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There is a method for classifying the polynomial covariants of binary forms by using umbra1 
calculus. We generalize this method to obtain a general framework to describe the tensor invari- 
ants and the corresponding invariant subspaces of binary forms. As a consequence we obtain the 
unique invariant symplectic structure and Riemannian structure on the spaces of binary forms 
of odd and, respectively, even degree. In addition, the unique invariant contact structure on this 
space is found. Using the theory of common covariants of binary forms, the hierarchy of apolar 
coisotropic manifolds and generalized open swallowtails is derived. We identify the invariant 
Lagrangian varieties of the symplectic space of binary forms with the generic systems of rays on 
the generic obstacle surface. 

1. Introduction 

Let (T*R”, won) be the phase space for the free particle (cf. [l]) with the Hamiltonian 
function H(q, p) = 1/2(1/p] I2 - 1). Let the smooth hypersurface 2 c R”, representing 
an obstacle in the Euclidean space, be described by the smooth function F : R” -+ R. 
The corresponding two hypersurfaces of (T’R”, won) : Y = {(q, p); H(q, p) = 0) and 
2 = {(q,p); F(q, p) = F(q) = 0}, define the sphere bundle W = Y n 2 over 2. Let us 
denote by M the symplectic space of all integral lines of the characteristic distribution 
of Y. Let 7r : Y -+ M be its canonical characteristic projection. The critical points of 
7r(w are given by 0 = {(q, p) E W; {H, F} = 0). 0 forms the set of all coversors in R” 
tangent to z and Z = rr(fl) c M is the hypersurface of all lines tangent to 2. 

In the generic case of ~Iw being the Whitney’s map of type Al, A2 or AJ, there exist 
only three normal forms for W, which in the appropriate Darboux coordinates (which do 
not preserve special symplectic structure) are described as follows (see [3], Theorem 3): 

Wl = {(q,p) E T’R”; P; + ~1 = 0, qo = O], 

w2 = {(sp) E T*R”; Pi + PlPO + Ql = 0, qo = O), 

w3 = {(q,p) E T’R”; Pi + PlP; + Q2PO + P2 = 0, qo = 0). 

* Partially supported by Max-Planck-Institut fur Mathematik, Bonn, Germany. 
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In the variational obstacle problem (cf. [6, 141) the natural geodesic flow y on E is 
defined by the mutual position of the source of radiation and the obstacle itself. The flow 
y corresponds to the Hamiltonian flow of H on the hypersurface E of M. The generic 
geodesic flows on the obstacle are classified by the corresponding Hamiltonian flows for 
the hypersurfaces Ei = 7r(W~) c Al, i = 1,2,3. The most singular case i = 3, as well as its 
generalization, was precisely described by V.I. Arnold in [3] and [6]. He wrote down the 
corresponding geodesic trajectories on c”3 and showed that the typical Lagrangian variety 
in Zs c R4, corresponding to the generic system of gliding rays in the bioasymptotic point 
of the obstacle, is symplectomorphic to that one given by the following local model 

{(ql,q2,pl,p2) E M; iX5 + &X3 + iq2X2 + p2X + iq1 has a root of 

multiplicity 2 3}, 

(cf. Remark 5.9). 

It appeared (see [5, 6, 141) that the singularities of wavefronts obtained in these models 
are also classified by the spaces of the singular orbits of reflection groups as in the standard 
A, D, E case (see [6, 131). The analogous system of rays on the plane gliding along the 
curve having an inflection point is determined by the reflection group of symmetries of 
the icosahedron (see [5], p. 28). 

The aim of this paper is to investigate the combinatorial aspects of the singular- 
ities considered above and to give the precise description of the analytical structure of 
these singularities in the general setting of symplectic geometry and invariant theory of 
binary forms. We show that in the theory of obstacle singularities, the natural symplec- 
tic structures are provided by symplectic reduction process (cf. [18]) from the unique 
Sll(K)-invariant symplectic structure which appears as a unique tensor invariant of de- 
gree two on the space of binary forms of odd degree (cf. [lo]). In order to prove that 
fact, in Section 2 we formulate an appropriate umbra1 approach to the general investiga- 
tions of the spaces of invariants of binary forms (cf. [12, 151) and prove the useful poly- 
nomial identities appearing in the stabilized hierarchy of polynomial spaces (introduced 
in [6]) with the fixed root comultiplicity. In Section 3 we construct an umbra1 approach 
in order to classify explicitly tensor invariants of binary forms of degree 12 (cf. [16]). 
Following [12] we prove the fundamental theorems concerning the umbral, bracket rep- 
resentation of tensor invariants. In Section 4 we show the existence and uniqueness of 
the S/z(K)-invariant symplectic structure on the space of binary forms of odd degree 
and we write down its explicit normal form. Momentum mapping for the symplectic 
action of Sh(K) in the symplectic space of binary forms is derived and the classical 
theorems of the theory of polynomial invariants of binary forms (Cayley) are reformu- 
lated using the canonical Poisson brackets. In an analogous way the Slz(R)-invariant 
contact structure of the projective space RP of all zero-dimensional submanifolds of 
degree n in the projective line is indicated. Section 5 is devoted to the generalization of 
the notion of Arnold’s [6] open swallowtail in all dimensions. We extend the notion of 
Hamiltonian system generated by translation of one of the two variables of binary forms, 
to the general sequence of coisotropic submanifolds defined by the so-called apolar sub- 
spaces. 
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2. Polynomial invariants of binary forms 

Let Mn+l be the space of binary forms of degree n. A binary form f(z, 9) of degree 
n in the variables z and y is a homogeneous polynomial of degree n in II: and y (cf. [16]). 

BY 

en = f: (;)axIkyn-k 
k=O 

(2.1) 

we denote the general binary form. It is convenient to view it as a mapping from 
K n+l identified with Mn+l, to the space of homogeneous polynomials of degree n in 
z and y. For a given binary form with parameters al, we also write f(z, y) = e,(f) 

= kco (;)akz”y+“. 

One can view en as an element of the space of polynomials K[Q, . . . , a,, 2, y]. Let 
us consider the standard action v of GZz(K) on Mn+’ (cf. [12]) and extend this action 
canonically to Mn+l x K*. Let us denote the extension by i;, then en is an invariant with 
respect to this action, i.e. for all h E GZz(K) we have C;I~, = 19~. 

A nonconstant polynomial 1 E K[Q, . . . , a,, 2, y] is said to be a covariant of index g 
of binary forms of degree n if for all h E GZz(K) we have 

5;I = (deth)gl. (2.2) 

A polynomial function I defined only on JV+i and invariant with respect to Y, according 
to the formula (2.2) is said to be an invariant of binary forms. We assume that the 
coefficients of f belong to a field K of characteristic zero and the action u of Glz(K) is 
induced by the following transformations of variables II: and y: 

z = cii: + ci*y, 

y = c215 + c&q. (2.3) 

A very effective method for indicating the polynomial covariants of binary forms comes 
from the so-called combinatorial “umbra1 calculus” (see [12, 151) We recall now some 
of the basic properties of the umbra1 calculus applied in the invariant theory of binary 
forms. Using the umbra1 methods we can reduce computations with binary forms to the 
special case of binary forms of type f(z, y) = ( (~12 + ~qy)~ and obtain the uniform theory 
of covariants. The aim of this paper is to extend this theory with respect to the invariant 
(covariant) differential forms defined on the appropriate spaces of binary forms. 

Let p = {~:,p, . . , w, u} be an alphabet consisting of the supply of Greek letters 
followed by a single Roman letter 1~. To each Greek letter, say CX, and the Roman letter 
u, we associate two variables cyi, cy2 and ui, u2 respectively. The ring of polynomials in 
these variables is a vector space called the standard umbra1 space U. With every space of 
binary forms of degree n we. associate a linear operator, say U,, defined from the umbra1 
space U to the space of polynomials K[ao, . . , a,, z, y] in the following way. 
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We define the action of U, on the corresponding monomials of U = K[cri, ~2,. . . 

. . . 1 Ul, u21: 

(Unlafa~-k) = uk, (Unlcxict$) = 0 if j + k # n (2.4) 

for any Greek umbra1 letter Q, 

(Vnl$) = t-y)‘“, (Gl& = xk 

and the multiplicative rule: 

(u,]c&~p~p;. . . +;, = (Unl +j2)(unlP;P;). . . (~nlq(~nl~;). (2.5) 

These rules uniquely define, by linearity, the umbra1 operator U, on the umbra1 space U. 
Every polynomial I(%, . . . , un,x,y) can be written as (Un]Q(~i,~2,. . . ,u~,uz)) for 

some polynomial Q E U. The polynomial Q is called an umbra1 representation of the 
polynomial I and I is called the umbra1 evaluation of Q. It is easy to see that, for the 

monomial I = &“c$ . . . a:nx’yP we have 

I = (Un] c&r;. . . yyy; sp,“- . . . &-’ . . .(-T&u;). 
-4 , 

4 times di times 

Usually the umbra1 representation of a polynomial 1 is far from being unique. 
The ii-action of GZz(K) is implied by the corresponding action of GZz(K) on the 

umbra1 space U. We derive this action in the following way. Let (c+) be defined as in 
(2.3). Then the corresponding change of umbra1 variables, say between the Greek letters 
a = (cyi, ~2) and z = (hi, 2), is defined as follows: 

cX’1 = [EC], ff2 = [crd], (2.6) 

where c = (-czt, cii), d = (-~22, ci2) and [~zu] is the determinant of a two by two matrix 
formed by two pairs 2, = (WI, WZ), w = (WI, 2~2). 

Using this notation we can easily express the umbra1 representation of any polynomial 
r(?za,...,a,,- - X, y) in terms of the umbra1 representation of I(%, . . . , a,, x, g), namely (see 
[12], p. 33) let I E K[aa, . . , a,, x, y], I = (U,IP(al, 02,. . . , ul,u2)). Then we have 

(2.7) 

By (2.7) we easily obtain the following explicit expression for the representation Y 
(cf. [121, p. 34) 

ZzI, = (Unl[cYc]k[(-*.d]n-k) 

= & (i ;Eyk (;) (;_k) c;,c;;~c:;~c;~~-~+~)u~. (2.8) 

We see that the bracket monomials, say [crp], [a.~], etc. are covariants of index 1, 
i.e., [c@] = [cd][$], [au] = [cd][?~]. Th us we can consider, in the umbra1 space U, the 
subspace of bracket polynomials defined as the linear combinations of bracket monomials, 
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i.e. the nonconstant polynomials in U which can be written as a product of brackets, say 
[op][aS] . . . [ml. 

The fundamental theorem of invariant theory of binary forms in the umbra1 approach 
can be formulated as follows. 

THEOREM 2.1. (cf. [12]). (A) Th e umbra1 evaluation (lJn. 1 P) of a bracket polynomial P, 
for which in every bracket monomial M the number of brackets in M containing only Greek 
letters is constant and equal to g E N, is a covariant of index g. 

(B) Let I be a covariant of index g of binary forms of degree n. Then there exists a bracket 
polynomial P of index g (i.e. with the same number of brackets containing only Greek letters 
in each monomials involved in P) such that I = (U, ) P). 

One can find the proof of this theorem as well as the exhaustive account of its appli- 
cations in [12]. 

EXAMPLE 2.2. Using the bracket representation we can easily calculate, by the appro- 
priate algorithm, the corresponding basic invariants for binary quadric, binary cubic and 
binary quartic forms, namely 

1. Binary quadric: 

D = (&1[42) (= aaaz - CZ~ - discriminant). 

2. Binary cubic: 

A = ~~~l~~P12~~~l~P~l[~~12~~ 
3. Binary quartic: 

1 = vJ41bP14L 
J = (U41[(yp12[a~12[P~12). 

In what follows we need to express evaluations of covariants on the subspaces of binary 
forms with multiple linear factors. Thus we introduce the so-called apolar covariant (see 
[12], p. 60). Let IlP+i, Mm+‘, n L m, be two spaces of binary forms of degree n 
and m, respectively. Umbrally one can write 6’, = (V, /[ouln), Bm = (V, /[Pu]~). We 
define the umbra1 operator U,,, acting on the space of polynomials K[cr, ,0], namely: 
(U,,,lcu2;ai) = ai if i + j = n and zero otherwise, and (Un,ml/3f/3$ = bk if Ic + 1 = m 
and zero otherwise. Thus we define the apolar covariant 

&l&J = (~n,mI[~Plm[~~ln-m), ([=I, p. 60) 
as a bilinear mapping from Mn+’ x Mm+’ to Mnmm+l, which is jointly covariant on 
M n+l x Mm+l. If f E Mn+‘, g E Mm+l are two binary forms we also write the corre- 
sponding evaluation 

@42lw(f~ 9) = (.fld- (2.9) 

If (fjg) is zero form then f and g are said to be apolarforms. Let us define 8,“f = akf/&r” 
and, by abuse of notation, we will view (f(at”f) = (&l&_,)(f,$f) as a covariant of 
binary forms of degree n. 
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By the straightforward calculations using the explicit formula for (2.9) we obtain an- 
other expression of polynomial identities mentioned in [9] (Theorem 2). 

PROPOSITION 2.3. (a) Let n be even. Then the apolar covariant (flf) is an invariant of 
binary forms of degree n. It can be expressed by 

(flf) = -&I)” &)%3:ftl,“-kf = &n-k (;>.,.,,. 
k=O k=O 

(2.10) 

(b) Let n be odd, say n = 2j + 1. Then the second apolar covariant (f la, f) can be 
expressed by 

(fla,f) = $ k(-l)“(n - 2k)a;fag-kf 

= F(-l)in(n Fi F I)%-k(snt+l + yak). 

k=O 

(2.11) 

COROLLARY 2.4. (a) Let n be even and let f have a linear factor of degree greater than 
n/2 Then (flf) = 0. 

(b) Let n = 2j + 1 and f have a linear factor of degree greater than j + 1. Then 
(.fla,f) = 0 for all (5, Y). 

Proof: (a> (.fl.f) 1s invariant so we can choose the variables x, y, in which xm, m > n/2, 
is a factor of f so ai = 0 for i = 0,. . . , m. Now by (2.10) we obtain (flf) = 0 (this is 
Hilbert zero-form [19]). 

(b) We see that on one side (fl&f) h as a multiple linear factor of degree at least 
two (because k 5 j in differential factors a,“f of the formula (2.11). However, from 
the right-hand side of (2.11) (fla,f) . IS a linear form, which gives a contradiction unless 

(f lazf) is zero. n 

Remark 2.5: Instead of binary forms we can consider polynomials f (x,1). Let us de- 
note Ck(n) the set of all polynomials of degree n having at least one root of comultiplicity 
(= n - multiplicity) less than or equal to k. We see that differentiation of polynomials 
preserves the comultiplicity of roots and defines the mapping Q&(n) : zk(n+ 1) -+ Eli(n). 
Using Proposition 2.3 and Corollary 2.4 it can be proved (see e.g. [9], p. 14) that if 
k<n-l - 2 ’ 

then & is a diffeomorphism of affine algebraic varieties. In this paper 
we use the umbra1 methods to prove fundamental results concerning the symplectic 
geometry of polynomials, some of them already mentioned in [4, 61, and to show the 
effective directions for further generalizations. 

3. Umbra1 derivation of tensor invariants of binary forms 

Let i? be the elementary umbra1 space with one umbra1 letter o. Z&(a) denotes 
the subspace of fi of all homogeneous polynomials of degree n. By &(cY) we denote 
the vector space of all differential symbols ai(a)doi + az(cr)dcuz with coefficients al, a2 
belonging to 24,-i(a). The corresponding action, say p, of GZz(K) on %(a) is canonically 
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induced from the standard G/z(K)-action on K’, namely 

(cf. (2.6)). 
Let E,(a) c &(a) be the subspace of exact differential formal l-forms. E,(Q) is 

generated by the following linearly independent elements: {~I(a~o~-“)}~=~. Let K,(a) 
denote the subspace of &(a) generated by {(r;~$-‘-~[c&r]}~~~, where [a&~] is an 
ordinary bracket with da = (dal, da2). 

PROPOSITION 3.1. There exists a uniquely defined Glz(K)-equivariant projection P : 
L&(a) + E,(a), KerP = Kn(~). 

Proof: %(a), &( a! are G/z(K)-invariant subspaces of &(a), dim&(a) = n + 1, ) 
dim K,(a) = n - 1, dim Dn(~) = 2n. Let us choose the following basis in &(a): 

eP,Z 
P +P-l&. 

= cqcr* zi p=O,...,n-1, i = 1,2. 

Then the corresponding generators for E,(a) and Km(a) can be expressed as 

d(c$cxymk) = lcek_l,l + (n - Ic)ek,z; Ic = O,...,n 

and 

respectively. 
al@2 ’ n-r-2[adQ] = er+1,2 - e,l; T = 0,. . , n - 2 

The associated 2(n - 1) x 2(n - 1) matrix 

I- -1 0 0 1 *. . . -1 0 0 1 n-l 0 0 1 . . . . -1 0 0 1 1 

has the same rank as the following matrix: 

i 0 1 

‘. *. 

0 * n-l 0 n-l n 0 . 1 . . 72 0 1 

n-l I 

Thus &(a) = E~(cE)@K,(cE). The action p restricted to En(~) and Kn(cy) is irreducible, 
which implies the uniqueness of the projection I? m 

Now we can define the umbra1 operator Vi into the space of differential l-forms over 
the space of binary forms AIn+‘. Let U be the standard umbra1 operator (see Section 2) 
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defined on 6 = K[crt, ~21. Let U’ be the restriction of U to the space Z&(a). Now we 
introduce an operator ?? defined only on E,(a) c &(cY) and satisfying the following 
commutation relation: 

doU’ = god. (3.2) 

Thus for the elements of the basis of ,?&(o) we have 

(??ld(cx:Q;-k)) = dale, k = 0,. . ,n. (3.3) 

DEFINITION 3.2. The linear operator 

u; := v 0 P: Dn(cr) + vn+i, (3.4) 

defined from the umbra1 space Dn(a) to the space Va+’ of differential l-forms on Mn+r, 
is called the elementary umbra1 operator for the space of binary forms of degree n. 

PROPOSITION 3.3. U; is a GZz(K)-equivuriant linear operator. 

Proof On the basis of Proposition 3.1, P is GEz(K)-equivariant so we have to prove 
that g is also GEz(K)-equivariant. In fact, using the bracket notation (3.1) we have 
(cf. [12]) that for any polynomial 1 E K[cQ, . . . , a,] and its umbra1 representation P E 
I(cw, 02,. . . , pl, /32] the change of variables (c, d) is expressed (by the formula (2.7)) as 
follows: 

I(&. . . ,sJ = (U(J)l~(~l, wi,. *. 3 Pl, P2)) 

= MfP(b4 WI,. . . , P4 WI)). 
Thus for the operator ?? we have (see (3.2)), 

(??(f)Id([ac]“[ad]“-“)) = d(U’(f)&rc]k[ad]“-“) 

= d(U’(f)l&;-“) = a,,, lc = 0,. . . ,n, 

where by T(:, jj) = k5$ (i)Zi&7n-” we denote the transformed binary forms in the new 

variables, and U(f), U(f) denote the corresponding umbra1 operator U written using 
these two types of variables. This completes the proof. n 

By the extension of Ug to the tensor product of p factors, say IV,,, = Dn(cr) @ . . . @ 
D,(p), we obtain the partial umbra1 operator for representing the corresponding tensor 
invariants of degree p: 

UT =,..., 0) : D?%(a) @ . . . @ D,(P) + c3pvn+l, 

NJ~~,...,p~lw(4 @. . . @ WP(P)) = Kcbl(~)) @. . . @ w;;bPm). 
(3.5) 

The formula computing the effect of a change of variables in the standard umbra1 
representations of polynomial invariants (cf. [12, 161) as well as Proposition 3.3, suggest 
a subspace of the umbra1 
Let us define the bracket 

space Wn,+ whose umbra1 evaluations are obviously invariants. 
monomials, say for two umbra1 letters: 

[c@l = d-r - a2P1 

[a@] = al@;! - a2dPl (3.6) 
[da 8 dP] = da1 @ dh - dw @ dP1. 
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DEFINITION 3.4. A bracket monomial q E W,,, is a nonconstant polynomial in IV,,, 
which can be written as an appropriate product of brackets (3.6). A bracket polynomial is 
a linear combination of bracket monomials. The linear subspace of W,,, formed by the 
bracket polynomials is denoted by &+,. 

The total umbra1 space is defined as W, = ppNWn,p and the corresponding umbra1 

operator U* is defined as the respective direct sum of the partial umbra1 operators. Let 

g E N. A nonconstant polynomial Q = $ 6 V”+’ is said to be an invariant of index g 
PEN 

if for all binary forms f(z, y) of degree n and for all linear changes of variables (c, d) the 
following identity holds: 

G = [cdlgQ. 

The aim of this section is to provide the methods for determining, as explicitely as possible, 
all the tensor invariants of binary forms. 

The index of a bracket monomial q E W, is the number of brackets in q. The bracket 
polynomials in W, which are linear combinations of bracket monomials all of the same 
index g, are called bracket polynomials of index g. 

THEOREM 3.5. Let U& ,,,,, e) be the umbra1 operator into the tensor space 6 Vn+‘. Let 

r~5 E B,,p be the bracketpolynomial of index g. Then the umbra1 evaluation of 4, (U~,,,,,,,,[C#I), 
is an invariant of index g. 

Proof: Let q be a bracket monomial of index g. Let us change the umbra1 variables, i.e. 

Pa @ 44 = det Idacl [dPcl [dad] [dp4 
> 

= [cd][dcu @ d/3]. 

Thus, for any binary form f(z, y) and for any change of variables (c, d), we have on the 
basis of Proposition 3.3, 

W& (..., p,(f)M = (U& )__., p)(f)lWlg4) 

= [cdlg(Ui,,...,lc)(f)lQ), 
which implies that (U” . ca,,,,,a,14) 1s a tensor invariant of index g and degree p. n 

The converse of this theorem is also true. 

THEOREM 3.6. Let Q be a tensor invariant of index g and degree p for binary forms of 
degree n. Then there exists a bracket polynomial CJ~ E B,), of index g such that 

Q = (U~,...,~~l4)~ 
Proof: In order to prove this theorem we must first study the combinatorics of bracket 

polynomials (cf. [12]). Let us order the umbra1 alphabet in such a way that cr < p < . . . < 
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da<d,b<.... Let q be a bracket monomial. Thus q is a product, say [c@][c~y] . . . [Sdb] 61 
[dE @ dp] of s brackets. Using the notation introduced in [12] we rewrite q as a tableau 
of height s: 

aP 
07 

1:: 
6 is 

= [(~P][crr] . . . [6d6] 8 [ds @ dp]. 

d& dp 
We will call such a tableau ordered if the letters in each row are increasing from left to 
right, and the letters in each column are nondecreasing from top down. 

We easily see, using the syzygy relations 

Wl[Prl = [wl[P~l - bPlh~l~ 
[$l[da @ @I = [day1 @ [WI - Id4 @ [@-d, 

WlkWY = [dwlWl - b4Wyl 
and antisymmetry 

WI = -[Pal, 

that the ordered bracket monomials form a basis for the vector space of all bracket polyno- 
mials. In fact, treating the differentials combinatorially as ordered symbols and assuming 
the existence of the nontrivial linear dependence relation between ordered bracket mono- 
mials with smallest number of distinct symbols and smallest height of bracket monomials, 
we come easily to a contradiction setting two highest symbols to be equal (cf. [12], p. 37). 

Let Q be a tensor invariant of index g and degree p, let p E W,,, be its umbra1 
representation. As Q is an invariant, we have for any change of variables (c, d) 

a = [cdlgQ = W;,,...,,,IW4, C4.. . > WI, WI)). (9 
This identity is true as a polynomial identity in the variables cl, ~2, dl, dz. Using this 
fact we can prove that P([cYc], [od], . . . , [PC], [pd]) = [cd]gR(crl, ~2,. . . , /31, p2), where 
R E B,,,. We can easily see that the polynomial P may be so chosen that the letter 
c, as well as the letter d, occurs exactly g times in each of the ordered monomials qk 
contained in the expansion of P([ac], [ad], . .) as a linear combination of ordered bracket 
monomials. Here the new alphabet {c, d, a, p, . . , da, d@, . . , ds} is ordered as follows: 
c < d < CI < /3... < de. In fact, replacing cl and c2 by rc1 and rcz, we obtain the 
polynomial identity 

rg[cdlgQ = (~~~,..,,p,~ 1 bkr”(k)qk), 

k 

where c(k) is the number of occurrences of c in the bracket monomial C&. Equating 
coefficients of rg we see that the bracket monomials with c(k) # g can be omitted in P. 
Let q,+ be a bracket monomial in this improved expansion of P as a linear combination 
of ordered bracket monomials. Let s(lc) be the number of brackets [cd] occurring in Q. 
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Let s be the minimum of these integers s(k). We see that s < g. If s = g we can simply 
cancel [cd]g from both sides of (i). Let us suppose s < g, writing qk = [cd]“qk we can 
cancel [&IS from both sides of (i) to obtain 

(ii) 
k 

Treating (ii) as a polynomial identity in the variables cl, CZ, di, d2, we can therefore set 

Cl = dl, c2 = d2. This yields the identity: 

(u&,...,p,l c bk&) = O, (iii) 
k 

where & is obtained from q; by setting c = d. 
As we know the ordered bracket monomials 4 as well as & are linearly independent. 

Because c bk;irc E Ker u;a,,..,p, and & are linearly independent, each monomial & can 

be writtenkas a tableau 

c* 

c* 

** 7 

** 

69 

where c occurs in the first 2(9-s) rows and an asterisk stands for the rest of letters. By 
inspection of (iv) we can deduce the corresponding elements qh. They can be written in 
the form 

c* 

c* 

d* 

d* , 
** 

** 

where c occurs as the first letter in the first g-s rows and d occurs as the first letter in the 
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next g-s rows with the additional bracket [&I standing also in (iv). Thus we have that 

k 

and we can cancel in the original polynomial P all terms giving the smallest number s of 
brackets [cd] occurring in qk. Repeating this procedure we obtain the result of Theorem 
3.6. H 

COROLLARY 3.7. On the space of binay forms of odd degree the odd degree tensor 
invariants do not exist. 

Proof On the basis of Theorem 3.6, for the tensor invariant Q of degree p and index 
g we can write 

Q = W&,...,P~I~(b4 [4i.. .I) = [c~~Q> 
where R is the corresponding bracket polynomial. On the other hand, taking the new 
parameters c -+ tc, d --) td we obtain the following equality (polynomial in t): 

t”p(~~,...,p)lR([“cl, [4.. .)) = tzgWIQ. 
Thus we see that for odd numbers n only for even number p the integer g can exists. n 

4. Invariant symplectic structure on the space of binary forms 

Let us give now the complete classification of the tensor invariants of degree two, 
i.e. we assume p = 2. 

THEOREM 4.1. There exists onb one (up to constant multiples) tensor invariant of degree 
two on the space of binay forms. 

Proof: Let n be the degree of binary forms. Bn,2 is generated by the following basis of 
ordered bracket monomials: wr = [crp]n-l[do @ d/?], 212 = [cxp]“-2[cxda] 123 [pdp]. We see 
that the third admissible bracket monomial w = [c@]“-2[Pda] 8 [crd/?], by the appropriate 
syzygy, can be written as follows: 

w = [c@]“-2([cydcy] @ [PdP] - [crP][da 8 dP]) = w - WI. 

We see also that ~2 E KerUi,,p). Thus 

dim(A,z = ImU{a,p)iB,,2) = 1, 

which completes the proof. n 

Now we are asking for the normal forms of the corresponding tensor invariants. 

PROPOSITION 4.2. All tensor invariants of degree two on the space of binay forms of 
degree n are proportional to the following basic invariant: 

QzF(“1’) (-l)j”((-l)“duj+r C% da,--_1 + da,_j_l 8 daj+& (4-l) 
j=o 

i.e. Jn,2 = {Q}. 
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Proof: On the basis of Theorem 4.1, as a generator of Jn,2 we can take the following 
invariant: 

Q = (U;“,,p,In2[a/?]“-1[do @J d/3]) = (U;a,+2~ (,,; ‘)(-I)‘“-‘-’ 
j=o 

where we denoted 

(e3,1 @C-j-1,2 - e3,2 ~3 C-j-1,1)), (0 

eP,a = a+;-p-ldai, Zp.i = /3$32”-P-‘d/3,, p=O,...,n-1, i = 1,2. 

Recalling (3.5) we obtain the action of U;b,,p, on the basic elements: 

@J&,&,r @zrI.~) = (l/n2)&+r 8 dap+r, 

(U&p)Iek,l @ &2) = (l/n2)&+t @ dap, 

(U&.&,2 Gp,l) = (l/n2)& @ dep+l, 

(U&,pjlek,2 @ &,z) = (l/n2)& @ dap, O<p,kIn-1. 

Applying these formulae to (i) we obtain the desired invariant Q of the proposition. w 

From the formula (4.1) we see that Q is a symmetric tensor on the space of binary 
forms of even degree and antisymmetric if n is odd. Thus we have 

COROLLARY 4.3. On the space of binary forms of odd degree there exists only one (up to 
constant multiples) S/z(K)-invatiant symplectic structure. 

Proof Taking n = 2lc + 3 in (4.1), after straightforward calculations we obtain 

Q = F (:“> (-l)T+lduy A dun+., 
r=o 

(4.2) 

which is a closed, nondegenerate, S&(K)-invariant two-form. m 

Remark 4.4: On the basis of (4.2) we can choose the symplectic form on Ill”+’ as 
follows: 

k+l 

w = n!(-1)“-‘C 
0 

; (-l)‘+‘du, A dun+.. 
r=O 

Choosing the new coordinates 

t n. - 
9T - -p--r, PT = (-l)k-T&u” r=O,...,Ic+l, 

on Mn+l, we can write (4.3) in the following Darboux form: (cf. [l, IS]) 

(4.3) 

(4.4) 

k+l 

w= c dPi A &i 7 

j=o 



160 S. JANECZKO 

where the elements of iW+’ can be written as follows: 

M ?%+l 3 f(GY) = 40 
x2k+3 

.k+2Yk+1 
2k+l k+2 

(21c + 3)! + . . I + qk+l (k + 2)! - pk+l (Ic +“I)! 

+ . . + (-1)“+2poy2k+3. (4.5) 

This is exactly the Slz(K)-invariant symplectic structure mentioned only in [9] in the 
context of the generalized Newton equation as well as in the obstacle problem [5]. 

Slz(K) acts symplectically on (M”+‘, w). Thus we have 

PROPOSITION 4.5. The momentum mapping corresponding to the standard Slz(K)-action 
on (Mn+l , w) is the Ad*-equivariant quadratic momentum mapping (c$ [2]). In the coordi- 
nates of (4.5) it can be written as follows: 

J : Mnfl -+ s12(K)*; J(P) = (ff+, ff-, fW@), 

where 

k+l 

H+(F) = -&bq7--1 + $l:+1> 
r=l 

k 

H-(F) = C(2k + 3 - r)(r + l)P,qr+l - ;(I; + 1)2P;+1, 

r=o 

k+l 

&(P) = C(2r - 2k - VW%, 

r=o 

(4.6) 

and {H+,H_} = Hd, n = 2lc + 3. 

Proof Taking the standard decomposition of Slz(K) onto the three one-parameter 
subgroups (cf. [19]) 

A+:[; y]; A_:[; ;I; D:[d;l ;I, cx,P,d~K, (4.7) 

we obtain the three corresponding Hamiltonian vector fields, say x+, x_, z’j, with the 
corresponding Hamiltonians H+, H-, Hd. Thus, after straightforward calculations, the 
momentum mapping follows immediately (cf. [l, 21). 

Remark 4.6: Taking into account the relation {H,, H_} = Hd we can reformulate 
the fundamental theorem (Cayley, Sylvester [16]) of the theory of invariants of binary 
forms of odd degree, i.e. we have: A polynomial 4(q,p) on the space of binary forms 
Mn+l is Slz(K)-invariant if and only if the following identities are fulfilled: {H+, 4) = 0, 
{Hd,4} = 0. Th us we easily see that the algebra of polynomial Slz(K) invariants of binary 
forms is endowed with the canonical Poisson structure (cf. [IS]). 

In the obvious way, by the multiplicative rule, we can extend the umbra1 operator U* 
(see Section 3) to have an umbra1 representation of tensor invariants with polynomial 
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coefficients. In fact we define 

where “s” is a number of umbra1 letters y, . . . ,S. Thus the corresponding extension of 
U*, say i?*, on the homogeneous elements of @, is defined as follows: 

(u*lq+ @ $7; . . s,“s;, = (u*~$q(u~y;y;). . . (u(s;s;) 

(cf. (2.5)). 
After straightforward reformulations we immediately obtain the fundamental classifi- 

cation theorems, analogous to Theorem 3.5 and Theorem 3.6 of Section 3. As a simple 
example, we apply these theorems to classify all tensor invariants of degree one with 
coefficients being the linear polynomials in variables a~, . . , a,. 

PROPOSITION 4.7. All tensor invariants of degree one with linear polynomial coeficients 
on the space of binay forms of degree n are proportional to the following basic invariant: 

1 = 2(-1)“-I-’ (y) U,_jdUj. 
3=0 

(4.8) 

Proof Let us take the relations between elementary umbra1 monomials (cf. Proposi- 
tion 3.1): 

where 

ek.1 = i(~+i - (n - k - 1)9k), 

ek.2 = k(Wk + bk-11, lc = O,...,n- 1, 

ek,i = qa2 k n-k-&, ‘t”k = d(&x;-k), gk E Ker Uz. 

It is easy to see that the space of irredundant bracket polynomials in &(c-u) @ Un(p) is 
spanned by the bracket monomial n[c$]“-‘[/3da]. Thus we have 

_“&)“-j-l(“; 1) . (u~lej,l)(ulpp-“-lp~+l) = I. 
j=o . 

COROLLARY 4.8. Let n = 21c + 3. Then the corresponding Slz(K) invariant one-form on 
the space of binary forms of degree n, in Darboux coordinates has the following form: 

k+l 

0 = -&&_i - &jqj). 

j=o 
(4.9) 
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Remark 4.9: We know (cf. [4], p. 306) that the projective space RP” of all zero-dimen- 
sional submanifolds of degree n in the projective line is endowed with the natural Slz(R)- 
invariant contact structure (cf. [l, 61). Indeed, we see that the appropriate Slz(R)-invariant 
field of hyperplanes in RP” is defined by the Slz(R)-invariant l-form VA w, where V 

= $I0 ai & is WR)- invariant and w is given in Corollary 4.3. In the affine part of RP” 

formed by the zero-dimensional submanifolds of RP’, which do not contain the point in 
infinity 1~ = 0, this contact structure is given by (see Corollary 4.8) 

k+l 

This is the canonical contact structure on the space of polynomials 

z2k+3 52k+2 xk+2 zk+l 

(21c + 2)! + qlc2k + 2j! + ... + qk+l+ -pk+lck + 1>! + ... + (-l)k+2P0 . 

Thus all the results concerning the symplectic geometry of polynomial spaces have a 
direct reformulation in terms of the above introduced contact geometry (cf. [4]). The 
more precise analysis of this case will be discussed in a forthcoming paper. 

5. The hierarchy of apolar coisotropic manifolds and generalized open swallowtails 

Let (M,u) be a symplectic manifold. The new symplectic structures associated to 
(M, w) are provided by the so-called coisotropic submanifolds in M (cf. [l, 181). We 

recall that a submanifold C C M is coisotropic if at each 2 E C we have (T,C)§ = {U E 
T,M; (u A u, w) = 0, for every u E T,C} C T,C. 

The distribution F = u (T,C)§ is the characteristic distribution of w/c. Let B be 
XEC 

the space of characteristics of it and p : C ---) B be its canonical projection. It is known 
(cf. [IS]) that if B admits a differentiable structure and p is a submersion, then there is a 
unique symplectic structure /3 on B such that p’p = wlc. The symplectic manifold (B, /3) 
associated in this way with the triplet (M, w, C) is called the reduced symplectic manifold 

(cf. PII* 
Let (M”+l , w) be the symplectic space of binary forms (see Section 4). The canonical 

n-l subspaces in Mn+‘, say C(r), 0 5 1 5 2 of all binary forms apolar to its Z-derivatives 
with respect to z are called the canonical apolar subspaces. 

PROPOSITION 5.1. The canonical apolarsubspaces C(‘), (0 5 I I +) form coisotropic 

varieties of (Mn+l, w). 

Proof: We see that C(‘) is described by the following system of 1 + 1 equations: 
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After straightforward calculations we find that 

{J?!l’ pq - 0 
2 ’ 3 CC’) - > 

where (4, TJ} is the appropriate Poisson bracket (cf. [l]); 

W ati 
{4,1cI} = ~~(-l)~-i(;)-‘(~$ - -- 

> au,_, dai ’ 
n = 2k + 3. 

i=O 
n z 

Thus the system of equations P,!“)(aa, . . . , a,) = 0, i = 0,. . . ,Z ((f@) = 0) form the 
coisotropic subvariety of (Mn+i, w). H 

Now we pay more attention to the particular case I = 1. 

COROLLARY 5.2. Let 1 = 1, then the second apolar coisotropic variety C’(l) can be 
expressed as follows: 

C(l) = {f E Mn+‘; (f/f:) = n(P,(‘)y + P,(‘)z) = (-l)“+’ $1IHd + 2H+z) z=Y O], 

where 

{P,“‘, PO”‘} = I(_q”++(l) 
nn! 1 and {H+,Hd} = H+. 

Proof: Immediate, on the basis of (4.6), Proposition 5.1 and simple but tedious calcu- 
lations (see Proposition 2.3, see also Example 2 in [5] p. 45). l 

To the space of binary forms of degree n one can easily associate the corresponding 
spaces of polynomials of one variable putting y = 1 in (2.1). In order to have the poly- 
nomial symplectic spaces adapted to the investigations of singularities in the variational 
obstacle problem (see [3, 5, 6, 141) we associate to every symplectic space (Mn+l,w) the 
canonically reduced symplectic space Q”-l of polynomials of degree n - 1 where the 

leading term has constant coefficient A. Q”-’ = CO/ N, where “w” is given by the 

coisotropic submanifold Co := {f E Mn+‘; nia, = 1). Q”-’ is identified canonically with 

the space of derivatives &(f(z, l)), f E Mn+’ belonging to CO, namely 

z2k+2 x2k+l 

Q"_' 34(x) = (2k + 2)! + Q1(2k + I)! 
Zk+l 

+... ~ 
+ Qk+l(k + l)! 

-&+I$ + . . . + (-l)“+‘pl (5.1) . 

endowed with the reduced symplectic structure 

k+l 

(J = 
c dp, A &j. 

j=l 
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PROPOSITION 5.3. The apofur subspaces G’(t) (1 = 1, . . . , 9) of (iVP+l, W) induce the 

corresponding coisotropic subspaces of (Q”-‘, w’), say i?(l) (1 = 1, . . . , q), described by 

C(t) = (4 E Q”-‘; p:j,‘l’(q,p) = 0, s = 1,. . . , Z}, 2 = 1,...,Ic+1, 

where 

(n - s - i)!qiq,-& + $$ g (” ; l)i!(, - s - i)!pn_iqn_& + a,. 
i=k+2 

Proof Let us observe that (P:“)-‘(O) n CO is transversal to the characteristic distri- 

bution r of CO. Thus Pi”’ does not give any constraint on the reduced space Q”-l. It 

is easy to see also that the functions p,(‘)lo, (1 2 s 2 1) are constant along the integral 
manifolds of distribution r. Thus we obtain the new coisotropic constraints defined by 
these functions on Qn-‘, which after straightforward calculations are expressed in the 
form (5.1). n 

Now we investigate the properties of the symplectic space induced by the coisotropic 
submanifold e*(l) in t&“-l, w’), rt = 2k + 3. 

PROPOSITION 5.4. The reduced symplectic space corresponding to the triplet (Qn-l, WI, 
C(l)) is identified with the following space of polynomials 

Z= 

X2k+l X2k-1 Xk xk-l 

(2k + l)! + 41 t2k _ 1I! + . . . + qk% - pk tk _ 1>! + . * * + (-l)“Pl (54 

endowed with the reduced symplectic form G = 5 dpi A dqi. 
i=l 

Proof: The function F!” as well as the Hamiltonian H+ (see Corollary 5.2) correspond- 
ing to the one-parameter subgroup A+ (cf. (4.7)) g enerates translations along variable x. 

Thus the space of characteristics of the coisotropic submanifold 8) can be immediately 
identified with the derivatives of polynomials: 

z2k+2 %2k+l xk+l 

(2k + 2)! +q1(2k+1)! +“.+qk+l(k+l)! . ~ - w,,$- + . . . + (-l)“+$ (5.3) 

with an additional condition that the sum of all roots is equal to zero (7jt = 0) (cf. [6, 
111). This completes the proof. n 

As a polynomial parametrization of characterictics of ?? (l) by the parameter t, described 
in Proposition 5.4, we can write the following identification (cf. [lo, 11, and (5.3) above), 

(x - ty’c+1 

(2k + l)! 
+ $ tx - t)2k + . . + qk+lt” - Qk 

(2k)! ’ k!- 
pk+ltx -tlk-l 

(k - l)! 
+ . . + (-1)kjj2 
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X2k+l X2k-1 Xk 
xk-l 

= t21c + 1j! + !I1 t2L _ 1j! + . . . + 4kG - pk cIc _ 1j! + . . . + (-ljkpl. 

Thus we immediately have 

COROLLARY 5.5. Let m > 5 . [ 1 Then the set of polynomials of Z having a root of 

multiplicity m, say Lc1_, , form an isotropic (see [IS]) variety in (2, is). The maximal isotropic 

variety, i.e. m = 5 , [ 1 is a Lagrangian variety (c$ [ll]) Jymplectomorphic, in the case of 

n = 7, to the system of rays on the smooth obstacle, with the highest genetic singularity, 
so-called open swallowtail singularity (cf [5,6] and Fig. 1, below) 

Fig. 1 

Remark 5.6: Let us notice that the open swallowtail singularities in (2,~) are con- 

nected with the structure of the space of the Hilbert’s zero-forms (cf. [17, 19]), and are 
quite exceptional. We can easily see that the variety V of polynomials in (2,~) with 
maximal possible number of double roots is not Lagrangian (cf. [5], p. 37). 

One can easily check this for k = 2. In fact, we have 

1 5 FX + q$tx’ + q2;x2 - p2x + p1 = $(x - c&x - @2(x - y) 

and the corresponding immersion of the smooth strata of V is the following: 

q1 = &(2w - 3z2), q2 = ~(wz + z3), 

p1 = &w2z, p2 = &4wz2 - w2), 

where z = Q + ,& w = c@, 20 + 2p + y = 0. 
By straightforward calculations we obtain 

W/V = dpl A dql + dp2 A dqzlv = (&w2 + &wz2 - &z4)dz A dw # 0. 

Following the theory of generating families for the germs of Lagrangian varieties 

presented in [ll] one can describe the analytical structure of open swallowtails, i.e. Lp), 
using the polynomial functions. Let us recall that the function F : Q x R” + R is a 
generating family (with s-parameters) for the germ of Lagrangian variety L C (T*Q, WQ) 
if L can be locally written in the following way (cf. [IS]): 
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L = {(a P) E T*Q; ~,ERs, gt4,4 = P, g$J) = 0). (5.4) 

We see that (2,;) has a canonical cotangent bundle structure, (2,~) N (T*Q,~Q). 
Thus we are able to calculate the global generating families for the general open swal- 

lowtails LPI. 

PROPOSITION 5.7. An open lc-dimensional swallowtail L(,“) C (2,~) is represented, in the 
form (5.4), by the following one-parameter generating farnib Gk : Q x R -+ R, 

G/c(q, A) = g ‘Cl? y Df+jli,sA_++4~__i__r (qu-I + (-l)“$x.‘) 
i=-1 9~2 u=2y=2 

( 
Qr_1 + (-l)‘qX’ 

> 

k-2 k-i k-i 

X”-“-’ + f Td r x Drji k_iAk-i__uAk-_i_r 
i=o u=2 r=2 

+ (-1+-$X” 
>( 

+ (-1)rq 
> 

k-2 k-i 

qu-1 G-1 X’ X”-“-’ + xx EfliAk_i-T 
i=O r=2 

( . > 

k+l k+l 

Qr-1 + (-l)‘~XT A”-’ + iDrjl,k+l CC Ak+l_iAk+l-r 
i=2 r=2 

Qi-1 

k+l 

q,._l + (-l)+Ar 
> 

Xn-i-r + Ef$ c Ak+l_i 
i=2 

pi-1 + (-l)“&$X” 
E(k) 

Xnbi - &X2k+3, 

where 

EL”) = (_l)“-T k+l (-l)j(j - 1) ~ 
(k)! -j=2j!(?t-j-r)! c lIr,sIk+l 

and the numbers Al, are given by the following recurrential formulae: 

Ao = 1, 
k 1 

Al, = c ir(-l)i+‘Ak-i 
i=r * 

Proof: On the basis of Proposition 4.2 in [ll] and the formulae for the characteristic 
curves of e(l). After straightforward calculations we obtain the corresponding generating 
one-parameter families for the open swallowtails in all dimensions. I 

EXAMPLE 5.8. Let be k = 1,2, then the corresponding generating families for the 
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cusp singularity (one-dimensional open swallowtail) and the standard (two-dimensional 
(31) open swallowtail singularity of Lagrangian varieties can be written directly, by Propo- 
sition 5.7, in the following way: 
cusp: 

open swallowtail: 

Gl(q, A) = -&A” - $13q - ;Xq2, (5.5) 

G2(q1, q2, A) = -&A’ - &X5ql - &X4q2 - $X3q; - $A2q1q2 - ;Aq;. (5.6) 

Remark 5.9: (singularities in the obstacle geometry [6]): Let Q be a hypersurface in R!. 
T’ R3 is the phase space of free particle. We take the hypersurface Y; Y = ((2, p) E T* R3; 
H(z,p) = i(lp12 - 1) = 0). Let A4 denote the symplectic manifold of integral lines of the 
characteristic distribution of Y. T : Y + M is the canonical projection along the integral 
lines. M can be identified with symplectic manifold of oriented lines in Rs, M S T*S2 
(cf. [6]). Let y be a geodesic flow on Q (determined by the point source of light in the 
space, [14]). Let z 2 Y be the submanifold formed by versors tangent to geodesics of y 
along the surface Q. 

Fig. 2 

PROPOSITION (cf. [3, 141). (A) L = T(Z) . u a Lagrangian subvariety of (M, 3). L is 
sing&r in the asymptotic points of y (i.e. the corresponding line of L is also an asymptotic 
direction on Q) in a hyperbolic region of Q. Typically the asymptotic points of rfomz a curve, 
.suy !J c Q. 

(B) Let PO E t! be such that the corresponding geodesic of rgoing through po is tangent to 
t? in po. Then the corresponding germ of Lagrangian variety (r(L), wg) b the open swallowtail 

singularity (cf [3]) symplectomorphic to L, (‘) described in Corollary 5.5 (the corresponding 
variety of rays gliding along the obstacle on the plane with the inflection point, is illustrated 
in Fig. 2). I 

Using the Huyghens principle (cf. [7, 81) one can express the asymptotic intensity of 
radiation in the presence of an obstacle by the appropriate rapidly oscillating integrals 
with singular stationary varieties represented by the corresponding phase functions (optical 
distances), say 
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s ei74(z~x)u(cc, A, 7-)&l, T --+ c45.7) 
R” 

For the open swallowtail singularities the phase functions (families) are indicated, by 
Proposition 5.7, in the following way: 

Let us take the product symplectic manifold 

.Z = (T*R3 x M,30wR& 
(see [ll]). 
We know that graph K C Z is a Lagrangian submanifold of z”. Then there exists its local 
Morse family (cf. [18]), say K : R? x X x Rp 4 R : (cc, q, p) -+ K(z, q, p), where T*X 
is an appropriate local cotangent bundle structure on A4 (see [l]). Let Gk(q, A) be the 

generating family for LCn) Ic given in Proposition 5.7. Then the corresponding phase family 
in (5.7) is a generating family for the pullback (cf. [ll]) 

Fig. 3 

(graph ~)~(L(,nj). 

Thus the corresponding optical distance (time), say &(z), is described by the following 
equations: 

@k(x) = Stat,,,,x(Gk(% A) - K(z, 4, P)>. (5.8) 

EXAMPLE 5.10. Now we exactly calculate the planar case Ic = 1. In this case the local 
Morse family for graph 7r is the following: _ 

K(z1,22r 4) = 22q - 21 d=-z 9 # 1. 

Thus taking the generating family (5.5) for L(:) we obtain the corresponding 
optical distance functions (cf. (5.7)) 

family of 
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and the graph of phase function @I(X), Cr = {$Q(cE) - t = 0) (see Fig. 3). By the 
straightforward calculations, using this family, we obtain the corresponding family of wave 
fronts parametrized by the optical time t; 

x1 = (+t)J1+, 

x2 = -p : 3-ip2(kp5-t) (seeFig. 4), 

obstacle 

Fig. 4 

which are exactly the level-sets of the phase function T&(X) in the planar obstacle problem 
(see Fig. 2) with inflection point [5]. 
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