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Equivalence of isotropic submanifolds and symmetry
S. Janeczko
Institute of Mathematics, Warsaw University of Technology,
Pl. Politechniki 1, 00 661 Warsaw, Poland

~Received 11 June 1996; accepted for publication 12 March 1997!

It is shown that any two generating families of the same isotropic submanifold are
equivalent. Also the singularity theory of symmetric isotropic submanifolds is de-
veloped and the basic classification theorems on prenormal forms, in particular for
Z2 action, are proved. ©1997 American Institute of Physics.
@S0022-2488~97!03209-X#

I. INTRODUCTION

The genesis of this paper lies in theoretical questions in geometrical diffraction theory w
a central role is played by the systems of rays passing through a boundary of an obstacle~aperture!
~cf. Refs. 1,2!. It is explained in Refs. 1,3,4 why the proper isotropic submanifolds of cotan
boundles~phase spaces! do occur in geometrical diffraction and why the symmetry group of th
objects appear as a natural feature of existing optical systems~cf. Refs. 5,6!.

Let F:R23R23X→R, F(x,y,a,b,q1 ,q2 ,q2) be the optical distance function from the wav
front $(x,y,z):z5f(x,y), f~0!50, f8~0!50% in the presence of an aperture parametrized
$(a,b)PR2: f (a,b)>0% to the configurational point (q1 ,q2 ,q3)PX. If the incident ray goes from
the point„x,y,f(x,y)… to the point of an edge$ f (a,b)50% of the aperture, then the diffracte
rays form a cone inX ~cf. Refs. 2,6!. The natural subsystems of diffracted rays form those r
that are straight continuations of the incident rays. The system of incident rays passing thro
edge of the aperture form an isotropic two-dimensional submanifold ofT* X. This submanifold is
described by the following equations:
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and

pi5
]F
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$ f 50%

, i 51,2,3, ~q,p!PT!X.

It appears that the typical singularities of the proper~sub-Lagrangian! isotropic submanifolds are
classified mainly by the singularities of functions on varieties.7–9 The general approach to th
classification problem of isotropic submanifolds and the begining of the list of simple no
forms in small dimensions was given by Ref. 1. The complete list of simple normal forms
announced in Ref. 10. In the present paper we generalize this approach to include the sym
with respect to the compact Lie group action, isotropic submanifolds.

The technical content of the paper is rather close to that of Refs. 1 and 4, where the p
singularities of isotropic projections and symmetric Lagrangian projections were listed. In S
the basic notion of the isotropic submanifold was introduced and the generating families fo
submanifolds were constructed. The basic theorem on equivalence of generating families
senting the same isotropic submanifold was shown. The infinitesimal stability condition an
prenormal form theorem for symplectic equivariant equivalence of symmetric isotropic sub
folds was derived in Secs. III and IV. In Sec. V theZ2-symmetry case is explicitly calculated an
the generic singularities of isotropic projections in small dimensions are classified.
0022-2488/97/38(10)/5402/14/$10.00
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II. CLASSIFICATION OF ISOTROPIC SUBMANIFOLDS

Let I be a stratifable subset of a symplectic manifold (M ,v). We call this subset isotropic i
for each stratum ofI , sayI i ,

vu I i
50.

If I is smooth and dimI 5 1
2 dim M , then I is called Lagrangian~see Ref. 11 for the theory o

Lagrangian singularities!. In this paper we consider proper isotropic subsets, i.e., diI
, 1

2 dim M , and study their local structure, so we assumeM[T!X for some smooth manifoldX.
In what follows we also takeX[Rn(Cn).

In case of smoothI ,T!X the correspondingI -Morse families were introduced in Ref. 1. Th
smooth function germH:(X3RL3RK,0)→R is called anI -Morse family if the smooth map,

X3RK{~q,l!→S ]H

]b i
~q,0,l!,

]H

]l j
~q,0,l! D , 1< i<L, 1< j <K, ~1!

is nonsingular on the stationary set,

SH
I 5H ~q,l!:

]H

]b i
~q,0,l!50,

]H

]l j
~q,0,l!50, 1< i<L, 1< j <KJ .

Then the set

I n2L5H ~q,p!PT!X:'lPRK, pj5
]H

]qj
~q,0,l!,

]H

]b i
~q,0,l!50,

]H

]l I
~q,0,l!50J , ~2!

for 1< i<L, 1< j <n, 1< l<K, is a smooth immersed isotropic submanifold ofT!X.
If H:(X3RL3RK,0)→R is an I -Morse family generating the germ (I n2L,0) then

H̃~q,b,l!5H~q,b,l!1w~q,b,l!, ~3!

where

wPH5^b1 ,...,bL&2E ~q,b,l!1 K ]H

]b1
~q,b,l!,...,

]H

]bL
~q,b,l!L 2

E ~q,b,l!

is also a generating family for the same germ (I n2L,0). HereE (q,b,l) denotes the ring of smooth
function germs andm(q,b,l) denotes its unique maximal ideal. Moreover ifF:(X3RL

3RK,0)→(RL3RK,0) is a smooth family of diffeomorphism germsF(q,•,•) preserving the plane
$(b,l):b i50, i 51,...,L%, then

H̃„q,F~q,b,l!… ~4!

is also a generating family for the initial isotropic germ (I n2L,0).
Let (I n2L,0) be a germ of an isotropic submanifold and byH:(X3RL3RK,0)→R we denote

its generatingI -Morse family. By the reduction procedure~3! and elimination ofl parameters~cf.
Ref. 11!, we get the following minimal form forH:

H~q,b,l!5 f ~q,l!1(
i 51

L

b igi~q,l!,
J. Math. Phys., Vol. 38, No. 10, October 1997
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where f ,giPm(q,l)
2 , and the number ofl parameters is minimal, i.e., (]2f /]l i ]l j )(0)50,

(]gl /]ls)(0)50, 1< l<L, 1<s<K, 1< i , j <K.
The family H is an I -Morse family, so by regularity of~1! we have L1K<n and

det(]2f/]li ]qj)(0)50 for 1< i<K and j PJ, J,$1,...,n%, whereJ hasK elements. Becausepi

5(] f /]qi)(q,l) on I n2L, so we can take the new variables on (X3RL3RK,0),

Q:~X3RL3RK,0!{~q,b,l!→S q,b,
] f

]qJ
~q,l! D ,

which preserve (I n2L,0) in the sense of~4!, @] f /]qJ5(] f /]qi 1
,...,] f /]qi K

),i 1 ,...,i KPJ#. Thus

we came to theI -Morse family H̃5H+Q21. By PJ we denote the coordinate space spanned
$pi 1

,...,pi K
%.

Proposition II.1: Let H1 , H2 : (X3RL3RK,0)→(R,0) be two minimal I-Morse families for
the germ (I n2L,0),T!X. Then there is a family of diffeomorphismsF(q,•,•): (RL

3RK,0)→(RL3RK,0) preserving the plane$b i50%, such that

H1~q,b,l!1w~q,b,l!5H2„q,F~q,b,l!…,

for somewPH.
Proof: By diffeomorphismQ we getH̃1 , H̃2 :(X3RL3PJ,0)→(R,0),

H̃1~q,b,pJ!5H1+Q1
21~q,b,pJ!,H̃2~q,b,pJ!5H2+Q2

21~q,b,pJ!.

The isotropic germ (I n2L,0) is given by the equations

g̃k
l ~q,pJ!5

]H̃ l

]bk
~q,b,pJ!U

$b50%

50, pi5
]H̃ l

]qi
~q,0,pJ!,

]H̃ l

]pj
~q,0,pJ!50,

for l 51 and as well forl 52. So the projection ofI n2L onto X3pJ , represented byS
H̃1

I
, S

H̃2

I
,

give the same germ. Thus we can write the differential

d~H̃12H̃2!u$] f̃ 1 /]pj 50,g̃
k
150,b i50%50,

and we can deduce immediately that, modulo some element fromH u$b50% , we have

f̃ 12 f̃ 2Pm~q,pJ!K ]H̃1

]pJ
L 2

.

Thus by the Tougeron’s implicit function theorem~cf. Ref. 12, p. 206! we get a diffeomorphism,

J~q,pJ!5„q,J̃~q,pJ!…,

such that f̃ 1+J5 f̃ 2 and ^gk
1+J&5^gk

2&. So there exists a diffeomorphism of~b!,
k(b,q,pJ),k(0,q,pJ)[0, such that

F:~q,b,pJ!→„q,k~b,q,pJ!,J̃~q,pJ!…

form the necessary equivalence ofH̃1 and H̃2 . Q.E.D.
It is obvious that instead of minimalI -Morse families we can consider the pairs of function

mappingsf andg5(g1 ,...,gL). The correspondingI equivalence of such pairs is induced by t
above defined equivalence ofI -Morse families. The beginning of the classification procedure
J. Math. Phys., Vol. 38, No. 10, October 1997
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simple normal forms for isotropic submanifolds was done in Ref. 1. The complete list of si
singularities was announced in Ref. 10. Now there is a natural way to generalize the notion
I -Morse family and pass to the generation of no necessary smooth isotropic varieties.

Let H:(X3RN,0)→R be a smooth function germ. We consider an analytic~algebraic! subset
V of (X3RN,0), V5F21(0), and ananalytic mapF:(X3RN,0)→(Rk,0).

Definition II.2: The germ of an isotropic variety I,(T!X,vX) defined by the pair of function
(H,F),

I 5H p̄PT!X;' ~q,l!PV ,pi5
]H

]qi
~q,l!,

]H

]l j
~q,l!50, i 51,...,n, j 51,...,NJ , ~5!

is called the diffractional isotropic variety.p̄5(p,q)PT!X.
Remark II.3:
~1! If V5RN then I is a usual representation of Lagrangian varieties by generating fam

(cf. Refs. 11,13,14). In this case there is no extra condition, which makes I the proper isot.
~2! If V is a smooth submanifold of RN then this case was exploited (see Ref. 1) to gene

all germs of smooth isotropic submanifolds of(T!X,vX). This is a generalization of the standar
notion of the generating family for Lagrangian submanifolds.

~3! The isotropic varieties that we are studying here first appeared in geometrical diffrac
on apertures (see Refs. 6,2) and always are connected to some distance function propert
the geometrical structure of the boundary of an aperture. Diffractional isotropic varieties tha
investigate in this paper, unless otherwise stated, are proper isotropic (not Lagrangian).

~4! To see that (5) is an isotropic variety we consider the stratum of the critical set,

SH,V5H ~q,l!;
]H

]l
~q,l!50,~q,l!PVJ ,

and repeat the standard lines of singularity theory techniques usually applied in symplect
ometry (cf. Ref. 11).

Behind the definition introduced above there is the following construction. LetT 5(T!X
3T!RN,p2

!vRN2p1
!vX) be the product symplectic structure. Let L, T be a Lagrangian sub

manifold of T transversal to the fibers of the fiberingT!(X3RN)→X3RN. Let S be a subset of
T!X then we define the image

L~S!5$m̄PT!RN:' p̄PS~ p̄,m̄ !PL%.

In an analogous way we define the counterimageLt(L̃) of the subsetL̃ of T!RN. The image and
counterimage preserve the symplectic properties ofS and L̃, respectively. Now instead ofL we
take the isotropic intersectionI (L,L)5LùL, whereL5$( p̄,m̄):F(q,l)50%, F:X3RN→Rk. If L
is generated by the function (q,l)→H(q,l) and RN is a zero section ofT!RN, then the pair
(L,L) @or the pair (H,F)# called aL pair defines a diffractional isotropic variety as the symplec
counterimageI (L,L)

t (RN).
Example II.4: A2-type isotropic varieties. A natural class of isotropic varieties are tho

varieties that are critical sets of the Lagrangian projections. These are typically cone-like va
ies described by the following generating families, H:(X3R3RK,0)→R:

H~q,b,l!5 f ~q,l!1b detS ]2f

]l i ]l j
~q,l! D .

To be more concrete let us consider the D5-singular Lagrangian projection in T!R4. Then its
A2-type isotropic variety is generated by
J. Math. Phys., Vol. 38, No. 10, October 1997
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HA2
~q,b,l1 ,l2!5l1

2l21l2
41q1l2

31q2l2
22q3l12q4l21b~6l2

313q1l2
21q2l222l1

2!.

We can continue the above procedure and describe the corresponding sub-Lagrangian Ak ,Dk ,...,
varieties. The A3-singular isotropic variety for D5-Lagrangian projection is generated by th
family

HA3
~q,b1 ,b2 ,l1 ,l2!5l1

2l21l2
41q1l2

31q2l2
22q3l12q4l2

1b1~6l2
313q1l2

21q2l222l1
2!1b2~10l2

314q1l2
21q2l2!.

Example II.5: Another interesting example of an isotropic variety is a so-called C-Lagran
manifold in the Maslov theory of the complex canonical operator.15 If I n[Rn,(C2n,v) is an
isotropic submanifold of a canonical complex symplectic space then we have, for every pPI n,

Tp
cI 5TpI ù~ iTpI !5TpI ù~TpI !L,

where (TpI )L is an v-orthogonal subspace to TpI . Any real (i.e., Tp
cI 50) isotropic (C-

Lagrangian) submanifold In,(C2n,v) can be locally generated by the generating family
Cn3Rn3Ck→C,

F~q,b,l!5 f ~q,l!1(
i 51

n

b igi~q,l!,

where f is holomorphic and gi are real analytic; moreover,$gi50% form a real hypersurface in
the critical setS5$(] f /]l)(q,l)50%.

III. SYMMETRIC ISOTROPIC SUBMANIFOLDS

Let G be a compact Lie group acting smoothly onM . This action extends naturally to
symplectic action ofG on the cotangent bundleT!M , preserving the cotangent bundle structu
Because our considerations are local we may identifyM with Rn and assume that 0PRn is a fixed
point of the action ofG. We also assume that the action ofG on ~Rn,0) is linear and orthogonal
We shall denoteRn with this action ofG by V. We identify T!V with V% V!, whereV! is the
dual ofV. If n denotes a representation ofG in V, then the natural symplectic action ofG on T!V
is given by the symplectic liftingn̄5n % n, i.e.

T!V{~q,p!→ n̄g~q,p!5„ng~q!,ng~p!…PT!V.

If ( I ,0) is a G-invariant isotropic submanifold germ, then the image of the associ
G-invariant isotropic projectionp I5pVu I : (I ,0)→(V,0) is the germ of aG-invariant subvariety
in (V,0) called asymmetric quasicausticof (I ,0). Also KerDp I(0)5T0I ùT0V! is aG-invariant
subspace ofV! ~we identify T0V![V!!. The existance ofG-invariant I -Morse families for
G-invariant isotropic submanifolds is given by the noninvariant existence result~cf. Ref. 1, Propo-
sition 1.2! and the methods of constructing invariant Morse families for Lagrangian submani
used in Ref. 6. We can formulate this result in the following way.

Proposition III.1: Let(I G,0) be a G-invariant isotropic submanifold of T!V. There exists a
smooth G-invariant function-germ of the IG-Morse family,

F:„V3RL3RK,~0,0,0!…→R,

invariant with respect to a component-wise, linear actionk of G on V3RL3RK, k5n%m%r,
such that(I G,0) is defined by (2). Conversely, every such G-invariant function germ genera
G-invariant isotropic submanifold(I ,0).
J. Math. Phys., Vol. 38, No. 10, October 1997
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In all further considerations we assume that anI -Morse family is defined with the presence
minimal number of parametersK, i.e.

S ]2F

]l i ]l j
~0,0,0! D50.

To eachG-invariant isotropic submanifold (I G,0), generated byI G-Morse familyF, we associate
the pair ofG-invariant Lagrangian submanifolds (LG,NG), defined by the correspondingG-Morse
families ~cf. Ref. 1!,

LG: F̃~q,l!5F~q,0,l!,

NG: F̃~q,m!5F~q,m1 ,m2!,

where we denotem5(m1 ,m2). These two manifolds intersect alongI G and define two
G-invariant subspaces ofV!:

WLG
!

5Ker DpLG~0!,

WNG
!

5Ker DpNG~0!.

We see that the invariant subspaceW!5Ker Dp I(0) is an intersection of both of these subspac
If V8 is a representation space ofG that has aG-invariant subspace isomorphic toV, then the

invariantI -Morse familyF:V3RL3RK→R also defines an invariant isotropic submanifoldI 8 of
T!V8.

Let q1 ,...,qn be coordinates on the subspace isomorphic toV and extend these to a syste
q1 ,...,qn8 on V8. Then the equations forI 8 are obtained by supplementing the equations forI by
pj50 for j 5n11,...,n8. We will say that the isotropic submanifoldI 8 is a trivial extensionof I .

We see that the functionsF(q,• ,• ) are only invariant underGq , which is the isotropy
subgroup atq of the action ofG on V. If V(G) denotes the space of fixed points of the action
G, then the restrictionFuV(G)3RL3RK is a family of G-invariant functions onRL3RK. Any
such family can be extended to a family onV3RL3RK. Also, a generic property of the restricte
families can be regarded as a generic property of the full family. As an example, one can
show that the generic invariant quasicaustics do not pass through isolated points of the actioG
on V. In this caseV(G)5$0% and the genericG-invariantI -Morse familiesF has a nondegenerat
critical point at 0, i.e.

detS ]2F

]b ]b

]2F

]b ]l

]2F

]l ]b

]2F

]l ]l

D ~0!Þ0.

IV. SYMPLECTIC EQUIVARIANT EQUIVALENCE

In this section we introduce the equivalence relation that is used to classifyG-invariant
isotropic submanifolds. In the absence of the group action, the corresponding theory was pre
in the preceding section~cf. Ref. 1!.

Definition IV.1: Two G-invariant germs of isotropic submanifolds(I j
G ,0),(T!V,0), (j

51,2) are called equivalent if there exist germs of a G-equivariant symplectomorphismF:
(T!V,0)→(T!V,0) and a G-equivariant diffeomorphismf: (V,0)→(V,0) such that (i) the fol-
J. Math. Phys., Vol. 38, No. 10, October 1997
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lowing diagram commutes:

and
(ii) F(I 1

G),I 2
G.

Let E (q,b,l)
G ~respectively,E q

G! denote the ring of germs ofG-invariant functions onV3RL

3RK ~respectively, onV!. By m(q,b,l)
G we denote the maximal ideal ofE (q,b,l)

G . By
B(q,b,l)

G ,^b1 ,...,bL&E (q,b,l) , we denote the ideal of invariant germs vanishing on the spacV
3$0%3RK. By BD (b,l)

G we denote the space of germs of equivariant diffeomorphisms prese
the subspace

L5$~b,l!:b150,...,bL50%,

in RL3RK.
Definition IV.2: Two G-invariant I-Morse families,

F1,2:~V3RL3RK,0!→R,

are calledb-equivalent (or simply equivalent) if there exist germs of an equivariant diffeom
phism,

F:~V3RL3RK,0!→~V3RL3RK,0!,

F(q,•,•)PBD (b,l)
G and a smooth function germaPB̄(q,b,l)

G , where B̄(q,b,l)
G denotes the space o

invariant function germs belonging tôb1 ,...,bL&2E (q,b,l)
G , such that the following diagram

commutes:

and

F15F2+F1a.

We say thatF1 , F2 areG equivalent if under the conditions introduced above,

aPB̂~q,b,l!
G F1 ,

where B̂(q,b,l)
G F1 , denotes the space ofG-invariant function germs belonging tôb1 ,...,bL&2

E (q,b,l)
G 1^]F1 /]b1 ,...,]F1 /]bL&2E (q,b,l)

G .

Remark IV.3:
J. Math. Phys., Vol. 38, No. 10, October 1997

4 Aug 2006 to 143.107.183.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



e

ngian
s

ition

d by
can

feo-

n

5409S. Janeczko: Equivalence of isotropic submanifolds and symmetry

Downloaded 0
~A! If m is trivial then B(q,b,l)
G 5^b1 ,...,bL&2E (q,b,l)

G , and

B̂~q,b,l!
G F15^b1 ,...,bL&2E ~q,b,l!

G 1 K ]F1

]b1
,...,

]F1

]bL
L 2

E ~q,b,l!
G .

~B! Let F: (V3RL3RK,0)→R be an I-Morse family for an isotropic submanifold(I ,0),
codimI 5n1L. Then(I ,0) is an intersection of L11 Laqrangian submanifolds defined by th
following Morse families:

F̄0~q,l!5F~q;l1 ,l2!, l5~l1 ,l2!PRL3RK,

F̄ i~q,m!5F~q;m1 ,...,0
i

,...,mL21 ,...,mL1K21!, i 51,...,L.

The group of equivalences of I-Morse families defined in Ref. 1 keeps all these Lagra
submanifolds identical. This group instead of BD (b,l) contains the space of diffeomorphism
preserving the hyperplanes$(b,l): b i50% and the L-dimensional cornerH5$bPRL:b i>0,
i 51,...,L% in RL3RK. It is a subgroup of the group of equivalences defined above (cf. Defin
IV.2).

One can easily check that the corresponding two isotropic submanifolds define
G-equivalentI -Morse familiesF1 , F2 are identical. Exactly as in the nonequivariant case we
prove the following result.

Proposition IV.4: Two G-invariant I-Morse families Fj : (V3RL3RK,0)→R, ( j 51,2) gen-
erate equivalent G-invariant isotropic submanifolds if and only if there is a G-equivariant dif
morphism germf: (V,0)→(V,0), a G-invariant function germ g:(V,0)→R such that F1
+(f,idRL3RK)1g+p1 and F2 are G equivalent.

The group ofb equivalences will be denoted byI RG
1 . This is an equivalence group we ca

operate with using the standard lines of infinitesimal stability theory~cf. Ref. 11!. Now we
describe the tangent space for this equivalence relation.

Let $a1 ,...,a r% denote a generating set for theE (q,b,l)
G moduleJp2

G consisting of germs of

G-equivariant vector fields along the projectionp2 :V3RL3RK→RL3RK tangent toL. These
areG-equivariant vector fields of the form

(
i 51

L

ai~q,b,l!
]

]b i
1(

j 51

K

bj~q,b,l!
]

]l j
,

with aiPB(q,b,l)
G . Let $g1 ,...,gs% denote a generating set for theE q

G moduleJq
G of germs of

G-equivariant vector fields on (V,0). We will regard the direct sum,

LI RG
15Jp2

G
% Jq

G
% B̄~q,b,l!

G
% E q

G ,

as the Lie algebra of the groupI RG
1 . The first two summands ofLI RG

1 correspond to infini-
tesimal coordinate changesF, f and the two next summands correspond to functionsa andg as
in Definition IV.2 and Proposition IV.4.

For anyG-invariant I -Morse family we define the tangent space,

TG
I ~F !5LI RG

1F5E ~q,b,l!
G $a1F,...,a rF%1E q

G$g1F,...,gsF,1%1B̄~q,b,l!
G .

The first term is the ideal inE (q,b,l)
G generated by$a1F,...,a rF%, the second term is theE q

G

submodule ofE (q,b,l)
G , thought of as theE q

G module, generated by$g1F,...,gsF,1% the third term

is the ideal inE (q,b,l)
G .

We define the infinitesimal stability forG-invariant I -Morse families in the following way.
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Definition IV.5: A G-invariant I-Morse family function germ F:(V3RL3RK,0)→R is infini-
tesimally IRG

1 stable iff

TG
I ~F !5E ~q,b,l!

G .

Let f Pm(b,l) . We define the corresponding analog of the Jacobi ideal off for the group of
equivalences inRL3RK preservingL,

dL,K~ f !5 K b1

] f

]b1
,...,b i

] f

]b j
,...,bL

] f

]bL
,

] f

]l1
,...,

] f

]lK
L E ~b,l! .

We say thatf has a finite codimensionc if

cod~ f !5c5dimR

m~b,l!

dL,K~ f !1^b1 ,...,bL&2E ~b,l!
,`.

If c is finite thenc is the minimal dimension of a versal unfolding off . If g1 ,...,gcPm(b,l) are
polynomial representations of a generating set of

m~b,l!

dL,K~ f !1^b1 ,...,bL&2E ~b,l!
,

then theI R-minimal unfolding of f is written as follows:

H~x,b,l!5 f ~b,l!1(
i 51

c

xigi~b,l!.

We see that iff PE (b,l)
G , thendL,K( f ) is invariant under the natural action ofG on E (b,l) .

Then we have the following result.
Proposition IV.6: If F is an infinitesimally IRG

1 stable I-Morse family, then FuVG3RL3RK is a
RG-versal unfolding of F(0,• ,• ) in m(b,l)

G .
Proof: IRG

1-infinitesimal stability ofF gives us the following surjective mapping:

E q
G$g1F,...,gsF,1%→

E ~q,b,l!
G

E ~q,b,l!
G $a1F,...,a rF%1B̄~q,b,l!

G .

This implies that the mapping,

E q
G$g1F,...,gsF,1%

~mqE ~q,b,l!!
GùE q

G$g1F,...,gsF,1%
~6!

→
E ~q,b,l!

G

E ~q,b,l!
G $a1F,...,a rF%1~mqE ~q,b,l!!

G1B̄~q,b,l!
G ~7!

is also surjective. If$q1 ,...,qn% denote coordinates onVG and f (• ,• )5F(0,• ,• ), then the above
condition can be written in the form

RH ]F

]qi
U

q50
J

i 51,...,a

5
M~b,l!

G

dL,K~ f !G1B̄~b,l!
G ,

which is the infinitesimal criteria ofI RG
1 versality. Q.E.D.
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For G-invariant infinitesimallyI RG
1-stable I -Morse families we have the following usefu

criteria.
Proposition IV.7: Suppose G is a finite group and F: V3RL3RK→R is IRG

1-infinitesimally
stable G-invariant I-Morse family, then the following applies.

~1! FuV3$0%3RK is G-invariantRG
1-infinitesimally stable Morse family (cf. Ref. 4).

~2! Let f̃(0)5F(0,0,• )PEl
G ; f(•,•)5F(0,•,•) is finitely determined. Let

U5
m~b,l!

dL,K~ f !1^b1 ,...,bL&2E ~b,l!
, dim U,`.

U is endowed with the induced action of G. Then there exists a G-invariant unfolding,

F :U3RL3RK→R,

such that for any representation of G with representation space V and any G-invariant unfo
F: V3RL3RK→R of f there exists a G-invariant mapf: (V,0)→(U,0) such that F(q,b,l) is IRG

1

equivalent toF „f(q),b,l….
F is IRG

1-infinitesimally stable if and only if F is IRG
1 equivalent to the unfolding,

F „f~q!,b,l…5F̄ „f~q!,l…1(
i 51

L

b ic i„f~q!,l)…, c iPE ~u,l!
G ,

wheref: (V,0)→(U,0) is an infinitesimallyRG-stable map, F̄ :U3RK→R is a trivial extension of
the G-invariant versal unfolding of f˜ (•) in the spaceEl constructed in Ref. 16.

V. Z2 SYMMETRY

Let G5Z25$1,g% andZ2 acts onV>Rn by

g~x1 ,...,xr ,y1 ,...,ys!5~2x1 ,...,2xr ,y1 ,...,ys!, n5r 1s.

Z2 will also act nontrivially onRL and RK. Let F:V3RL3RK→R be a G-invariant I -Morse
family. The numberK1L will be called corank of theI -Morse familyF ~we already assumed tha
F is minimal!. In what follows we assumeK1L52 and at first we assume thatm is trivial, i.e.,
g(b,l)5(b,2l).

Proposition V.1: The generic corank 2, Z2-invariant I-Morse families on V3R3R with the
trivial m action ofZ2 are equivalent to families of the form

F~x,y,b,l!5bl2k1l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

ya1t21bl2a221(
j 51

t21

f j~x,y!l2 j 21

1 (
b51

k tk

f̄b~x,y!bl2b21, ~8!

where t211min$t,k%<s, k tk5min$t,k11%211d tk , d tk51 if t 5k, d tk50 if tÞk, or

F~x,y,b,l!5l2k1 (
i 51

k21

yil
2i1 (

a51

k

ya1k21bl2a221 (
j 51

k21

c j~x,y!l2 j 211 (
b51

k21

c̄b~x,y!bl2b21,

~9!

where2k21<s andf j , f̄b , c j , c̄b are smooth functions,
J. Math. Phys., Vol. 38, No. 10, October 1997
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f j~x,y!5 (
c51

r

k̃ jc~x,y!xc , f̄b~x,y!5 (
c51

r

k̄bc~x,y!xc ,

~10!

c j~x,y!5 (
c51

r

r jc~x,y!xc , c̄b~x,y!5 (
c51

r

r̄bc~x,y!xc ,

and k̃ jc , k̄bc , r jc , r̄bc are Z2-invariant functions of x and y.
Proof: We know that the restrictionFuVZ23R3R of the genericZ2-invariant I -Morse family

must be a germ ofI RZ2
-versal unfolding off (b,l)5F(0,b,l). Here I RZ2

denotes the group

BD (b,l)
Z2 of Z2-equivariant diffeomorphisms ofR3R. Thus, genericZ2-invariantI -Morse families

of corank 2 will be represented by unfoldings ofK2t
2k : f (b,l)5bl2k1l2t and F2p11 : f (b,l)

5l2p ~simple orbits of the action of the groupBD (b,l)
Z2 in the space ofZ2-invariant functions on

R3R!. By Proposition IV.7 and straightforward calculations they will be equivalent to the fa
lies ~based on the versal unfoldings ofK2t

2k andF2p11!

F~x,y,b,l!5bl2k1l2t1(
i 51

t21

d i~x,y!l2i1 (
a51

min$t,k%

da1t21~x,y!bl2a22

1(
j 51

t21

f j~x,y!l2 j 211 (
b51

k tk

f̄b~x,y!bl2b21, ~11!

wherek tk5min$t,k11%211dtk , and

F~x,y,b,l!5l2p1 (
i 51

p21

g i~x,y!l2i1 (
a51

p

gp211a~x,y!bl2a22

1 (
j 51

p21

c j~x,y!l2 j 211 (
b51

p21

c̄b~x,y!bl2b21, ~12!

wheref j , f̄b , c j , c̄b are expanded in~10! and k jc , k̄bc , r jc , r̄bc , d i , g j are Z2-invariant
functions ofx andy.

Because the restriction ofF to VZ23R3R (VZ25$(0,...,0,y1 ,...,ys)%) is RZ2
versal, hence

the mappingsd andg are submersions. This implies that we can choose coordinates (y1 ,...,ys) so
that d i5yi andg j5yj , in both families~11!, ~12!. Q.E.D.

Using the similar methods and arguments~as we used above!, we can prove the completing
result for the nontrivialm action ofZ2 , g(b,l)5(2b,2l).

Proposition V.2: The generic corank 2, Z2-invariant I-Morse families on V3R3R with the
nontrivial m action ofZ2 are equivalent to families of the form

F~x,y,b,l!5bl2k211l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

f̄a~x,y!bl2a221(
j 51

t21

f j~x,y!l2 j 21

1 (
b51

min$t,k%21

yt211bbl2b21, ~13!

where t221min$t,k%<s, or
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F~x,y,b,l!5l2k1 (
i 51

k21

yil
2i1 (

a51

k

c̄a~x,y!bl2a221 (
j 51

k21

c j~x,y!l2 j 211 (
b51

k21

yb1k21bl2b21,

~14!

where2k22<s andf j , f̄b , c j , c̄b are smooth functions,

f j~x,y!5 (
c51

r

k̃ jc~x,y!xc , f̄b~x,y!5 (
c51

r

k̄bc~x,y!xc ,

~15!

c j~x,y!5 (
c51

r

r jc~x,y!xc , c̄b~x,y!5 (
c51

r

r̄bc~x,y!xc ,

and k̃ jc , k̄bc , r jc , r̄bc are Z2-invariant functions of x and y.
The former Proposition V.1 gives us the prenormal form for genericZ2-invariant I -Morse

families of corank 2. Now, under some additional conditions, we can derive the special infin
mally stable normal forms.

Proposition V.3: If r>s11 then genericZ2-invariant I-Morse families of corank 2 with
trivial m are infinitesimally stable and equivalent to trivial extensions of the following familie

l2k1 (
i 51

k21

yil
2i1 (

a51

k

yk211abl2a221 (
j 51

k21

xjl
2 j 211 (

b51

k21

xk211bbl2b21,

2k21<s, and

bl2k1l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

yt211abl2a221(
j 51

t21

xjl
2 j 211 (

b51

k tk

xt1bbl2b21,

t211min$t,k%<s.
Proof: In the considered caser>t211k tk , s>t211min$t,k%, theZ2-equivariant, infinitesi-

mally RZ2
-stable mappings,

C~x,y!5„y1 ,...,y2k21 ,c1~x,y!,...,ck21~x,y!,c̄1~x,y!,...,c̄k21~x,y!…PR4k23,

and

F~x,y!5„y1 ,...,yt211min$k,t% ,f1~x,y!,...,f t21~x,y!,f̄1~x,y!,...,f̄k tk
~x,y!…

PR2~ t21!1min$t,k%1k tk,

are submersions, and so may be reduced to the standard normal form and plugged into the
of Proposition V.1. Q.E.D.

In the similar way we get the normal forms in the case of nontrivial representationm.
Proposition V.4: If r>s11 then the generic corank 2, Z2-invariant I-Morse families with the

nontrivial m are infinitesimally stable and equivalent to the trivial extension of the follow
families:

bl2k211l2t1(
i 51

t21

yil
2i1 (

a51

min$k,t%

xt211abl2a221(
j 51

t21

xjl
2 j 211 (

b51

min$t,k%21

yt211bbl2b21,

where t221min$t,k%<s, or
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l2k1 (
i 51

k21

yil
2i1 (

a51

k

xabl2a221 (
j 51

k21

xj 1kl
2 j 211 (

b51

k21

yb1k21bl2b21,

where2k22<s.
Remark V.5: We know that (Ref. 4) the swallowtail (which is a Z2-symmetric set) cannot b

realized as a Z2-symmetric caustic. In contrast, the Whitney’s cross-cap (which is a Z2-symmetric
set illustrated in Fig. 1) can be realized as a Z2-symmetric quasicaustic. Its generating family m
be reduced to the following form:

l31x1b1x2bl2y1l,

with the action (b,l)→(2b,l).
As an interesting illustration (seeFig. 2! in small dimensions, we present the Z2-symmetric

sectionSF5QFù$y15y250% through the quasicaustic of the family,

FIG. 1. Z2-symmetric Whitney’s cross-cap.

FIG. 2. Z2-symmetric sectionSF5QFù$y15y250% through the quasicausticQF of ~16!.
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l41y1l21y2bl1x1b1x2bl21x3l, ~16!

SF5$~x1 ,x2 ,x3!:x152sl2,x25s,x3524l3, ~s,l!PR2%.
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