n+r} / \widetilde{\Delta}_{\Lambda}(G)
$$

is a free \mathcal{O}_{r}-module generated by $1, g_{1}, \ldots, g_{\mu-1}$. In fact, take $\pi(x, u) \rightarrow u$, and look on A as an \mathcal{O}_{n+r}-module. Then A is a finite \mathcal{O}_{r}-module if and only if $A /\left(\pi^{*} \mathbf{m}_{r}\right) A$ is finite over \mathbb{C}. We see that

$$
\begin{aligned}
A /\left(\pi^{*} \mathbf{m}_{r}\right) A & \cong \mathcal{O}_{n+r} /\left(\left\langle v_{i} . G\right\rangle+\mathbf{m}_{r} \mathcal{O}_{n+r}\right) \\
& \cong \mathcal{O}_{n} /\left\langle v_{i} . G(x, 0)\right\rangle \mathcal{O}_{n} \cong\left\{1, g_{1}, \ldots, g_{\mu-1}\right\}_{\mathbb{C}}
\end{aligned}
$$

Thus for any $h \in \mathcal{O}_{n+r}$ we can write

$$
\begin{equation*}
h(x, u)=\sum_{i=1}^{n} \beta_{i}(x, u)\left(v_{i} . G\right)(x, u)+\sum_{j=1}^{\mu-1} \alpha_{j}(u) g_{j}(x)+\alpha(u) \tag{4}
\end{equation*}
$$

for some $\beta_{i} \in \mathcal{O}_{n+r}, \alpha_{i} \in \mathcal{O}_{r}$ and $\alpha \in \mathcal{O}_{r}$.
Now we have the basic result.
Theorem 3.3. Let $h \in \mathcal{O}_{n+r}$ and suppose that

$$
\frac{\partial h}{\partial x_{i}}(x, u) \in J_{\Sigma_{\Lambda}(G)}, \quad i=1, \ldots, n .
$$

Then the vector field

$$
\xi=\sum_{i=1}^{r} \alpha_{i}(u) \frac{\partial}{\partial u_{i}},
$$

where $\alpha_{i}, 1 \leq i \leq \mu-1$, are defined in (4) and $\alpha_{i}, i \geq \mu$, are arbitrary holomorphic functions from \mathcal{O}_{r}, is tangent to the Λ-bifurcation variety of the family G.

Proof. Take h in the form (4). For derivatives of h we have

$$
\frac{\partial h}{\partial x_{i}}(x, u)=\sum_{j=1}^{n} \frac{\partial \beta_{j}}{\partial x_{i}}\left(v_{j} \cdot G\right)+\sum_{j=1}^{n} \beta_{j} \frac{\partial}{\partial x_{i}}\left(v_{j} \cdot G\right)+\sum_{j=1}^{\mu-1} \alpha_{j}(u) \frac{\partial g_{j}}{\partial x_{i}}(x)
$$

and by assumptions this belongs to $J_{\Sigma_{\Lambda}(G)}$. We also have

$$
\sum_{j=1}^{n} \beta_{j} \frac{\partial}{\partial x_{i}}\left(v_{j} \cdot G\right)=\sum_{j=1}^{n} \beta_{j} v_{j}\left(\frac{\partial G}{\partial x_{i}}\right) \bmod \left(J_{\Sigma_{\Lambda}(G)}\right)
$$

So by Lemma 3.2 we obtain the lifting formula (3) for the vector field $\xi=$ $\sum_{i=1}^{r} \alpha_{i} \partial / \partial u_{i}$, which is tangent to $Q_{\Lambda}(G)$.

One can also obtain the converse, which results immediately from the proof of Theorem 3.3.

Corollary 3.4. Let $\xi=\sum_{i=1}^{r} \alpha_{i}(u) \partial / \partial u_{i}$ be a tangent vector field to $Q_{\Lambda}(G)$. Then for some $h \in \mathcal{O}_{n+r}$,

$$
\begin{equation*}
h=\sum_{i=1}^{n} \beta_{i}\left(v_{i} G\right)+\sum_{j=1}^{\mu-1} \alpha_{j} g_{j}+\alpha \tag{5}
\end{equation*}
$$

where $\beta_{i} \in \mathcal{O}_{n+r}, \alpha \in \mathcal{O}_{r}$ and $\partial h / \partial x_{i} \in J_{\Sigma_{\Lambda}(G)}$.
Proof. Take h in the form (5), where

$$
\sum_{i=1}^{n} \beta_{i} v_{i}+\sum_{j=1}^{\mu-1} \alpha_{j} \frac{\partial}{\partial u_{j}} \in \Xi_{\Sigma_{\Lambda}(G)}
$$

Then by a simple check we find that $\partial h / \partial x_{i} \in J_{\Sigma_{\Lambda}(G)}$.
One can easily check that the space of germs $h \in \mathcal{O}_{n+r}$ such that $\partial h / \partial x_{i}(x, u) \in J_{\Sigma_{\Lambda}(G)}, i=1, \ldots, n$, is an \mathcal{O}_{r}-module, which we denote by \mathcal{H}_{G}.
4. An algorithm. Now we present an algorithm which is useful in obtaining all tangent vector fields to $Q_{\Lambda}(G)$. We see that

$$
\langle F\rangle J_{\Sigma_{\Lambda}(G)}+\widetilde{\Delta}_{\Lambda}^{2}(G) \subset \mathcal{H}_{G}
$$

Since $\Delta_{\Lambda}(g)$ contains some power of the maximal ideal \mathbf{m}_{n}, also the space

$$
\frac{\mathcal{O}_{n}}{\Delta_{\Lambda}^{2}(g)+\langle F\rangle J_{\Lambda}(g)}, \quad J_{\Lambda}(g)=\left\langle\frac{\partial g}{\partial x_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}, F(x)\right\rangle
$$

is finite-dimensional with \mathbb{C}-basis, say, $\left\{f_{1}, \ldots, f_{N}\right\}$.

By the preparation theorem $\left\{f_{i}\right\}_{i=1}^{N}$ also generates

$$
\frac{\mathcal{O}_{n+r}}{\widetilde{\Delta}_{\Lambda}^{2}(G)+\langle F\rangle J_{\Sigma_{\Lambda}(G)}}
$$

as an \mathcal{O}_{r}-module.
Now any element $h \in \mathcal{H}_{G}$ can be written in the form

$$
\begin{aligned}
h(x, u)= & \sum_{i=1}^{N} \phi_{i}(u) f_{i}(x)+\sum_{i, j=1}^{n} \beta_{i, j}(x, u) \frac{\partial G}{\partial x_{i}}(x, u) \frac{\partial G}{\partial x_{j}}(x, u) \\
& +\sum_{i=1}^{n} \gamma_{i}(x, u) \frac{\partial G}{\partial x_{i}}(x, u) F(x)+\gamma_{0}(x, u) F(x)^{2}
\end{aligned}
$$

where $\beta_{i, j}, \gamma_{i}, \gamma_{0} \in \mathcal{O}_{n+r}$ and we seek elements $\phi_{i} \in \mathcal{O}_{r}$ such that

$$
\sum_{i=1}^{N} \phi_{i}(u) \frac{\partial f_{i}}{\partial x_{j}} \in J_{\Sigma_{\Lambda}(G)}, \quad 1 \leq j \leq n
$$

We show how to work with this approach and algorithm in several concrete cases.
4.1. Let $\Lambda=\left\{(y, x) \in \mathbb{C}^{n+1}: y=0\right\}, x=\left(x_{1}, \ldots, x_{n}\right)$. Then for some $g \in \mathcal{O}_{n+1}$ and the versal unfolding G of g we have

$$
\begin{aligned}
\Delta_{\Lambda}(g) & =\left\langle y \frac{\partial g}{\partial y}, \frac{\partial g}{\partial x_{1}}, \ldots, \frac{\partial g}{\partial x_{n}}\right\rangle \mathcal{O}_{n+1} \\
\widetilde{\Delta}_{\Lambda}(G) & =\left\langle y \frac{\partial G}{\partial y}, \frac{\partial G}{\partial x_{1}}, \ldots, \frac{\partial G}{\partial x_{n}}\right\rangle \mathcal{O}_{n+1+r} \\
J_{\Sigma_{\Lambda}(G)} & =\left\langle\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x_{1}}, \ldots, \frac{\partial G}{\partial x_{n}}, y\right\rangle \mathcal{O}_{n+1+r}
\end{aligned}
$$

As an example we take the simplest nontrivial case of type F_{4} (cf. [7]):

$$
g(y, x)=y^{2}+x^{3} .
$$

Then $G(y, x, u)=y^{2}+x^{3}+u_{1} x y+u_{2} y+u_{3} x$ and

$$
\begin{aligned}
\widetilde{\Delta}_{\Lambda}^{2}(G) & =\left\langle 2 y^{2}+y u_{2}+u_{1} x y, 3 x^{2}+u_{1} y+u_{3}\right\rangle \\
J_{\Sigma_{\Lambda}(G)} & =\left\langle u_{2}+u_{1} x, 3 x^{2}+u_{3}, y\right\rangle
\end{aligned}
$$

and also the quotient space

$$
\frac{\mathcal{O}_{2+3}}{\widetilde{\Delta}_{\Lambda}^{2}(G)+\langle y\rangle J_{\Sigma_{\Lambda}(G)}}
$$

is generated by $\left\{1, x, y, x^{2}, x^{3}, x y\right\}$ as an \mathcal{O}_{3}-module.
We see that the functions
$h(y, x, u)=\alpha_{1}(u)+\alpha_{2}(u) x+\alpha_{3}(u) x^{2}+\alpha_{4}(u) x^{3}+\alpha_{5}(u) y+\alpha_{6} x y+\psi(y, x, u)$
with

$$
\begin{aligned}
& \alpha_{5}(u)+\alpha_{6}(u) x \in J_{\Sigma_{\Lambda}(G)} \\
& \alpha_{2}(u)+2 \alpha_{3}(u) x+3 \alpha_{4}(u) x^{2} \in J_{\Sigma_{\Lambda}(G)} \\
& \psi \in \widetilde{\Delta}_{\Lambda}^{2}(G)+\langle y\rangle J_{\Sigma_{\Lambda}(G)}
\end{aligned}
$$

form the space \mathcal{H}_{G}.
Now it is easy to calculate the basis of vector fields tangent to $Q_{\Lambda}(G)$ (cf. [7]):

$$
\begin{aligned}
V_{1} & =-u_{1}^{2} \frac{\partial}{\partial u_{2}}+6 u_{2} \frac{\partial}{\partial u_{3}} \\
V_{2} & =u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}} \\
V_{3} & =-u_{1} \frac{\partial}{\partial u_{1}}+2 u_{3} \frac{\partial}{\partial u_{3}} \\
V_{4} & =3 u_{2} \frac{\partial}{\partial u_{1}}-u_{1} u_{3} \frac{\partial}{\partial u_{2}}
\end{aligned}
$$

which satisfy the relation $-u_{1} V_{4}+u_{3} V_{1}-3 u_{2} V_{3}=0$.
4.2. In the case of Λ singular our algorithm leads to quite complicated calculations. We show only some steps of the procedure which make clear the differences with the nonsingular case.

Let $\Lambda=\left\{(x, y) \in \mathbb{C}^{2}: F(x, y)=x^{3}-y^{2}=0\right\}$. The module Ξ_{Λ} of vector fields tangent to Λ is generated by

$$
\xi_{1}=2 x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial y}, \quad \xi_{2}=3 x^{2} \frac{\partial}{\partial y}+2 y \frac{\partial}{\partial x}
$$

We consider the simplest non-Morse function $g(x, y)=x^{3}+y^{2}$. Its Jacobi ideal is

$$
\Delta_{\Lambda}(g)=\left\langle x^{2} y, x^{3}+y^{2}\right\rangle
$$

and a versal deformation is

$$
G(x, y, u)=x^{3}+y^{2}+u_{1} x y^{2}+u_{2} x y+u_{3} x^{2}+u_{4} y^{2}+u_{5} x+u_{6} y
$$

The corresponding Λ-bifurcation variety $Q_{\Lambda}(G)$ is described by the equations

$$
\begin{aligned}
& 3 x^{2}+u_{1} y^{2}+u_{2} y+2 u_{3} x+u_{5}=0 \\
& 2 y+2 u_{1} x y+u_{2} x+2 u_{4} y+u_{6}=0
\end{aligned}
$$

together with $x^{3}-y^{2}=0$.
The quotient space

$$
\frac{\mathcal{O}_{2+6}}{\widetilde{\Delta}_{\Lambda}(G)+\left\langle x^{3}-y^{2}\right\rangle J_{\Sigma_{\Lambda}(G)}}
$$

is generated by $\left\{1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3}, x^{2} y^{2}, x y^{3}, y^{4}\right\}$ as an $\mathcal{O}_{6^{-}}$ module. The functions

$$
\begin{aligned}
h(x, y, u)= & \alpha_{0}(u)+\alpha_{1}(u) x+\alpha_{2}(u) y+\alpha_{3}(u) x^{2}+\alpha_{4}(u) x y+\alpha_{5}(u) y^{2} \\
& +\alpha_{6}(u) x^{3}+\alpha_{7}(u) x^{2} y+\alpha_{8}(u) x y^{2}+\alpha_{9}(u) y^{3}+\alpha_{10}(u) x^{2} y^{2} \\
& +\alpha_{11}(u) x y^{3}+\alpha_{12}(u) y^{4}+\psi(x, y, u)
\end{aligned}
$$

with

$$
\begin{aligned}
& \alpha_{1}(u)+2 \alpha_{3}(u) x+\alpha_{4}(u) y+3 \alpha_{6}(u) x^{2}+2 \alpha_{7}(u) x y \\
& \quad+\alpha_{8}(u) y^{2}+2 \alpha_{10}(u) x y^{2}++\alpha_{11}(u) y^{3} \in J_{\Sigma_{\Lambda}(G)} \\
& \alpha_{2}(u)+\alpha_{4}(u) x+2 \alpha_{5}(u) y+\alpha_{7}(u) x^{2}+2 \alpha_{8}(u) x y \\
& +3 \alpha_{9}(u) y^{2}+2 \alpha_{10}(u) x^{2} y+3 \alpha_{11}(u) x y^{2}+4 \alpha_{12}(u) y^{3} \in J_{\Sigma_{\Lambda}(G)} \\
& \psi \in \widetilde{\Delta}_{\Lambda}^{2}(G)+\left\langle x^{3}-y^{2}\right\rangle J_{\Sigma_{\Lambda}(G)}
\end{aligned}
$$

form the space \mathcal{H}_{G}.
Remarks. 1. If g is a Morse singularity on Λ singular then the Λ-bifurcation variety $Q_{\Lambda}(G)$ is diffeomorphic to the product $\Lambda \times \mathbb{C}^{k}$ for some $k \in \mathbb{N} \cup\{0\}$.
2. Let $G(x, u)$ be a germ of a holomorphic family of functions. Let $\Lambda_{0} \subset \mathbb{C}^{n}$ be a germ of a complex space. We consider a deformation of Λ_{0}, i.e. a family of varieties $\pi: \widetilde{\Lambda} \rightarrow \mathbb{C}^{r}$ with $\pi^{-1}(0)=\Lambda_{0}$. As a natural generalization of a Λ-bifurcation variety of G we have the $\widetilde{\Lambda}$-bifurcation variety of G defined by
$Q_{\widetilde{\Lambda}}(G)=\left\{(x, u) \in \mathbb{C}^{n} \times \mathbb{C}^{r}: \frac{\partial G}{\partial x_{i}}(x, u)=0,(x, u) \in \pi^{-1}(u), i=1, \ldots, n\right\}$.
If $\widetilde{\Lambda}$ is the versal deformation of Λ_{0} (cf. $[8,5]$) we may use the normal forms of $\widetilde{\Lambda}$ to consider the parametrized groups (deformations of groups) $u \rightarrow$ $\mathcal{G}_{\widetilde{\Lambda}_{u}}, \widetilde{\Lambda}_{u}=\pi^{-1}(u)$ acting on families G. In case of families of hypersurfaces, $\tilde{\Lambda}$ is given by the holomorphic function $F:\left(\mathbb{C}^{n} \times \mathbb{C}^{r}, 0\right) \rightarrow(\mathbb{C}, 0), \Lambda_{u}=\{x \in$ $\left.\mathbb{C}^{n}: F(\cdot, u)=0\right\}$. So the classification problem of $\widetilde{\Lambda}$-varieties is reduced to the classification of map-germs $(F, G):\left(\mathbb{C}^{n} \times \mathbb{C}^{r}, 0\right) \rightarrow \mathbb{C}^{2}$ with right and modified left equivalences (cf. [13]).

References

[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985.
[2] J. W. Bruce, Functions on discriminants, J. London Math. Soc. (2) 30 (1984), 551-567.
[3] J. W. Bruce and R. M. Roberts, Critical points of functions on analytic varieties, Topology 27 (1988), 57-90.
[4] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984.
[5] S. Izumiya, Generic bifurcations of varieties, Manuscripta Math. 46 (1984), 137-164.
[6] S. Janeczko, On isotropic submanifolds and evolution of quasicaustics, Pacific J. of Math. 158 (1993), 317-334.
[7] -, On quasicaustics and their logarithmic vector fields, Bull. Austral. Math. Soc. 43 (1991), 365-376.
[8] A. Kas and M. Schlessinger, On the versal deformation of a complex space with an isolated singularity, Math. Ann. 196 (1972), 23-29.
[9] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
[10] O. W. Lyashko, Classification of critical points of functions on a manifold with singular boundary, Funktsional. Anal. i Prilozhen. 17 (3) (1983), 28-36 (in Russian).
[11] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291.
[12] H. Terao, The bifurcation set and logarithmic vector fields, Math. Ann. 263 (1983), 313-321.
[13] C. T. W all, A splitting theorem for maps into \mathbb{R}^{2}, ibid. 259 (1982), 443-453.
[14] V. M. Zakalyukin, Bifurcations of wavefronts depending on one parameter, Functional Anal. Appl. 10 (1976), 139-140.

INSTITUTE OF MATHEMATICS

WARSAW UNIVERSITY OF TECHNOLOGY
PL. POLITECHNIKI 1
00-661 WARSZAWA, POLAND

[^0]: 1991 Mathematics Subject Classification: Primary 58C27, 58F14; Secondary 57R45, 53A04.

 Key words and phrases: bifurcations, singularities, logarithmic stratifications.

