Equivalence of isotropic submanifolds and symmetry

S. Janeczko
Institute of Mathematics, Warsaw University of Technology,
PI. Politechniki 1, 00 661 Warsaw, Poland

(Received 11 June 1996; accepted for publication 12 March)1997

It is shown that any two generating families of the same isotropic submanifold are
equivalent. Also the singularity theory of symmetric isotropic submanifolds is de-
veloped and the basic classification theorems on prenormal forms, in particular for
Z, action, are proved. ©€1997 American Institute of Physics.
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I. INTRODUCTION

The genesis of this paper lies in theoretical questions in geometrical diffraction theory where
a central role is played by the systems of rays passing through a boundary of an dlagtextle¢
(cf. Refs. 1,2. It is explained in Refs. 1,3,4 why the proper isotropic submanifolds of cotangent
boundlesphase spacgsio occur in geometrical diffraction and why the symmetry group of these
objects appear as a natural feature of existing optical systeinRefs. 5,6.

Let F:R>XR?>XX—R, F(x,y,a,b,q;,9,,0,) be the optical distance function from the wave
front {(x,y,2):z= ¢(X,y), #(0)=0, ¢'(0)=0} in the presence of an aperture parametrized by
{(a,b) e R%:f(a,b)=0} to the configurational pointy; ,g,,q3) € X. If the incident ray goes from
the point(x,y, ¢(x,y)) to the point of an edgéf(a,b)=0} of the aperture, then the diffracted
rays form a cone X (cf. Refs. 2,6. The natural subsystems of diffracted rays form those rays
that are straight continuations of the incident rays. The system of incident rays passing through an
edge of the aperture form an isotropic two-dimensional submanifoldf 8. This submanifold is
described by the following equations:
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It appears that the typical singularities of the profsrb-Lagrangianisotropic submanifolds are
classified mainly by the singularities of functions on variefiesThe general approach to the
classification problem of isotropic submanifolds and the begining of the list of simple normal
forms in small dimensions was given by Ref. 1. The complete list of simple normal forms was
announced in Ref. 10. In the present paper we generalize this approach to include the symmetric,
with respect to the compact Lie group action, isotropic submanifolds.

The technical content of the paper is rather close to that of Refs. 1 and 4, where the primary
singularities of isotropic projections and symmetric Lagrangian projections were listed. In Sec. Il
the basic notion of the isotropic submanifold was introduced and the generating families for such
submanifolds were constructed. The basic theorem on equivalence of generating families repre-
senting the same isotropic submanifold was shown. The infinitesimal stability condition and the
prenormal form theorem for symplectic equivariant equivalence of symmetric isotropic submani-
folds was derived in Secs. lll and IV. In Sec. V tAg-symmetry case is explicitly calculated and
the generic singularities of isotropic projections in small dimensions are classified.
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Il. CLASSIFICATION OF ISOTROPIC SUBMANIFOLDS

Let| be a stratifable subset of a symplectic manifold, ). We call this subset isotropic if
for each stratum of, sayl;,

(1)||i:O.

If | is smooth and dim=3 dim M, then! is called Lagrangiarisee Ref. 11 for the theory of
Lagrangian singularitigs In this paper we consider proper isotropic subsets, i.e., Idim
<3 dim M, and study their local structure, so we assuvtre T*X for some smooth manifoliX.
In what follows we also takX=R"(C").

In case of smoothC T*X the corresponding-Morse families were introduced in Ref. 1. The
smooth function gerniH: (XX R-X RK,0)—R is called anl-Morse family if the smooth map,

_(9H 0 —ﬂH 0 I<islL, 1=sj=sK 1
= =
aﬁi (qr 1)\)10»‘)\1 (qr 1)\) ’ | ’ J ’ ( )

XXRKs (gq,\)—
is nonsingular on the stationary set,

Sh=1{(q k)'ﬁ(qo)\)zo ﬁ(q 0N)=0, 1sisL, 1sjs<K
H ' aﬁl ’ ' (7)\] 1Yy ' ’ .

Then the set
I"~Lt= T*X:3 _H (OpN o 0MN)=0 o 0N =0, (2
- (va)e -JANeRK, pj_a_qj (qv ’ )1 ﬂ_[_;l(qv ’ )_ ' (9_)\'((% ’ )_ ' ()

for 1<i<L, 1<j=n, 1<I=<K, is a smooth immersed isotropic submanifoldTdgX.
If H:(XXR"XRK,0)—R is anl-Morse family generating the germi"('“,0) then

H(q,8.0)=H(d,B.\)+¢(q,B,\), &)

where

) . oH oH z
@E*75:<ﬁ11"'1:8L> (g(q,ﬁ’,k)+ a_Bl(q,ﬁ’)\),,a_BL (qn[))v)\) (g(q,B,)\)

is also a generating family for the same gerfi (,0). HereZ 4 g,1) denotes the ring of smooth
function germs andm, z,) denotes its unique maximal ideal. Moreover d:(XxR"

x RK,0)— (R x RK,0) is a smooth family of diffeomorphism gerrigq,-,-) preserving the plane
{(B,\):Bi=0,i=1,...L}, then

H(q,®(q,8,\)) (4)

is also a generating family for the initial isotropic gertd (“,0).

Let (I""-,0) be a germ of an isotropic submanifold andHby( X X R-x R¥,0)— R we denote
its generatind -Morse family. By the reduction procedu¢® and elimination of\ parameterscf.
Ref. 11, we get the following minimal form foH:

L

H(q.ﬂ,x>=f<q.x>+i§1 Bigi(a,\),
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Wheref,giequ’)\), and the number o parameters is minimal, i.e.,d¢f/d\; d\;)(0)=0,
(09,1Ng)(0)=0, 1=<I<L, 1ss=<K, 1=<i, j=<K.

The family H is an |-Morse family, so by regularity of(l) we have L+K=<n and
det(@f/o; a0;)(0)=0 for 1<i<K andjeJ, JC{1,..n}, whereJ hasK elements. Becausg,
=(af199;)(q,\) on 1", so we can take the new variables ot R-x RK,0),

O:(XXR-XRK,005(q,8,\)—

T
q'ﬂ’ an (q,

which preserve (" ,0) in the sense of4), [ofloq,=(0f/dq;,....0f1d0; ).i1,...ike I]. Thus
we came to thé-Morse familyH=H-® 1. By P; we denote the coordinate space spanned by
[Py i)

Proposition I1.1: Let H, H,: (XXR"XRK,0)—(R,0) be two minimal I-Morse families for
the germ (I""5,0)CT*X. Then there is a family of diffeomorphism®(q,-,-): (R:
X RK,0)— (R"XRX,0) preserving the plangs;=0}, such that

Hl(Qva)\)"_@(qua)\): HZ(q!(I)(qrﬁa)\))r

for somegpe. 7. o
Proof: By diffeomorphism® we getH,, H,:(XXR-XP;,0)—(R,0),

H1(q,8,p5)=H1°0;1(q,8,p3).Ha(q,8,p5) =H20, X(q,,py).

The isotropic germI®~1,0) is given by the equations

_ aH, oH, o,
gk(qrp.]):(?_ (q’B’pJ) =0, Pi=—— (q;O,pJ)y Tp(qaolpJ)zoa
J

ﬁk {B=0} aqi

for =1 and as well fol =2. So the projection of" - onto XX p;, represented bi'ﬁl, 2';'2,
give the same germ. Thus we can write the differential

d(ﬁl_ﬁz)ha?l/apj:ng;:o,ﬂi:0}:0-
and we can deduce immediately that, modulo some element.ﬁﬁlr{r);:(,}, we have
T aema| 00
Py
Thus by the Tougeron’s implicit function theorejef. Ref. 12, p. 20bwe get a diffeomorphism,
E(d,py)=(a,5(a,py),

such that foE=f, and (gioZ)=(g?). So there exists a diffeomorphism ofg),
K(ﬁvqipJ)vK(quapJ)Eo, such that

(D:(qiﬂvp\])%(qu(:Biqva)ig(qipJ))

form the necessary equivalencetdf andH,. Q.E.D.

It is obvious that instead of minim&tMorse families we can consider the pairs of functions/
mappingsf andg=(g4,...,9.). The corresponding equivalence of such pairs is induced by the
above defined equivalence bMorse families. The beginning of the classification procedure of
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simple normal forms for isotropic submanifolds was done in Ref. 1. The complete list of simple
singularities was announced in Ref. 10. Now there is a natural way to generalize the notion of an
I-Morse family and pass to the generation of no necessary smooth isotropic varieties.

Let H: (XX RN,0)—R be a smooth function germ. We consider an anakgigebraig¢ subset
V of (XxXRN,0), V=F1(0), and amanalytic mapF: (XX RN,0)— (RX,0).

Definition 11.2: The germ of an isotropic varietyd(T* X, wy) defined by the pair of functions
(H ,F),

— oH oH , .
I={peT X;H(q,)\)erpi:&_q(q-)\)a R(q,)\)zo, i=1,..n, j=1,..Ny, (5)
i i

is calledthe diffractional isotropic varietyp=(p,q) € T*X.

Remark 11.3

(1) 1f V=RN then | is a usual representation of Lagrangian varieties by generating families
(cf. Refs. 11,13,14). In this case there is no extra condition, which makes | the proper isotropic

(2) If V is a smooth submanifold of"\Rhen this case was exploited (see Ref. 1) to generate
all germs of smooth isotropic submanifolds(@f X, wy). This is a generalization of the standard
notion of the generating family for Lagrangian submanifolds

(3) The isotropic varieties that we are studying here first appeared in geometrical diffraction
on apertures (see Refs. 6,2) and always are connected to some distance function properties and
the geometrical structure of the boundary of an aperture. Diffractional isotropic varieties that we
investigate in this paper, unless otherwise stated, are proper isotropic (not Lagrangian)

(4) To see that (5) is an isotropic variety we consider the stratum of the critical set

dH
Suv={ (@M (@N)=0(aN eV,

and repeat the standard lines of singularity theory techniques usually applied in symplectic ge-
ometry (cf. Ref. 11)

Behind the definition introduced above there is the following construction./et(T*X
X T*RN, m50gn— 7w wx) be the product symplectic structure. Letd..7 be a Lagrangian sub-
manifold of.7 transversal to the fibers of the fiberiig(Xx RN)—XXRN. Let S be a subset of
T*X then we define the image

L(S)={ueT'R%:35.s(p.pn) eL}.

In an analogous way we define the counterimhabe\) of the subset\ of T*RN. The image and
counterimage preserve the symplectic propertieS ahd A, respectively. Now instead df we
take the isotropic intersectidp_ ,y=LNA, whereA ={(p,x):F(q,\) =0}, F:XXRV—=R¥ If L
is generated by the functiomg(\)—H(qg,\) andRN is a zero section oT*RN, then the pair
(L,A) [or the pair {H,F)] called aA pair defines a diffractional isotropic variety as the symplectic
counterimagd ; ,,(RY).

Example 11.4: A-type isotropic varieties. A natural class of isotropic varieties are those
varieties that are critical sets of the Lagrangian projections. These are typically cone-like variet-
ies described by the following generating families, (:x RxX R¥,0)—R:

2

H(a.8.M)=f(q.\M)+B de( (q,)\)).

IN; O\,
To be more concrete let us consider the-Bingular Lagrangian projection in TR*. Then its
A,-type isotropic variety is generated by

J. Math. Phys., Vol. 38, No. 10, October 1997

Downloaded 04 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



5406 S. Janeczko: Equivalence of isotropic submanifolds and symmetry

Ha, (0,801, 02) =N+ N3+ QA3+ A5~ Aah 1 — dgh o+ B(BNS+ 301N+ AN o — 2N5).

We can continue the above procedure and describe the corresponding sub-Lagrapgizn A,
varieties. The A-singular isotropic variety for @3-Lagrangian projection is generated by the
family

Ha (0,81, B2, 1, 2) =N INo+ N3+ QNS+ oA 5~ dah 1~ G
+ B1(BN3+3A1N5+ AN 2= 20F) + Bo(10N3+ 4GNS+ M)

Example 11.5: Another interesting example of an isotropic variety is a so-called C-Lagrangian
manifold in the Maslov theory of the complex canonical oper&tdf.I"=R"C (C?",w) is an
isotropic submanifold of a canonical complex symplectic space then we have, for evEty p

Tl =T IN(T) =TI N(Th",

where (Tpl)L is an w-orthogonal subspace to ;T. Any real (i.e., '§I=0) isotropic (C-
Lagrangian) submanifold "lC (C?",w) can be locally generated by the generating family F:
C"XR"XCk—C,

F(q,ﬂ,x>=f<q,x>+_21 Bigi(a,\),

where f is holomorphic and;gre real analytic; moreover{g;=0} form a real hypersurface in
the critical set> ={(df/d\)(q,\)=0}.

. SYMMETRIC ISOTROPIC SUBMANIFOLDS

Let G be a compact Lie group acting smoothly &h. This action extends naturally to a
symplectic action of5 on the cotangent bundlE*M, preserving the cotangent bundle structure.
Because our considerations are local we may ideiifwith R" and assume that®R" is a fixed
point of the action of5. We also assume that the action®fon (R",0) is linear and orthogonal.
We shall denoteR" with this action ofG by V. We identify T*V with V& V*, whereV* is the
dual of V. If v denotes a representation®fin V, then the natural symplectic action @fon T*V
is given by the symplectic lifting/=v® v, i.e.

T*V3>(q,p)— v4(0,p) = (v4(q),v4(p)) e T*V.

If (1,0) is a G-invariant isotropic submanifold germ, then the image of the associated
G-invariant isotropic projectionr; = /|, : (1,0)—(V,0) is the germ of &-invariant subvariety
in (V,0) called asymmetric quasicaustiaf (I,0). Also KerDm(0)=Tyl NTyV* is aG-invariant
subspace ofvV* (we identify ToV*=V*). The existance ofG-invariant |-Morse families for
G-invariant isotropic submanifolds is given by the noninvariant existence re$uRef. 1, Propo-
sition 1.2 and the methods of constructing invariant Morse families for Lagrangian submanifolds
used in Ref. 6. We can formulate this result in the following way.

Proposition 1I1.1: Let(1®,0) be a G-invariant isotropic submanifold of*V. There exists a
smooth G-invariant function-germ of th&-IMorse family

F:(VXR-%XRK,(0,0,0)—R,

invariant with respect to a component-wise, linear actiorof G on VXR-XRK, k=vou®p,
such that(1¢,0) is defined by (2). Conversely, every such G-invariant function germ generates a
G-invariant isotropic submanifoldl,0).
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In all further considerations we assume that @viorse family is defined with the presence of
minimal number of parametets, i.e.

—(92F 0,00 =0

To eachG-invariant isotropic submanifold £,0), generated by®-Morse familyF, we associate
the pair ofG-invariant Lagrangian submanifolds¢,N®), defined by the correspondit@-Morse
families (cf. Ref. J),

LS F(g,\)=F(q,0\),

NG F(q,u)=F(d,u1,u2),

where we denoteu=(uq,u,). These two manifolds intersect alond® and define two
G-invariant subspaces &f*:

WEG= Ker D c(0),
Wye=Ker Dmys(0).

We see that the invariant subspaté=Ker D ,(0) is an intersection of both of these subspaces.

If V' is a representation space ®fthat has &-invariant subspace isomorphic¥ then the
invariant|-Morse familyF:Vx R- X RX—R also defines an invariant isotropic submanifoldof
T*V'.

Letqq,...,9, be coordinates on the subspace isomorphi¥ tand extend these to a system
di,..-.0y ONV'. Then the equations fdr are obtained by supplementing the equationd foy
p;j=0 forj=n+1,..n". We will say that the isotropic submanifold is atrivial extensionof I.

We see that the function§(q,e,e) are only invariant undeG,, which is the isotropy
subgroup afj of the action ofG on V. If V(®) denotes the space of fixed points of the action of
G, then the restrictiorF|V(® X R-XRX is a family of G-invariant functions orR-xX RX. Any
such family can be extended to a family Urx R X R¥. Also, a generic property of the restricted
families can be regarded as a generic property of the full family. As an example, one can easily
show that the generic invariant quasicaustics do not pass through isolated points of the a8tion of
onV. In this case/(®)={0} and the generiG-invariantl -Morse familiesF has a nondegenerate
critical point at 0, i.e.

9°F 9°F
B IB 9B I
det] 2F 2F (0)#0.
N IB N I\

IV. SYMPLECTIC EQUIVARIANT EQUIVALENCE

In this section we introduce the equivalence relation that is used to claSsifyariant
isotropic submanifolds. In the absence of the group action, the corresponding theory was presented
in the preceding sectiofcf. Ref. J).

Definition IV.1: Two G-invariant germs of isotropic submanifoldf,O)C(T*V,O), (i
=1,2) are called equivalent if there exist germs of a G-equivariant symplectomorpfism
(T*V,0)—(T*V,0) and a G-equivariant diffeomorphisiga. (V,0)—(V,0) such that (i) the fol-
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lowing diagram commutes

)]
(T*V, 0) (T*V, 0)
Ty Ty
v,0) —2 w0

and

(iy @(1$)CIS.

Let éif’?q’ﬁ’)\) (respectively,éfqe) denote the ring of germs @-invariant functions oV x Rt
XRK (respectively, onV). By m(Gq’m) we denote the maximal ideal oﬁ'&ﬁﬁ)\). By
Bg,m)cwl,...,,l’;f,_)&f‘(q”g,\) , we denote the ideal of invariant germs vanishing on the space
x {0} X RX. By B@(Gﬁ,x) we denote the space of germs of equivariant diffeomorphisms preserving
the subspace

A={(B,)\)Bl=0,,8|_=0},

in REX RK,
Definition 1IV.2: Two G-invariant I-Morse families

F12:(VXR-XRX,0)—R,

are called B-equivalent (or simply equivalent) if there exist germs of an equivariant diffeomor-
phism

®:(VXR-XRX,0)— (VX REXRK,0),

d(q,-,)) e B«Qfﬁ’)\) and a smooth function gereB_(Gq’B’x), Wheregfw’” denotes the space of
invariant function germs belonging tQBl,...,,BQZ%a‘BM, such that the following diagram

commutes:
V
1 m
P
(V x RF x R¥ 0) (V x Rt x RK 0)
and
F1=F2°<D+a.

We say that, F, areG equivalent if under the conditions introduced above,
~G
ae B(q,B,x)Fl’

where éaﬁ’”Fl, denotes the space @-invariant function germs belonging @ ,...,8,)2
& gy TR L10BL, . dF 1 1IBL?E T gy -

Remark IV.3:
J. Math. Phys., Vol. 38, No. 10, October 1997
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(A) If pis trivial then B, 5 =(B1.....80)%% G s » @nd
oF, aF1>2
B1" B

(B) Let F: (VXR-XRK,0)—=R be an I-Morse family for an isotropic submanifati,0),
codiml=n+L. Then(l,0) is an intersection of 1 Lagrangian submanifolds defined by the
following Morse families:

«G

. B |
B F1=(B1, B (g pmy T < CNINE

Fo(d ) =F(q:A1.h2), A=(A1,Az) e R-XRK,

F_i(q!lu):F(q;lu“l!"'101"'uu“Lflv"'!/'LLJrK*l)v |:1,L

The group of equivalences of I-Morse families defined in Ref. 1 keeps all these Lagrangian
submanifolds identical. This group instead of/f; ,) contains the space of diffeomorphisms
preserving the hyperplang$3,\): 3,=0} and the L-dimensional cornerz={BeR":3,=0,
i=1,...L}in R“XRX. It is a subgroup of the group of equivalences defined above (cf. Definition
IV.2).

One can easily check that the corresponding two isotropic submanifolds defined by
G-equivalentl -Morse familiesF, F, are identical. Exactly as in the nonequivariant case we can
prove the following result.

Proposition IV.4: Two G-invariant I-Morse families; = (VX R-XRK,0)=R, (j=1,2) gen-
erate equivalent G-invariant isotropic submanifolds if and only if there is a G-equivariant diffeo-
morphism germ¢: (V,0)—(V,0), a G-invariant function germ g(V,0)—R such that k
o(¢,idgLxgk) + e and F, are G equivalent

The group ofg equivalences will be denoted byZ¢ . This is an equivalence group we can
operate with using the standard lines of infinitesimal stability the@fy Ref. 11. Now we
describe the tangent space for this equivalence relation.

Let{a,,...,a,} denote a generating set for th’:e(q B) module”i consisting of germs of

G-equivariant vector fields along the projectian: VX R-X RK—R-x RK tangent toA. These
are G-equivariant vector fields of the form

L

iEa(qﬁm +Z bj(q.8.:\) -

with a;e B, 4. Let{y1,...,7s} denote a generating set for tlfw’ze’;3 module Z§ of germs of
G-equivariant vector fields on{,0). We will regard the direct sum,

G
ARE=ES oES®BS, 5,85,

as the Lie algebra of the group”g . The first two summands of1.72§ correspond to infini-
tesimal coordinate changds ¢ and the two next summands correspond to functiermmdg as
in Definition IV.2 and Proposition 1V.4.

For anyG-invariant|-Morse family we define the tangent space,

To(F)= AREF=20 gafedF P+ EG{yiF, .. ysF BG4 -

The first term is the ideal mr(q g generated byayF,....e F}, the second term is the’G
submodule of/(q g+ thought of as thefG module, generated Hyy1F,...,ysF,1} the third term

is the ideal |nc‘(q’ B
We define the infinitesimal stability faB-invariantl-Morse families in the following way.
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Definition IV.5: A G-invariant I-Morse family function germ F¥ X R-X RK,0)—R is infini-
tesimally 172§ stable iff
Te(F)=% s -

Let femz ). We define the corresponding analog of the Jacobi ide&lfof the group of
equivalences iR X R¥ preservingA,

. of of of  of of .
Lk(f)= ’8107_,81""’BiT&""’BLﬁ_&'m"”’m (BN -

We say thatf has a finite codimensioa if

cod f)=c=dim MACE
R 5L,K(f)+<,31:---a3L>2;§(B,A)

If c is finite thenc is the minimal dimension of a versal unfolding bfIf g4,....,gce mz ) are
polynomial representations of a generating set of

Mg.n)
SLk(D)+(B1,-- B (s

then thel.72-minimal unfolding off is written as follows:

H(x,ﬂ,x>=f<ﬂ,x>+§l Xigi(B\).

We see that iff g?ﬁ,}\)! then . «(f) is invariant under the natural action Gf on g, .

Then we have the following result.

Proposition IV.6: If F is an infinitesimally.#2§ stable I-Morse family, then [Gey gL« g« iS @
Fg-versal unfolding of £O,e,e) in m(Gm).

Proof: |.72&-infinitesimal stability ofF gives us the following surjective mapping:

£ @sn
ES oy ysF - — e :
q S a/'(quﬁ')\){alF,...,arF}"‘ B(ungv)\)
This implies that the mapping,
gg{')’le,'ySF’l} (6)
(Mg(q,0) N gLraF. . ¥eF 1}
G
~ (9,8:M)
a.8 7

gt FooootF L+ (Mg g pa)) O+ BC
’(q,ﬁ,)\){al ey } ( q?(q,8.\) (9,8.\)

is also surjective. Ifq;,...,q,} denote coordinates o° andf(e,e)=F(0,e,e), then the above
condition can be written in the form

/G
R[i ] __ ey
G )
il o) i=1,.a OLk(NE+BG,
which is the infinitesimal criteria of ¢ versality. Q.ED.
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For G-invariant infinitesimallyl.72¢ -stable| -Morse families we have the following useful
criteria.

Proposition IV.7: Suppose G is a finite group and FXR- X RK—R is I.%fg—infinitesimally
stable G-invariant I-Morse family, then the following applies

1) F|Vi<'{o}xRK is G-invariant.7¢-infinitesimally stable Morse family (cf. Ref..4)
(2) Let f(0)=F(0,08) e ~2; f(e,0)=F(0,0,0) is finitely determined. Let
_ M)

du (B +{(Br.- B Z (g

U is endowed with the induced action of G. Then there exists a G-invariant unfplding

U dim U<,

T UXREXRESR,

such that for any representation of G with representation space V and any G-invariant unfolding
F: VXR-XRK—R of f there exists a G-invariant mafa (V,0)—(U,0) such that F(gB,\) is |.72§
equivalent ta7(¢(q),8,\).

F is 1.72¢-infinitesimally stable if and only if F is#¢ equivalent to the unfolding

L
f/(d)(q),B,x)=ﬁ(¢<q>,x)+gl Bii(d(A)N), e Ly,

whereg: (V,0)—(U,0) is an infinitesimally7Zs-stable map%u X RX—=R is a trivial extension of
the G-invariant versal unfolding of (®) in the space?, constructed in Ref. 16

V. Z, SYMMETRY
Let G=Z,={1,9} andZ, acts onV=R" by

OXqsee X Yire-¥s) = (—=Xq4e =X ,Y1,--40¥s), N=r+s.

Z, will also act nontrivially onR" and R¥. Let F:VXR-XRX—R be aG-invariant | -Morse
family. The numbeK + L will be called corank of thé-Morse familyF (we already assumed that
F is minimal). In what follows we assumK+L=2 and at first we assume thatis trivial, i.e.,
9(B.N)=(B,—N).

Proposition V.1: The generic corank Z,-invariant I-Morse families on ¥RXR with the
trivial u action ofZ, are equivalent to families of the form

t—1 min{k,t} t—1
FOGY, BN =BAEANZ D yN2+ Dy 1BNZA 24 D (xy)NE L
i=1 a=1 =1

Ktk
+b§1 bp(X,y) BN, ®)
where t=1+minft,k}<s, ky=min{t,k+1}—1+ &y, Sy=1 if t=Kk, 5, =0 if t#k, or
k—1 k k—1 k—1 .
FOGY, BN =AZK4 D YN+ X Yo 1BNZ2 724 2 (YN 1 0 (X, y) BN L,
i=1 a=1 j=1 b=1

©)

where2k—1<s and¢;, ¢y, ¥;, ¥, are smooth functions
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$i(xY)= 2, Kie(y)xc, ¢7b<x,y>=§1f<_bc<x,y>xc,
(10)

Y= 2 pic(xy)e, %(x,w:gﬁc(x,y)xc,

andxjc, Knc, Pjc. Poc are Zy-invariant functions of x and.y

Proof: We know that the restrictioifr|\z.xrxr Of the genericZ,-invariant|-Morse family
must be a germ of.72;_-versal unfolding off (8,,)=F(0,8,\). Herel.%Z;, denotes the group
B%(ZBZM of Z,-equivariant diffeomorphisms &< R. Thus, generi&,-invariantl-Morse families
of corank 2 will be represented by unfoldings Iéﬁf:f(ﬁ,)\)=ﬁ>\2k+ A2 and Fopr1:f(B,N)
=\2P (simple orbits of the action of the grOlB:@(Zg \) in the space o ,-invariant functions on
RXR). By Proposition 1V.7 and straightforward calculations they will be equivalent to the fami-
lies (based on the versal unfoldings Iéﬁ't‘ andFyp, 1)

t—1 min{t,k}
FOGY, BN =BAEANE D SOGYNT+ D 8y 1(X,y) BNZ272
=1 a=1

t—1 Ktk

+,Zl ¢>j(X,Y)>\2"‘1+bZl Bu(X,Y) BN, (11)

where ky = min{t k+1}—1+ &, and

p-1 p
F(x.y,ﬂ.x>=x2p+i§l yi<x,y>x2‘+a§l Yo-1+a(X,y) BAZR2

p-1 p-1

+j§l YN S Pp(X,y) BN, (12)

where ¢, ¢y, i, i, are expanded i10) and «jc, Kuc, Pjcs Poc: O, ¥ are Zp-invariant
functions ofx andy.

Because the restriction & to V22X RXR (V#2={(0,...,0y;,....ys)}) is Hz, versal, hence
the mappings’ andy are submersions. This implies that we can choose coordingies (ys) So
that 5, =y; and y;=Yyj, in both families(11), (12). Q.E.D.

Using the similar methods and argumefdas we used aboyewe can prove the completing
result for the nontrivialu action ofZ,, g(8,\)=(—8,—\).

Proposition V.2: The generic corank Z,-invariant I-Morse families on X RXR with the
nontrivial u action ofZ, are equivalent to families of the form

t—1 min{k,t} L t—1
FOGY,B0)=BAETLHNZE D yiN2+ D da(xY)BNZA24 D) i(x,y)A2 7L
i=1 a=1 =1

min{t,k} —1
2 Ve (13)

where t2+min{t,k}<s, or
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k—1 k k—1 k—1
FOGY, BN =NZK4 D yNB+ 2 (X Y) BNZE24 D0 (YN 714 Dy o1 BN,
i=1 a=1 =1 b=1
(14)
where2k—2<s and¢;, ?b b, % are smooth functions
r o r
¢j<x,y>=§l%jc<x,y>xc, ¢b<x,y)=;1 Kpc(X,Y)Xe,
B B (15)

B =2 preXY)Xe, %(x,y>=c§ﬁc<x,y>xc,

andsjc, Kpc, Pjc. Poc are Zy-invariant functions of x and.y

The former Proposition V.1 gives us the prenormal form for genggignvariant | -Morse
families of corank 2. Now, under some additional conditions, we can derive the special infinitesi-
mally stable normal forms.

Proposition V.3: If ==s+1 then genericZ,-invariant I-Morse families of corank 2 with
trivial w are infinitesimally stable and equivalent to trivial extensions of the following families:

k-1 k k-1 k-1
N 2 YN 2 Y1 aBNI T 2 XN 2 X BN

2k—1=<s, and

t—-1 _ min{k,t} t—1 _ Ktk
BNIENE 2 YN+ 2 yiaaBN R 2 XN 2 e pBA

t—1+min{tk}<s.
Proof: In the considered case=t— 1+ «y, s=t— 1+ min{t,k}, theZ,-equivariant, infinitesi-
mally %Zz-stable mappings,
\I’(va) = (yl vy 2k—1 lﬂl(XvY)a s 1¢kfl(xvy) 1Z(X1y)a ves yﬁ—l(X,Y)) € R4k731

and

D(X,Y)= (V1. Ye- 1o minfioty - D100Y) oo 1(6Y), B1(X,Y) b (X,Y))
< R2(t=1)+mint,k}+ gy
are submersions, and so may be reduced to the standard normal form and plugged into the families
of Proposition V.1. Q.E.D.
In the similar way we get the normal forms in the case of nontrivial representation
Proposition V.4: If =s+ 1 then the generic corank, Z ,-invariant I-Morse families with the

nontrivial w are infinitesimally stable and equivalent to the trivial extension of the following
families

t—1 min{k,t} t—1 min{t,k}—1
BNFTIENIE D YN 2 X1 aBNTRE NI T 3y BT
i= = j= =

where t=2+min{t,k}<s, or
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b Y3

T2

T
FIG. 1. Z,-symmetric Whitney's cross-cap.

k=1 k k-1 k—1
2k 2i 2a—2 2j—1 2b—1
SEPIRISEPRIS +J,Zl X7 2, Yoo AN

where2k—2<s.

Remark V.5: We know that (Ref. 4) the swallowtail (which is,asgmmetric set) cannot be
realized as a 4Z-symmetric caustic. In contrast, the Whitney’s cross-cap (which ig-syfmetric
set illustrated in Fig. 1) can be realized as a-8ymmetric quasicaustic. Its generating family may
be reduced to the following form

AN3+X B+ XBN— Y\,

with the action B,\)—(—8,\).
As an interesting illustration (seEig. 2) in small dimensions, we present the-Zymmetric
sectionX=QrN{y,;=y,=0} through the quasicaustic of the family

XF

FIG. 2. Z,-symmetric sectior® = QrN{y,=Y,=0} through the quasicaust@ of (16).
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A+ YINZH Yo BN+ X B+ X B2+ X3\, (16)
SE=1{(X1,X2,X3): X1 = —SA2,X,=5,X3=—4\3, (s,\) eR?.
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